Skip to main content
Log in

Partial stability analysis of stochastic differential equations with a general decay rate

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with the almost sure partial practical stability of stochastic differential equations with general decay rate. We establish some sufficient conditions based upon the construction of appropriate Lyapunov functions. Finally, we provide a numerical example to demonstrate the efficiency of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ren Y, Sakthivel R, Sun G (2020) Robust stability and boundedness of stochastic differential equations with delay driven by G-Brownian motion. Int J Control 93:2886–2895

    Article  MathSciNet  Google Scholar 

  2. Ren Y, Sakthivel R, Yin W (2018) Stabilization of stochastic differential equations driven by G-Brownian motion with feedback control based on discrete-time state observation. Automatica 95:146–151

    Article  MathSciNet  Google Scholar 

  3. Azizi A, Yazdi PG (2019) Computer-based analysis of the stochastic stability of mechanical structures driven by white and colored noise. Springer briefs in applied sciences and technology, Springer, Singapore

    Book  Google Scholar 

  4. Awad E, Culick FEC (1986) On the existence and stability of limit cycles for longitunical acoustic modes in a combustion chamber. Combust Sci Technol 46:195–222

    Article  Google Scholar 

  5. Lum KY, Bernstein DS, Coppola VT (1995) Global stabilization of the spinning top with mass imbalance. Dyn Stab Syst 10:339–365

    Article  MathSciNet  Google Scholar 

  6. Rouche N, Habets P, Lalog M (1977) Stability theory by Liapunov’s direct method. Springer, New York

    Book  Google Scholar 

  7. Sinitsyn VA (1991) On stability of solution in inertial navigation problem. Certain problems on dynamics of mechanical systems, Moscow, pp 46–50

    Google Scholar 

  8. Vorotnikov VI (1988) Partial stability and control. Birkhäuser, Boston

    MATH  Google Scholar 

  9. Zubov VI (1982) The dynamics of controlled systems. Vysshaya Shkola, Moscow

    MATH  Google Scholar 

  10. Ignatyev O (2009) Partial asymptotic stability in probability of stochastic differential equations. Stat Probab Lett 79:597–601

    Article  MathSciNet  Google Scholar 

  11. Peiffer K, Rouche N (1969) Liapunov’s second method applied to partial stability. J Mécanique 2:20–29

    MathSciNet  MATH  Google Scholar 

  12. Rymanstev VV (1957) On the stability of motions with respect to part of variables. Vestnik Moscow University Ser Math Mech 4:9–16

    Google Scholar 

  13. Rumyantsev VV, Oziraner AS (1987) Partial stability and stabilization of motion. Nauka, Moscow (in Russian)

  14. Savchenko AY, Ignatyev O (1989) Some problems of stability theory. Naukova Dumka, Kiev (in Russian)

  15. Vorotnikov VI, Rumyantsev VV (2001) Stability and control with respect to a part of the phase coordinates of dynamic systems: theory, methods, and applications. Scientific World, Moscow (in Russian)

  16. Caraballo T, Hammami M, Mchiri L (2016) On the practical global uniform asymptotic stability of stochastic differential equations. Stochastics 88:45–56

    Article  MathSciNet  Google Scholar 

  17. Caraballo T, Hammami M, Mchiri L (2014) Practical asymptotic stability of nonlinear evolution equations. Stoch Anal Appl 32:77–87

    Article  MathSciNet  Google Scholar 

  18. Caraballo T, Ezzine F, Hammami M, Mchiri L (2020) Practical stability with respect to a part of variables of stochastic differential equations. Stochastics 6:1–18

    Google Scholar 

  19. Caraballo T, Garrido-Atienza MJ, Real J (2003) Asymptotic stability of nonlinear stochastic evolution equations. Stoch Anal Appl 21:301–327

    Article  MathSciNet  Google Scholar 

  20. Mao X (1997) Stochastic differential equations and applications. Ellis Horwood, Chichester

    MATH  Google Scholar 

  21. Mao X (1992) Almost sure polynomial stability for a class of stochastic differential equations. Quart J Math Oxford Ser 43:339–348

    Article  MathSciNet  Google Scholar 

  22. Caraballo T, Garrido-Atienza MJ, Real J (2003) Stochastic stabilization of differential systems with general decay rate. Syst Control Lett 48:397–406

    Article  MathSciNet  Google Scholar 

  23. Caraballo T, Hammami M, Mchiri L (2017) Practical exponential stability of impulsive stochastic functional differential equations. Syst Control Lett 109:43–48

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous reviewers for valuable comments and suggestions, which allowed us to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás Caraballo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of Tomás Caraballo has been partially supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (MCIU), Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) under the project PGC2018-096540-B-I00, and by Junta de Andalucía (Consejería de Economía y Conocimiento) and FEDER under Projects US-1254251 and P18-FR-4509.

Appendices

Appendix

Some details of calculus used in the proof of Theorem 3.3 are provided in what follows:

Appendix A: Details of calculus of Eq. (3.3)

$$\begin{aligned} \lambda (t)^m ||{x_1}(t)||^q-\rho (t)&=\lambda (t)^m\Big (||{x_1}(t)||^q -\Big (\Big (\dfrac{\rho (t)}{\lambda (t)^m}\Big )^{\frac{1}{q}}\Big )^q\Big )\\&=\lambda (t)^m\Big (||{x_1}(t)||-\Big (\dfrac{\rho (t)}{\lambda (t)^m}\Big )^\frac{1}{q}\Big ) \Big (||{x_1}(t)||^{q-1}+||{x_1}(t)||^{q-2}\Big (\dfrac{\rho (t)}{\lambda (t)^m} \Big )^{\frac{1}{q}}\\&\quad +\cdots +\Big (\dfrac{\rho (t)}{\lambda (t)^m}\Big )^{\frac{q-1}{q}}\Big )\\&=\lambda (t)^m\Big (||{x_1}(t)||-\Big (\dfrac{\rho (t)}{\lambda (t)^m} \Big )^{\frac{1}{q}}\Big )\sum _{k=1}^{q}||{x_1}(t)||^{q-k} \Big (\dfrac{\rho (t)}{\lambda (t)^m}\Big )^{\frac{k-1}{q}}. \end{aligned}$$

Appendix B: Details of calculus of Eq. (3.5)

$$\begin{aligned} \ln ({{\mathcal {V}}}(t,x(t)))\le & {} \ln ({{\mathcal {V}}}(T,x(T))) +\int _T^t \dfrac{\psi _1 {{\mathcal {V}}}(s,x(s))+\rho (s)}{{{\mathcal {V}}}(s,x(s))}\mathrm{{d}}s +{{\mathcal {M}}}(t)-\frac{1}{2}\int _T^t\dfrac{{\mathcal {H}}{{\mathcal {V}}}(s,x(s))}{{{\mathcal {V}}}^2(s,x(s))}\mathrm{{d}}s\\\le & {} \ln ({{\mathcal {V}}}(T,x(T)))+\int _T^t \psi _1(s)\mathrm{{d}}s+ \int _T^t \dfrac{\rho (s)}{{{\mathcal {V}}}(s,x(s))}\mathrm{{d}}s+{{\mathcal {M}}}(t) -\frac{1}{2}\int _T^t\dfrac{{\mathcal {H}}{{\mathcal {V}}}(s,x(s))}{{{\mathcal {V}}}^2(s,x(s))}\mathrm{{d}}s\\\le & {} \ln ({{\mathcal {V}}}(T,x(T)))+\int _T^t\psi _1(s)\mathrm{{d}}s+ \int _T^t \dfrac{\rho (s)}{\lambda (s)^m ||{x_1}(s)||^q}\mathrm{{d}}s +{{\mathcal {M}}}(t) -\frac{1}{2}\int _T^t\dfrac{{\mathcal {H}}{{\mathcal {V}}}(s,x(s))}{{{\mathcal {V}}}^2(s,x(s))}\mathrm{{d}}s. \end{aligned}$$

Appendix C: Details of calculus of Eq. (3.7)

$$\begin{aligned} \ln ({{\mathcal {V}}}(t,x(t)))\le & {} \ln ({{\mathcal {V}}}(T,x(T)))+\int _T^t\psi _1(s)\mathrm{{d}}s + (t-T)+\frac{2}{\beta }\ln (k-1) +\frac{\beta }{2}\int _{T}^{t}\frac{{\mathcal {H}} {{\mathcal {V}}}(s,x(s))}{{{\mathcal {V}}}^{2}(s,x(s))}\mathrm{{d}}s\\&\quad -\frac{1}{2}\int _{T}^{t}\frac{{\mathcal {H}}{{\mathcal {V}}} (s,x(s))}{{{\mathcal {V}}}^{2} (s,x(s))}\mathrm{{d}}s\\\le & {} \ln ({{\mathcal {V}}}(T,x(T)))+\int _T^t\psi _1(s)\mathrm{{d}}s+(t-T)+\frac{2}{\beta }\ln (k-1)-\frac{1-\beta }{2}\int _{T}^{t}\frac{{\mathcal {H}}{{\mathcal {V}}}(s,x(s))}{{{\mathcal {V}}}^{2}(s,x(s))}\mathrm{{d}}s\\\le & {} \ln ({{\mathcal {V}}}(T,x(T)))+\int _T^t\psi _1(s)\mathrm{{d}}s+(t-T)+\frac{2}{\beta } \ln (k-1) -\frac{1-\beta }{2}\int _{T}^{t} \psi _2(s) \mathrm{{d}}s\nonumber \\&\quad -\frac{1-\beta }{2}\int _{T}^{t} \frac{\xi }{{{\mathcal {V}}}^{2}(s,x(s))}\mathrm{{d}}s\\\le & {} \ln ({{\mathcal {V}}}(T,x(T)))+\frac{2}{\beta }\ln (k-1)+\int _T^t\psi _1(s)\mathrm{{d}}s +(t-T) -\frac{1-\beta }{2}\int _{T}^{t} \psi _2(s) \mathrm{{d}}s. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caraballo, T., Ezzine, F. & Hammami, M.A. Partial stability analysis of stochastic differential equations with a general decay rate. J Eng Math 130, 4 (2021). https://doi.org/10.1007/s10665-021-10164-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-021-10164-w

Keywords

Mathematics Subject Classification

Navigation