Skip to main content
Log in

Instability of two-layer flows with viscosity and density stratification

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The three-dimensional linear stability characteristics of two-layer immiscible fluid with a free surface are considered, wherein a Newtonian fluid contains a small amount of sediment particles, and overlies a lower fluid that contents hyperconcentration of sediment. Rheological experiments are carried out on three kinds of artificial sediments with different silt-kaolin mixing ratios to study the rheological properties of the lower fluid. The results show that the rheological properties of the lower fluid conform to the power-law model. Based on this, the modified N–S and Squire equations in each layer are derived for the gravity-driven flow, which are calculated by using the finite difference method. The effect of various dimensionless parameters, such as the viscosity ratio (\(c_{m})\), the density ratio (s), the power-law index (n), and the thickness ratio (\(h_{s})\) on the instability characteristics of the flow is investigated. It is observed that increasing \(c_{m}\), s and \(h_{s}\) is stabilizing for both long and short waves, which leads to an increase of the critical Reynolds number (Re\(_\mathrm{{{wcr}}})\), and a decrease of the bandwidth of the unstable wavenumbers. The disturbed velocities (u and w) are also decreased. Decreasing the shear-thinning tendency (increasing n) of the lower fluid is destabilizing for both long and short waves, which leads to a decrease of Re\(_\mathrm{{{wcr}}}\) and an increase of the disturbed velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ortiz S, Chomaz JM, Loiseleux T (2002) Spatial holmboe instability. Phys Fluids 14(8):2585–2597

    Article  MathSciNet  Google Scholar 

  2. Tedford EW (2009) Laboratory, field and numerical investigations of Holmboe’s instability. University of British Columbia

  3. Friedlander S, Yudovich V (1999) Instabilities in fluid motion. Notices Am Math Soc 46:1358–1367

    MathSciNet  MATH  Google Scholar 

  4. Lin ZW (2005) Some recent results on instability of ideal plane flows. Contemp Math 371:217–229

    Article  MathSciNet  Google Scholar 

  5. Duncan JH (2001) Spilling breakers. Annu Rev Fluid Mech 33(1):519–547

    Article  Google Scholar 

  6. Bakas NA, Ioannou PJ (2009) Modal and nonmodal growths of inviscid plannar perturbations in shear flows with a free surface. Phys Fluids 21(2):024102

    Article  Google Scholar 

  7. Renardy M (2009) Short wave stability for inviscid shear flow. Siam J Appl Math 69:763–768

    Article  MathSciNet  Google Scholar 

  8. Kaffel A, Renardy M (2011) Surface modes in inviscid free surface shear flows. Z Angew Math Mech 91(8):649–652

    Article  MathSciNet  Google Scholar 

  9. Redekopp LG (2002) Elements of instability theory for environmental flows. Springer, New York

    Google Scholar 

  10. Pouliquen O, Chomaz JM, Huerre P (1994) Propagating Holmboe waves at the interface between two immiscible fluids. J Fluid Mech 266:277–302

    Article  MathSciNet  Google Scholar 

  11. Alabduljalil S, Rangel RH (2006) Inviscid instability of an unbounded shear layer: effect of surface tension, density and velocity profile. J Eng Math 54(2):99–118

    Article  MathSciNet  Google Scholar 

  12. Sahu KC, Valluri P, Spelt PDM, Matar OK (2007) Linear instability of pressure-driven channel flow of a Newtonian and a Herschel–Bulkley fluid. Phys Fluids 19(12):122101

    Article  Google Scholar 

  13. Carpenter JR, Balmforth NJ, Lawrence GA (2010) Identifying unstable modes in stratified shear layers. Phys Fluids 22(5):337–400

    Article  Google Scholar 

  14. Boeck T, Zaleski S (2005) Viscous versus inviscid instability of two-phase mixing layer with continuous velocity prole. Phys Fluids 17(3):275

    Article  Google Scholar 

  15. Yecko P, Zaleski S (2005) Transient growth in two-phase mixing layers. J Fluids Mech 528:43–52

    Article  Google Scholar 

  16. Bagué A, Fuster D, Popinet S et al (2010) Instability growth rate of two-phase mixing layers from a linear eigenvalue problem and an initial-value problem. Phys Fluids 22(9):275–62

    Article  Google Scholar 

  17. Usha R, Tammisola O, Govindarajan R (2013) Linear stability of miscible two-fluid flow down an incline. Phys Fluids 25(10):119–820

    Article  Google Scholar 

  18. Govindarajan R, Sahu KC (2014) Instabilities in viscosity-stratified flow. Annu Rev Fluid Mech 46(1):331–353

    Article  MathSciNet  Google Scholar 

  19. Mishra M, De Wit A, Sahu KC (2012) Double diffusive effects on pressure-driven miscible displacement flows in a channel. J Fluid Mech 712(35):579–597

    Article  MathSciNet  Google Scholar 

  20. Sahu KC, Govindarajan R (2012) Spatio-temporal linear stability of double-diffusive two-fluid channel flow. Phys Fluids 24(5):05413

    Article  Google Scholar 

  21. Sahu KC, Ding H, Valluri P, Matar OK (2009) Linear stability analysis and numerical simulation of miscible channel flows. Phys Fluids 21(4):65–571

    MATH  Google Scholar 

  22. Sahu KC, Matar OK (2011) Three-dimensional convective and absolute instabilities in pressure-driven two-layer channel flow. Intl J Multiphase flow 37(8):987–993

    Article  Google Scholar 

  23. Sahu KC, Govindarajan R (2014) Instability of a free-shear layer in the vicinity of a viscosity-stratified layer. J Fluid Mech 752(1):626–648

    Article  Google Scholar 

  24. Hur VM, Lin Z (2008) Unstable surface waves in running water. Commun Math Phys 282(1):733–796

    Article  MathSciNet  Google Scholar 

  25. Renardy M, Renardy Y (2013) On the stability of inviscid parallel shear flows with a free surface. J Math Fluid Mech 15:129–137

    Article  MathSciNet  Google Scholar 

  26. Ghosh S, Usha R, Rama Govindarajan, Tammisola O (2017) Inviscid instability of two-fluid free surface flow down an incline. Meccanica 52:955–972

    Article  MathSciNet  Google Scholar 

  27. Sahu KC, Matar OK (2010) Three-dimensional linear instability in pressure-driven two-layer channel flow of a Newtonian and a Herschel–Bulkley fluid. Phys Fluids 22(11):112103

    Article  Google Scholar 

  28. Usha R, Sahu KC (2019) Interfacial instability in pressure-driven core-annular pipe flow of a Newtonian and a Herschel–Bulkley fluid. J Non-Newton Fluid Mech 271:104144

    Article  MathSciNet  Google Scholar 

  29. Bhaganagar K (2017) Role of head of turbulent 3-D density currents in mixing during slumping regime. Phys Fluids 29:020703

    Article  Google Scholar 

  30. Lucchese LV, Monteiro LR, Schettini EC, Silvestrini JH (2019) Direct Numerical Simulations of turbidity currents with Evolutive Deposit Method, considering topography updates during the simulation. Comput Geosci-UK 133

  31. Khavasi E, Firoozabadi B, Afshin H (2014) Linear analysis of the stability of particle-laden stratified shear layers. Can J Phys 92(2):103–115

    Article  Google Scholar 

  32. Jie L, Yuchuan B, Dong X (2017) Mass transport in a thin layer of power-law mud under surface waves. Ocean Dynam 67(2):237–251

    Article  Google Scholar 

  33. Klinkenberg J, Sardina G, Lange HD, Brandt L (2013) Numerical study of laminar–turbulent transition in particle-laden channel flow. Phys Rev E 87(4):043011

    Article  Google Scholar 

  34. Frisch HL, Simha R (1956) The viscosity of colloidal suspensions and macromolecular solutions. Rheology 525–613

  35. Yuchuan B, Qi T (2011) Interaction between mud and wave in different rheological models. J Tianjin Univ 44(3):196–201

    MathSciNet  Google Scholar 

  36. Ng CO (2004) Mass transport in a layer of power-law fluid forced by periodic surface pressure. Wave Motion 39(3):241–259

    Article  MathSciNet  Google Scholar 

  37. Squire HB (1933) On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls. Proc Roy Soc A 621–628

  38. Schaflinger U (1994) A short note on Squire’s theorem for interfacial instabilities in a stratified flow of two superposed fluids. Fluid Dyn Res 14(5):223–227

    Article  Google Scholar 

  39. Yuchuan B, Haijue X (2008) Stability characteristics of hyper-concentration flow in open channel. Sci China Ser G 51:1316–1338

    Article  Google Scholar 

Download references

Funding

Funding Supported by National Key Research and Development Program of China (Grant No. 2018YFC0407505) and the Natural Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijue Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Parameters in Eqs. (14) and (15)

Appendix: Parameters in Eqs. (14) and (15)

$$\begin{aligned}&B{ }_{1}=h_{s} -1, \end{aligned}$$
(A.1)
$$\begin{aligned}&C_{1} =\frac{n}{n+1}\cdot \frac{Fr}{\mathrm{Re}\cdot \sin \theta }\cdot \left( {\frac{s\cdot \mathrm{Re}_{m} }{Fr}\cdot \sin \theta } \right) ^{\frac{1}{n}}\cdot \left[ {\left( {1-h_{s} } \right) ^{\frac{1}{n}+1}-1} \right] , \end{aligned}$$
(A.2)
$$\begin{aligned}&D_{1} =\frac{\cos \theta }{F_{r} }\cdot \left( {1-h_{s} } \right) , \end{aligned}$$
(A.3)
$$\begin{aligned}&B_{2} =-\frac{s\cdot \mathrm{Re}_{m} }{Fr}\sin \theta \cdot B_{1} =\frac{s\cdot \mathrm{Re}_{m} }{Fr}\sin \theta \cdot \left( {1-h_{s} } \right) , \end{aligned}$$
(A.4)
$$\begin{aligned}&C_{2} =\frac{Fr}{\sin \theta }\cdot \frac{1}{s\cdot \mathrm{Re}_{m} }\cdot \left( {\mathrm{Re}_{m} \frac{s\cdot \sin \theta }{Fr}h_{s} +B_{2} } \right) ^{\frac{1}{n}+1}\cdot \frac{n}{n+1}, \end{aligned}$$
(A.5)
$$\begin{aligned}&D_{2} =\frac{\cos \theta }{Fr}\left( {1-h_{s} } \right) . \end{aligned}$$
(A.6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Z., Xu, H. & Bai, Y. Instability of two-layer flows with viscosity and density stratification. J Eng Math 130, 1 (2021). https://doi.org/10.1007/s10665-021-10154-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-021-10154-y

Keywords

Navigation