Skip to main content
Log in

Numerical study on the instability of localized buckling modes in the axially compressed strut on a distributed-spring elastic foundation with softening quadratic nonlinearity

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Localized buckling modes in the axially compressed strut on a distributed-spring elastic foundation with a softening quadratic nonlinearity are numerically calculated based on a modified Petviashvili method in the spatial frequency domain. As the load decreases (increases), the maximum displacement of the corresponding localized buckling mode increases (decreases) and its width decreases (increases). Then, under the influence of longitudinal and transverse perturbations, stabilities of these localized buckling modes are numerically investigated. The adopted numerical method is the spatial Fourier transform in space and the finite difference method in time. For initial positive longitudinal perturbations, localized buckling modes are unstable showing focusing-type finite-time blowup singularities. For initial negative perturbations, localized buckling modes are unstable and become dispersed showing small-amplitude oscillations. For initial transverse perturbations, localized buckling modes are unstable and are transformed into three-dimensional locally confined modes, finally showing finite-time blowup singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Champneys AR, Hunt GW, Thompson JMT (1997) Localization and solitary waves in solid mechanics. Philos Trans R Soc Lond A 355:2077–2081

    Article  MathSciNet  Google Scholar 

  2. Lord GJ, Champneys AR, Hunt GW (1997) Computation of localized post buckling in long-axially compressed cylindrical shells. Philos Trans R Soc Lond A 355:2137–2150

    Article  MathSciNet  Google Scholar 

  3. Hunt GW, Lord GJ, Champneys AR (1999) Homoclinic and heteroclinic orbits underlying the post-buckling of axially-compressed cylindrical shells. Comput Methods Appl Mech Eng 170:239–251

    Article  Google Scholar 

  4. Hunt GW, Peletier MA, Champneys AR, Woods PD, Wadee MA, Budd CJ, Lord GJ (2000) Cellular buckling in long structures. Nonlinear Dyn 21:3–29

    Article  MathSciNet  Google Scholar 

  5. Goriely A, Tabor M (1997) Nonlinear dynamics of filaments III—instabilities of helical rods. Proc R Soc A 453:2583–2601

    Article  MathSciNet  Google Scholar 

  6. Thompson JMT, Champneys AR (1996) From the helix to localized writhing in the torsional post buckling of elastic rods. Proc R Soc A 452:117–138

    Article  Google Scholar 

  7. Van der Heijden GHM, Champneys AR, Thompson JMT (2002) Spatially complex localization in twisted elastic rods constrained to a cylinder. Int J Solids Struct 39:1863–1883

    Article  Google Scholar 

  8. Hunt GW, Wadee MA (1998) Localization and mode interaction in sandwich structures. Proc R Soc A 454:1197–1216

    Article  MathSciNet  Google Scholar 

  9. Brau F, Damman P, Diamant H, Witten TA (2013) Wrinkle to fold transition: influence of the substrate response. Soft Matter 9:8177–8186

    Article  Google Scholar 

  10. Pocivavsek L, Dellsy R, An Kern, Johnson S, Lin B, Lee KYC, Cerda E (2008) Stress and fold localization in thin elastic membranes. Science 320:912–916

    Article  Google Scholar 

  11. Audoly B (2011) Localized buckling of a floating elastica. Phys Rev E 84:011605

    Article  Google Scholar 

  12. Buffoni B, Champneys AR, Toland JF (1996) Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system. J Dyn Differ Equ 8(2):221–279

    Article  MathSciNet  Google Scholar 

  13. Calvo DC, Yang T-S, Akylas TR (2000) On the stability of solitary waves with decaying oscillatory tails. Proc R Soc Lond A 456:469–487

    Article  MathSciNet  Google Scholar 

  14. Hunt GW, Bolt HM, Thompson JMT (1989) Structural localization phenomena and the dynamical phase-space analogy. Proc R Soc Lond A 425(1869):245–267

    Article  MathSciNet  Google Scholar 

  15. Hunt G (2006) Buckling in space and time. Nonlinear Dyn 43:29–46

    Article  MathSciNet  Google Scholar 

  16. Sandstede B (1997) Instability of localized buckling modes in a one-dimensional strut model. Philos Trans R Soc Lond A 355:2083–2097

    Article  MathSciNet  Google Scholar 

  17. Wadee MK, Hunt GW, Whiting AIM (1997) Asymptotic and Rayleigh-Ritz routes to localized buckling solutions in an elastic instability problem. Proc R Soc Lond A 453:2085–2107

    Article  MathSciNet  Google Scholar 

  18. Wadee MK, Bassom AP (1999) Effects of exponentially small terms in the perturbation approach to localized buckling. Proc R Soc Lond A 455:2351–2370

    Article  MathSciNet  Google Scholar 

  19. Wadee MK, Bassom AP (2000) Characterization of limiting homoclinic behavior in a one-dimensional elastic buckling model. J Mech Phys Solids 48:2297–2313

    Article  MathSciNet  Google Scholar 

  20. Wadee MK, Coman CD, Bassom AP (2002) Solitary wave interaction phenomena in a strut buckling model incorporating restabilisation. Physica D 163:26–48

    Article  MathSciNet  Google Scholar 

  21. Wadee MK, Coman CD, Bassom AP (2004) Numerical stability criteria for localized post-buckling solutions in a strut-on-fondation model. J Appl Mech 71(3):334–341

    Article  Google Scholar 

  22. Cho Y (2015) A modified Petviashvili method using simple stabilizing factors to compute solitary waves. J Eng Math 91:37–57

    Article  MathSciNet  Google Scholar 

  23. Cho Y (2018) Stability of gravity-capillary solitary waves on shallow water based on the fifth-order Kadomtsev-Petviashvili equation. Phys Rev E 98:012213

    Article  MathSciNet  Google Scholar 

  24. Nohara BT, Arimoto A (2007) On the quantic nonlinear Schrödinger equation created by the vibration of a square plate on a weakly nonlinear elastic foundation and the stability of the uniform solution. Jpn J Ind Appl Math 24:161–179

    Article  Google Scholar 

  25. Zarubinskaya MA, Van Horssen WT (2005) On the vibration of a simply supported square plate on a weakly nonlinear elastic foundation. Nonlinear Dyn 40:35–60

    Article  MathSciNet  Google Scholar 

  26. Wadee MK, Lloyd DJB, Bassom AP (2016) On the interaction of uni-directional and bi-directional buckling of a plate supported by an elastic foundation. Proc R Soc A 472:20150873

    Article  MathSciNet  Google Scholar 

  27. MeKenna PJ, Walter W (1990) Traveling waves in a suspension bridge. SIAM J Appl Math 50:702–715

    Google Scholar 

  28. Chen W, Gui W, Yang L, Zhu H, Tang Z (2019) Wrinkling of two-dimensional materials: methods, properties and applications. Nanoscale Horiz 4:291–320

    Article  Google Scholar 

  29. Budday S, Steiman P, Kuhl E (2015) Secondary instabilities modulate cortical complexity in the mammalian brain. Philos Mag 95:3244–3256

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Research Foundation of Korea (NRF) (NRF-2017R1D1A1B03028299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeunwoo Cho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The nonlinear algebraic equation to be solved is Eq. (17).

$$\begin{aligned} {\hat{u}}(k)=D(k) \left\{ {{\hat{u}}(k) *{\hat{u}}(k)} \right\} . \end{aligned}$$
(A.1)

Here, the convolution terms can be re-expressed using a matrix-vector multiplication. In this case, for the column vector \({\hat{\eta }}=(c_0, c_1, c_2, \ldots ,c_{n-1})^\mathrm{T}\) (where T means the transpose), the circular convolution term for this finite-length vector is equal to

$$\begin{aligned} {\hat{u}} *{\hat{u}} = \begin{bmatrix} c_0 &{}\quad c_{n-1} &{}\quad c_{n-2} &{}\quad \cdots &{}\quad c_1 \\ c_1 &{}\quad c_0 &{}\quad c_{n-1} &{}\quad \ddots &{}\quad \vdots \\ c_2 &{}\quad c_1 &{}\quad \ddots &{}\quad \ddots &{}\quad c_{n-2} \\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \ddots &{}\quad c_{n-1}\\ c_{n-1} &{}\quad c_{n-2} &{}\quad \cdots &{}\quad c_1 &{}\quad c_0 \\ \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_{n-1} \end{bmatrix} \equiv {\mathbf {C}}({\hat{u}}){\hat{u}}. \end{aligned}$$
(A.2)

In addition, \(D=(d_0, d_1, d_2, \ldots ,d_{n-1})^\mathrm{T}\) in Eq. (A.1) can be expressed as a diagonal matrix, then, the original equation, Eq. (A.1) becomes the following nonlinear matrix problem:

$$\begin{aligned} {\hat{u}}= \begin{bmatrix} d_0 &{}\quad 0 &{}\quad 0 &{}\quad \cdots &{}\quad 0 \\ 0 &{}\quad d_1 &{}\quad 0 &{}\quad \ddots &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad d_2 &{}\quad \ddots &{}\quad \vdots \\ \vdots &{}\quad \ddots &{}\quad \ddots &{}\quad \ddots &{}\quad 0\\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad 0 &{}\quad d_{n-1} \\ \end{bmatrix} \begin{bmatrix} c_0 &{}\quad c_{n-1} &{}\quad c_{n-2} &{}\quad \cdots &{}\quad c_1 \\ c_1 &{}\quad c_0 &{}\quad c_{n-1} &{}\quad \ddots &{}\quad \vdots \\ c_2 &{}\quad c_1 &{}\quad \ddots &{}\quad \ddots &{}\quad c_{n-2} \\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \ddots &{}\quad c_{n-1}\\ c_{n-1} &{}\quad c_{n-2} &{}\quad \cdots &{}\quad c_1 &{}\quad c_0 \\ \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_{n-1} \end{bmatrix} \equiv \mathbf {DC}({\hat{u}}){\hat{u}} \equiv {\mathbf {A}}({\hat{u}}){\hat{u}}. \end{aligned}$$
(A.3)

For a symmetric buckling mode solution, the matrix \({\mathbf {C}} ({\hat{u}})\) is a symmetric circulant Toeplitz matrix, and \({\mathbf {D}}\) is a symmetric diagonal matrix. Therefore, the resultant matrix \({\mathbf {A}}\) in Eq. (A.3) is diagonalizable. Like in the linear matrix eigenvalue problem, if the diagonalizable square matrix \({\mathbf {A}}\) with a size \(n \times n\) has a dominant eigenvalue with a corresponding dominant eigenvector, then one can choose an initial approximation of a nonzero vector \({\hat{\mathbf {u}}}_{\mathbf {0}}\) with a size \(n \times 1\) to perform the following numerical sequence with a proper stabilizing factor, assuming the sequence to be convergent. In other words,

$$\begin{aligned} \begin{aligned} {\hat{\mathbf {u}}}_{\mathbf {1}}&= (1/S_1) \mathbf {A_0} {\hat{\mathbf {u}}}_{\mathbf {0}}, \\ {\hat{\mathbf {u}}}_{\mathbf {2}}&= (1/S_2) \mathbf {A_1} {\hat{\mathbf {u}}}_{\mathbf {1}}= (1/S_2S_1) \mathbf {A_1A_0} {\hat{\mathbf {u}}}_{\mathbf {0}}, \\ {\hat{\mathbf {u}}}_{\mathbf {3}}&= (1/S_3) \mathbf {A_2} {\hat{\mathbf {u}}}_{\mathbf {2}}= (1/S_3S_2S_1) \mathbf {A_2A_1A_0} {\hat{\mathbf {u}}}_{\mathbf {0}}, \\&~~~~~~~~~~~~~~\vdots \\ {\hat{\mathbf {u}}}_{\mathbf {k}}&= (1/S_k) \mathbf {A_{k-1}} {\hat{\mathbf {u}}}_{\mathbf {k-1}}= (1/S_kS_{k-1} \cdots S_3S_2S_1) (\mathbf {A_{k-1} \cdots A_2A_1A_0}){\hat{\mathbf {u}}}_{\mathbf {0}}. \end{aligned} \end{aligned}$$
(A.4)

Since all the matrices in Eq. (A.3) are diagonalizable, one can assume that the matrix \(\mathbf {A_i}\) (\(i=0,1,2,3, \ldots ,k\) ) has a set of eigenvectors \(\{ {\mathbf {x_0^{(i)}, x_1^{(i)}, \ldots , x_{n-1}^{(i)}}} \}\) and a set of associated eigenvalues \(\{ {\lambda _0^{(i)},\lambda _1^{(i)}, \ldots , \lambda _{n-1}^{(i)}} \}\) with descending orders of their absolute magnitudes \(\big ( {\big | {\lambda _0^{(i)}} \big | > \big | {\lambda _1^{(i)}} \big |} \ge \cdots \ge \big | {\lambda _{n-1}^{(i)}} \big | \big )\) at each iteration step. To begin with, the initial vector \({\hat{\mathbf {u}}}_{\mathbf {0}}\) can be expressed as a linear combination of the eigenvectors of \(\mathbf {A_0}\) as follows:

$$\begin{aligned} {\hat{\mathbf {u}}}_{\mathbf {0}}=\sum _{j=0}^{n-1} c_j^{(0)} {\mathbf {x}}_j^{\mathbf {(0)}} . \end{aligned}$$
(A.5)

Here, \(c_j^{(0)}~(j=0,1, \ldots , n-1)\) are coefficients in the linear combination. In the first iterative step, \({\hat{\mathbf {u}}}_{\mathbf {1}}\) in Eq. (A.4) can be expressed using Eq. (A.5) as follows:

$$\begin{aligned} \begin{aligned} {\hat{\mathbf {u}}}_{\mathbf {1}} = (1/S_1) \mathbf {A_0} {\hat{\mathbf {u}}}_{\mathbf {0}} = (1/S_1) \mathbf {A_0} \sum _{j=0}^{n-1} c_j^{(0)} {\mathbf {x}}_j^{\mathbf {(0)}} = (1/S_1) \sum _{j=0}^{n-1} c_j^{(0)} \lambda _j^{(0)} {\mathbf {x}}_j^{\mathbf {(0)}} \sim \frac{\lambda _0^{(0)} }{S_1}\left( {\mathbf {x_0^{(0)}} + \sum _{j=1}^{n-1} \frac{\lambda _j^{(0)}}{\lambda _0^{(0)}}} {\mathbf {x}}_j^{\mathbf {(0)}} \right) . \end{aligned} \end{aligned}$$
(A.6)

In the second iterative step,

$$\begin{aligned} {\hat{\mathbf {u}}}_{\mathbf {2}} = (1/S_2) \mathbf {A_1} {\hat{\mathbf {u}}}_{\mathbf {1}} = (1/S_2S_1) \mathbf {A_1} \sum _{j=0}^{n-1} c_j^{(0)} \lambda _j^{(0)} {\mathbf {x}}_j^{\mathbf {(0)}} . \end{aligned}$$
(A.7)

Since \({\mathbf {x}}_j^{(0)}~(j=0,1, \ldots ,n-1)\) can be expressed as a linear combination of \({\mathbf {x}}_j^{(1)}~(j=0,1, \ldots ,n-1)\), say,

$$\begin{aligned} \mathbf {x_0^{(0)}}= \sum _{i=0}^{n-1}C_i^{(1)} \mathbf {x_i^{(1)}}, \, \mathbf {x_1^{(0)}}= \sum _{i=0}^{n-1}D_i^{(1)} \mathbf {x_i^{(1)}}, \, \ldots , \, \mathbf {x_{n-1}^{(0)}}= \sum _{i=0}^{n-1}E_i^{(1)} \mathbf {x_i^{(1)}}. \end{aligned}$$
(A.8)

Then, by substituting Eq. (A.8) into Eq. (A.7),

$$\begin{aligned} \begin{aligned} {\hat{\mathbf {u}}}_{\mathbf {2}}&= \frac{1}{S_1S_2} \mathbf {A_1} \left( { c_0^{(0)}\lambda _0^{(0)} \sum _{i=0}^{n-1}C_i^{(1)}\mathbf {x_i^{(1)}} + c_1^{(0)}\lambda _1^{(0)} \sum _{i=0}^{n-1}D_i^{(1)}\mathbf {x_i^{(1)}} + \cdots + c_{n-1}^{(0)}\lambda _{n-1}^{(0)} \sum _{i=0}^{n-1}E_i^{(1)}\mathbf {x_i^{(1)}} } \right) \\&= \frac{1}{S_1S_2} \left( { c_0^{(0)}\lambda _0^{(0)} \sum _{i=0}^{n-1}C_i^{(1)}\lambda _i^{(1)}\mathbf {x_i^{(1)}} +c_1^{(0)}\lambda _1^{(0)} \sum _{i=0}^{n-1}D_i^{(1)}\lambda _i^{(1)}\mathbf {x_i^{(1)}} + \cdots + c_{n-1}^{(0)}\lambda _{n-1}^{(0)} \sum _{i=0}^{n-1}E_i^{(1)}\lambda _i^{(1)}\mathbf {x_i^{(1)}} } \right) \\&\sim \frac{\lambda _0^{(1)} \lambda _0^{(0)}}{S_1S_2} \left( { \mathbf {x_0^{(1)}} + \sum _{j=1}^{n-1} \frac{\lambda _j^{(1)}}{\lambda _0^{(1)}} \frac{\lambda _j^{(0)}}{\lambda _0^{(0)}} {\mathbf {x}}_j^{(1)}} \right) . \end{aligned} \end{aligned}$$
(A.9)

Similarly, in the third iterative step,

$$\begin{aligned} {\hat{\mathbf {u}}}_{\mathbf {3}} \sim \frac{\lambda _0^{(2)}\lambda _0^{(1)}\lambda _0^{(0)}}{S_3S_2S_1} \left( {{\mathbf {x}}_{{\mathbf {0}}}^{(2)} +\sum _{j=1}^{n-1} \frac{\lambda _j^{(2)}}{\lambda _0^{(2)}} \frac{\lambda _j^{(1)}}{\lambda _0^{(1)}}\frac{\lambda _j^{(0)}}{\lambda _0^{(0)}} {\mathbf {x}}_{j}^{(2)} } \right) . \end{aligned}$$
(A.10)

Deductively, in the kth iterative step,

$$\begin{aligned} {\hat{\mathbf {u}}}_{\mathbf {k}} \sim \frac{\lambda _0^{(k-1)} \cdots \lambda _0^{(2)}\lambda _0^{(1)}\lambda _0^{(0)}}{S_k \cdots S_3S_2S_1} \left( {{\mathbf {x}}_{{\mathbf {0}}}^{(k-1)} +\sum _{j=1}^{n-1} \left( {\frac{\lambda _j^{(k-1)}}{\lambda _0^{(k-1)}} \cdots \frac{\lambda _j^{(2)}}{\lambda _0^{(2)}} \frac{\lambda _j^{(1)}}{\lambda _0^{(1)}}\frac{\lambda _j^{(0)}}{\lambda _0^{(0)}}} \right) {\mathbf {x}}_{j}^{(k-1)} } \right) . \end{aligned}$$
(A.11)

Depending on the relative magnitude ratio, \(\left| {\lambda _1^{(i)}\big /\lambda _0^{(i)}} \right| <1\), which affects the convergence rate, the above sequence is expected to converge to an intermediate state where the sets of eigenvector and eigenvalue become almost constant. Including and after the jth step, let’s assume that the sets of eigenvectors and eigenvalues become almost equal to \(\mathbf {\{ {x_0, x_1, x_2, \ldots , x_{n-1}} \}}\) and \(\{ {\lambda _0, \lambda _1, \lambda _2, \ldots , \lambda _{n-1}} \}\), where \(( \left| {\lambda _0} \right| > \left| {\lambda _1} \right| \ge \cdots \ge \left| {\lambda _{n-1}} \right| ) \), respectively. Based on these eigenvectors, Eq. (A.11) is re-expressed as

$$\begin{aligned} {\hat{\mathbf {u}}}_{\mathbf {k}} = c_0\mathbf {x_0} + c_1\mathbf {x_1}+c_2\mathbf {x_2}+\cdots +c_{n-1}\mathbf {x_{n-1}} . \end{aligned}$$
(A.12)

For the next m sequences, assuming \(\mathbf {A_k \approx A_{k+1} \approx \cdots \approx A_{k+m}}\)

$$\begin{aligned} {\hat{\mathbf {u}}}_{\mathbf {k+1}}= & {} \mathbf {A_k} {\hat{\mathbf {u}}}_{\mathbf {k}} = \mathbf {A_k} \left( { c_0 \mathbf {x_0}+c_1 \mathbf {x_1}+c_2 \mathbf {x_2}+\cdots +c_{n-1} \mathbf {x_{n-1}} } \right) \nonumber \\= & {} c_0\lambda _0\mathbf {x_0} + c_1\lambda _1\mathbf {x_1} + c_2\lambda _2\mathbf {x_2} + \cdots + c_{n-1}\lambda _{n-1}\mathbf {x_{n-1}},\nonumber \\ {\hat{\mathbf {u}}}_{\mathbf {k+2}}= & {} \mathbf {A_{k+1}} {\hat{\mathbf {u}}}_{\mathbf {k+1}} \approx \mathbf {A_{k}} {\hat{\mathbf {u}}}_{\mathbf {k+1}} \nonumber \\\approx & {} c_0{(\lambda _0)}^2 \mathbf {x_0} + c_1{(\lambda _1)}^2 \mathbf {x_1} + c_2{(\lambda _2)}^2 \mathbf {x_2} + \cdots + c_{n-1}{(\lambda _{n-1})}^2 \mathbf {x_{n-1}}, \nonumber \\&~~~~\vdots \nonumber \\ {\hat{\mathbf {u}}}_{\mathbf {k+m}}\approx & {} c_0{(\lambda _0)}^m \mathbf {x_0} + c_1{(\lambda _1)}^m \mathbf {x_1} + c_2{(\lambda _2)}^m \mathbf {x_2} + \cdots + c_{n-1}{(\lambda _{n-1})}^m \mathbf {x_{n-1}} \nonumber \\= & {} {(\lambda _0)}^m \left( { c_0\mathbf {x_0} + c_1{\left( {\frac{\lambda _1}{\lambda _0}} \right) }^m \mathbf {x_1} + c_2{\left( {\frac{\lambda _2}{\lambda _0}} \right) }^m \mathbf {x_2} + \cdots + c_{n-1}{\left( {\frac{\lambda _{n-1}}{\lambda _0}} \right) }^m \mathbf {x_{n-1}} } \right) . \end{aligned}$$
(A.13)

From Eq. (A.13), \({\hat{\mathbf {u}}}_{\mathbf {k+m}} \approx (\lambda _0)^m c_0 \mathbf {x_0}\) as m approaches infinity (practically, some finite numbers) due to the existence of the dominant eigenvalue \(\lambda _0~( \left| {\lambda _0} \right| > \left| {\lambda _1} \right| \ge \cdots \ge \left| {\lambda _{n-1}} \right| ) \). In other words, the final nonlinear solitary wave solution in the physical domain is equal to a multiple of the inverse Fourier transform of the dominant eigenvector \(\mathbf {x_0}\) in the wavenumber domain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y.J., Cho, Y. Numerical study on the instability of localized buckling modes in the axially compressed strut on a distributed-spring elastic foundation with softening quadratic nonlinearity. J Eng Math 122, 117–137 (2020). https://doi.org/10.1007/s10665-020-10051-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-020-10051-w

Keywords

Navigation