Skip to main content
Log in

Simulations of axisymmetric, inviscid swirling flows in circular pipes with various geometries

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The numerical simulations of the dynamics of high Reynolds number (\(Re>100{,}000\)) swirling flows in pipes with varying geometries of engineering applications continues to be a challenging computational problem, specifically when vortex-breakdown zones or wall-separation regions naturally evolve in the flows. To tackle this challenge, the present paper describes a simulation scheme of the evolution of inviscid, axisymmetric and incompressible swirling flows in expanding or contracting pipes. The integration in time of the circulation together with azimuthal vorticity uses an explicit, first-order accurate finite-difference scheme with a second-order accurate upwind difference formulation in the axial and radial directions. The Poisson solver for advancing in time the spatial distribution of the stream function as a function of azimuthal vorticity uses a second-order accurate over-relaxation difference scheme. No additional numerical steps are needed for computing the natural evolution of flows including the dynamics to states with slow-speed recirculation zones along the pipe centerline or attached to pipe wall. This numerical method shows convergence of the computed results with mesh refinement for various swirl levels and pipe geometry variations. The computed results of time-asymptotic states also present agreement with available theoretical predictions of steady vortex flows in diverging or contracting pipes. In addition, comparison with available experimental data demonstrates that the present algorithm accurately predicts instability processes and long-term mean-flow dynamics of vortex flows in pipes at high Re. The inviscid-flow simulation results support the theoretical predictions and clarify the nature of high-Re flow evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Erickson GE, Hall RM, Banks DW, Del Frate JH, Schreiner JA (1989) Experimental investigation of the F/A-18 vortex flows at subsonic through transonic speeds. In: 7th applied aerodynamics conference, p 2222

  2. Paschereit CO, Gutmark E (2002) Proportional control of combustion instabilities in a simulated gas-turbine combustor. J Propuls Power 18(6):1298–1304

    Google Scholar 

  3. Peckham DH, Atkinson SA (1957) Preliminary results of low speed wind tunnel tests on a Gothic wing of aspect ratio 1.0. Royal Aircraft Establishment, Farnborough

    Google Scholar 

  4. Lambourne NC, Bryer DW (1962) The bursting of leading-edge vortices some observations and discussion of the phenomenon. Aeronaut Res Counc 3282:1–36

    Google Scholar 

  5. Sarpkaya T (1971) On stationary and travelling vortex breakdowns. J Fluid Mech 45(3):545–559

    Google Scholar 

  6. Sarpkaya T (1974) Effect of the adverse pressure gradient on vortex breakdown. AIAA J 12(5):602–607

    Google Scholar 

  7. Hall MG (1972) Vortex breakdown. Annu Rev Fluid Mech 4(1):195–218

    MATH  Google Scholar 

  8. Leibovich S (1984) Vortex stability and breakdown-survey and extension. AIAA J 22(9):1192–1206

    Google Scholar 

  9. Escudier M (1988) Vortex breakdown: observations and explanations. Prog Aerosp Sci 25(2):189–229

    Google Scholar 

  10. Delery JM (1994) Aspects of vortex breakdown. Prog Aerosp Sci 30(1):1–59

    Google Scholar 

  11. Althaus W, Bruecker C, Weimer M (1995) Breakdown of slender vortices. In: Green SI (ed) Fluid vortices. Springer, Berlin, pp 373–426

    Google Scholar 

  12. Sarpkaya T (1995) Turbulent vortex breakdown. Phys Fluids 7(10):2301–2303

    Google Scholar 

  13. Mitchell AM, Delery J (2001) Research into vortex breakdown control. Prog Aerosp Sci 37(4):385–418

    Google Scholar 

  14. Rusak Z (2000) Review of recent studies on the axisymmetric vortex breakdown phenomenon. In: Fluids 2000 conference and exhibit, AIAA paper 2529

  15. Novak F, Sarpkaya T (2000) Turbulent vortex breakdown at high Reynolds numbers. AIAA J 38(5):825–834

    Google Scholar 

  16. Dennis DJC, Seraudie C, Poole RJ (2014) Controlling vortex breakdown in swirling pipe flows: experiments and simulations. Phys Fluids 26(5):053602

    Google Scholar 

  17. Grabowski WJ, Berger SA (1976) Solutions of the Navier–Stokes equations for vortex breakdown. J Fluid Mech 75(3):525–544

    MATH  Google Scholar 

  18. Spall RE, Gatski TB, Grosch CE (1987) A criterion for vortex breakdown. Phys Fluids 30(11):3434–3440

    Google Scholar 

  19. Darmofal DL (1996) Comparisons of experimental and numerical results for axisymmetric vortex breakdown in pipes. Comput Fluids 25(4):353–371

    MATH  Google Scholar 

  20. Faler JH, Leibovich S (1977) Disrupted states of vortex flow and vortex breakdown. Phys Fluids 20(9):1385–1400

    Google Scholar 

  21. Beran PS, Culick FEC (1992) The role of non-uniqueness in the development of vortex breakdown in tubes. J Fluid Mech 242:491–527

    MathSciNet  MATH  Google Scholar 

  22. Lopez JM (1994) On the bifurcation structure of axisymmetric vortex breakdown in a constricted pipe. Phys Fluids 6(11):3683–3693

    MathSciNet  MATH  Google Scholar 

  23. Beran PS (1994) The time-asymptotic behavior of vortex breakdown in tubes. Comput Fluids 23(7):913–937

    MATH  Google Scholar 

  24. Wang S, Rusak Z (1996) On the stability of an axisymmetric rotating flow in a pipe. Phys Fluids 8(4):1007–1016

    MathSciNet  MATH  Google Scholar 

  25. Wang S, Rusak Z (1997) The dynamics of a swirling flow in a pipe and transition to axisymmetric vortex breakdown. J Fluid Mech 340:177–223

    MathSciNet  MATH  Google Scholar 

  26. Wang S, Rusak Z (1997) The effect of slight viscosity on a near-critical swirling flow in a pipe. Phys Fluids 9(7):1914–1927

    MathSciNet  MATH  Google Scholar 

  27. Malkiel E, Cohen J, Rusak Z, Wang S (1996) Axisymmetric vortex breakdown in a pipe-theoretical and experimental studies. 36th Israel annual conference on aerospace sciences, Tel Aviv and Haifa, Israel, pp 24–34

  28. Mattner TW, Joubert PN, Chong MS (2002) Vortical flow. Part 1. Flow through a constant-diameter pipe. J Fluid Mech 463:259–291

    MathSciNet  MATH  Google Scholar 

  29. Rusak Z, Lamb D (1999) Prediction of vortex breakdown in leading-edge vortices above slender delta wings. J Aircraft 36(4):659–667

    Google Scholar 

  30. Snyder DO, Spall RE (2000) Numerical simulation of bubble-type vortex breakdown within a tube-and-vane apparatus. Phys Fluids 12(3):603–608

    MATH  Google Scholar 

  31. Vyazmina E, Nichols JW, Chomaz JM, Schmid PJ (2009) The bifurcation structure of viscous steady axisymmetric vortex breakdown with open lateral boundaries. Phys Fluids 21(7):074107

    MATH  Google Scholar 

  32. Rusak Z, Granata J, Wang S (2015) An active feedback flow control theory of the axisymmetric vortex breakdown process. J Fluid Mech 774:488–528

    MathSciNet  Google Scholar 

  33. Vanierschot M (2017) On the dynamics of the transition to vortex breakdown in axisymmetric inviscid swirling flows. Eur J Mech B 65:65–69

    MathSciNet  MATH  Google Scholar 

  34. Gallaire F, Chomaz JM (2003) Mode selection in swirling jet experiments: a linear stability analysis. J Fluid Mech 494:223–253

    MathSciNet  MATH  Google Scholar 

  35. Ruith MR, Chen P, Meiburg E, Maxworthy T (2003) Three-dimensional vortex breakdown in swirling jets and wakes: direct numerical simulation. J Fluid Mech 486:331–378

    MathSciNet  MATH  Google Scholar 

  36. Qadri UA, Mistry D, Juniper MP (2013) Structural sensitivity of spiral vortex breakdown. J Fluid Mech 720:558–581

    MathSciNet  MATH  Google Scholar 

  37. Meliga P, Gallaire F, Chomaz JM (2012) A weakly nonlinear mechanism for mode selection in swirling jets. J Fluid Mech 699:216–262

    MathSciNet  MATH  Google Scholar 

  38. Tammisola O, Juniper MP (2016) Coherent structures in a swirl injector at Re = 4800 by nonlinear simulations and linear global modes. J Fluid Mech 792:620–657

    MathSciNet  MATH  Google Scholar 

  39. Feng C, Liu F, Rusak Z, Wang S (2018) Dynamics of a perturbed solid-body rotation flow in a finite-length straight rotating pipe. J Fluid Mech 846:1114–1152

    MathSciNet  MATH  Google Scholar 

  40. Meliga P, Gallaire F (2011) Control of axisymmetric vortex breakdown in a constricted pipe: nonlinear steady states and weakly nonlinear asymptotic expansions. Phys Fluids 23(8):084102

    Google Scholar 

  41. Sahu KC, Govindarajan R (2005) Stability of flow through a slowly diverging pipe. J Fluid Mech 531:325–334

    MathSciNet  MATH  Google Scholar 

  42. Sahu KC, Sameen A, Govindarajan R (2008) The relative roles of divergence and velocity slip in the stability of plane channel flow. Eur Phys J Appl Phys 44(1):101–107

    Google Scholar 

  43. Jotkar MR, Swaminathan G, Sahu KC, Govindarajan R (2016) Global linear instability of flow through a converging-diverging channel. J Fluids Eng 138(3):031301

    Google Scholar 

  44. Lebon B, Peixinho J, Ishizaka S, Tasaka Y (2018) Subcritical transition to turbulence in a sudden circular pipe expansion. J Fluid Mech 849:340–354

    Google Scholar 

  45. Lebon B, Nguyen MQ, Peixinho J, Shadloo MS, Hadjadj A (2018) A new mechanism for periodic bursting of the recirculation region in the flow through a sudden expansion in a circular pipe. Phys Fluids 30(3):031701

    Google Scholar 

  46. Rusak Z, Zhang Y, Lee H, Wang S (2017) Swirling flow states in finite-length diverging or contracting circular pipes. J Fluid Mech 819:678–712

    MathSciNet  MATH  Google Scholar 

  47. Garg AK, Leibovich S (1979) Spectral characteristics of vortex breakdown flowfields. Phys Fluids 22(11):2053–2064

    Google Scholar 

  48. Umeh COU, Rusak Z, Gutmark E, Villalva R, Cha DJ (2010) Experimental and computational study of nonreacting vortex breakdown in a swirl-stabilized combustor. AIAA J 48(11):2576–2585

    Google Scholar 

  49. Liang H, Maxworthy T (2005) An experimental investigation of swirling jets. J Fluid Mech 525:115–159

    MATH  Google Scholar 

  50. Gallaire F, Chomaz JM (2004) The role of boundary conditions in a simple model of incipient vortex breakdown. Phys Fluids 16(2):274–286

    MathSciNet  MATH  Google Scholar 

  51. Buntine JD, Saffman PG (1995) Inviscid swirling flows and vortex breakdown. Proc R Soc Lond A 449:139–153

    MATH  Google Scholar 

  52. Leclaire B, Sipp D (2010) A sensitivity study of vortex breakdown onset to upstream boundary conditions. J Fluid Mech 645:81–119

    MATH  Google Scholar 

  53. Rusak Z, Wang S, Xu L, Taylor S (2012) On the global nonlinear stability of a near-critical swirling flow in a long finite-length pipe and the path to vortex breakdown. J Fluid Mech 712:295–326

    MathSciNet  MATH  Google Scholar 

  54. Wang S, Rusak Z (2011) Energy transfer mechanism of the instability of an axisymmetric swirling flow in a finite-length pipe. J Fluid Mech 679:505–543

    MathSciNet  MATH  Google Scholar 

  55. Benjamin TB (1962) Theory of the vortex breakdown phenomenon. J Fluid Mech 14(4):593–629

    MathSciNet  MATH  Google Scholar 

  56. Squire HB (1956) Chapter on rotating fluids. In: Batchelor GK, Davies M (eds) Surveys in mechanics GI Taylor anniversary volume National Bureau of Standards. Applied Mathematics Series. Cambridge University Press, Cambridge, p 55

    Google Scholar 

  57. Long RR (1953) Steady motion around a symmetrical obstacle moving along the axis of a rotating liquid. J Meteorol 10(3):197–203

    Google Scholar 

  58. Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Rusak, Z. & Wang, S. Simulations of axisymmetric, inviscid swirling flows in circular pipes with various geometries. J Eng Math 119, 69–91 (2019). https://doi.org/10.1007/s10665-019-10019-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-019-10019-5

Keywords

Navigation