Skip to main content
Log in

Asymptotic expansions for the ground heat transfer due to a borehole heat exchanger with a Neumann boundary condition

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

We model the heat transfer of a borehole heat exchanger considering a finite-line heat source inside a semi-infinite medium with constant thermal conductivity and geothermal gradient. As a novelty with respect to other models, periodic heat flux changes are allowed on the ground surface. From this model, we calculate analytic expressions for the average ground temperature by integrating the exact solution along the line-source. Also, asymptotic formulas for the intermediate and long timescales are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Urchueguía JF, Zacarés M, Corberán JM, Montero A, Martos J, Witte H (2008) Comparison between the energy performance of a ground coupled water to water heat pump system and an air to water heat pump system for heating and cooling in typical conditions of the European Mediterranean coast. Energy Convers Manag 49(10):2917–2923

    Article  Google Scholar 

  2. Lund JW (2000) Ground source (geothermal) heat pumps. In: Course on heating with geothermal energy: conventional and new schemes. World Geothermal Congress, Reykjavík, pp 1–21

  3. Xiaolei BL, Deling W, Zhaohong F (2001) Modeling on heat transfer of a vertical bore in geothermal heat exchangers. Build Energy Environ 20:1–3

    Google Scholar 

  4. Claesson J, Eskilson P (1987) Conductive heat extraction by a deep borehole. Analytical studies. Technical report. Department of Mathematical Physics, University of Lund, Lund

    Google Scholar 

  5. Bandos TV, Montero A, Fernández E, González-Santander JL, Isidro JM, Pérez J, de Córdoba PJ Fernández, Urchueguía JF (2009) Finite line-source model for borehole heat exchangers: effect of vertical temperature variations. Geothermics 38(2):263–270

    Article  Google Scholar 

  6. González-Santander JL, Castañeda Porras P, Isidro JM, Fernández de Córdoba P (2010) Calculation of some integrals arising in heat transfer in geothermics. Math Probl Eng 2010:1–13

    MathSciNet  MATH  Google Scholar 

  7. Zeng HY, Diao NR, Fang ZH (2002) A finite line-source model for boreholes in geothermal heat exchangers. Heat Transf Asian Res 31(7):558–567

    Article  Google Scholar 

  8. Eckert ERG, Drake RM (1972) Analysis of heat and mass transfer. McGraw-Hill, New York

    MATH  Google Scholar 

  9. Li M, Lai ACK (2015) Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): a perspective of time and space scales. Appl Energy 151:178–191

    Article  Google Scholar 

  10. Rivera JA, Blum P, Bayer P (2016) Influence of spatially variable ground heat flux on closed-loop geothermal systems: line source model with nonhomogeneous cauchy-type top boundary conditions. Appl Energy 180:572–585

    Article  Google Scholar 

  11. Molina-Giraldo N, Blum P, Zhu K, Bayer P, Fang Z (2011) A moving finite line source model to simulate borehole heat exchangers with groundwater advection. Int J Therm Sci 50(12):2506–2513

    Article  Google Scholar 

  12. Zeng H, Diao N, Fang Z (2003) Heat transfer analysis of boreholes in vertical ground heat exchangers. Int J Heat Mass Transf 46(23):4467–4481

    Article  Google Scholar 

  13. Hellström G (1991) Ground heat storage: thermal analyses of duct storage systems. Department of Mathematical Physics, Lund University, Lund

    Google Scholar 

  14. Ibáñez S, Hermanns M (2018) On the steady-state thermal response of slender geothermal boreholes. SIAM J Appl Math 78(3):1658–1681

    Article  MathSciNet  MATH  Google Scholar 

  15. Stieglitz M, Smerdon JE (2007) Characterizing land-atmosphere coupling and the implications for subsurface thermodynamics. J Clim 20(1):21–37

    Article  Google Scholar 

  16. Rivera JA, Blum P, Bayer P (2016) A finite line source model with Cauchy-type top boundary conditions for simulating near surface effects on borehole heat exchangers. Energy 98:50–63

    Article  Google Scholar 

  17. Abramowitz M, Stegun IA (1965) Handbook of mathematical functions: with formulas, graphs, and mathematical tables, vol 55. Courier Corporation, Chelmsford

    MATH  Google Scholar 

  18. Olver FWJ, Lozier DW, Boisvert RF, Clark CW (2010) NIST handbook of mathematical functions hardback and CD-ROM. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  19. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, vol 2. Clarendon Press, Oxford

    MATH  Google Scholar 

  20. Tikhonov AN, Samarskii AA (2013) Equations of mathematical physics. Courier Corporation, Chelmsford

    MATH  Google Scholar 

  21. Lamarche L, Beauchamp B (2007) A new contribution to the finite line-source model for geothermal boreholes. Energ Build 39(2):188–198

    Article  MATH  Google Scholar 

  22. Eskilson P (1987) Thermal analysis of heat extraction boreholes. PhD thesis, Department of Mathematical Physics, University of Lund, Lund

  23. Lebedev NN (2012) Special functions & their applications. Courier Corporation, Chelmsford

    Google Scholar 

  24. Ingersoll LR, Zabel OJ, Ingersoll AC (1954) Heat conduction with engineering, geological, and other applications. University of Wisconsin Press, Madison

    MATH  Google Scholar 

  25. Gradshteyn IS, Ryzhik IM (2014) Table of integrals, series, and products. Academic Press, New York

    MATH  Google Scholar 

  26. Trench WF (2013) Introduction to real analysis. Pearson Education, London

    MATH  Google Scholar 

  27. Andrews GE, Askey R, Roy R (1999) Special functions. Encyclopedia of mathematics and its applications, vol 71. Cambridge University Press, Cambridge

    Google Scholar 

  28. Kanana YF, Matveyev AK (1989) Temperature and geologic time in the regional metamorphism of coal. Int Geol Rev 31(3):258–261

    Article  Google Scholar 

  29. Mikova A, Petra A (2008) Investigation on soil heat flux in vertic luvisol. In: Balwois, 2008

  30. González-Santander JL, Martín González G (2014) Relative distance between two scalar fields. Application to mathematical modelling approximation. Math Methods Appl Sci 37(18):2906–2922

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Gónzález-Santander.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Equivalence of Eqns. (32) and (33)

According to (31) and (28)–(29), rewrite (32) as

$$\begin{aligned} v_\mathrm{d}\left( r,z,t\right)= & {} \frac{Q_{z}}{8\pi \lambda }\int _{r^{2}/4kt}^{\infty }\frac{\mathrm {e}^{-u}}{u} \left. \mathrm {erf}\left( \frac{w}{r}\sqrt{u}\right) \right| _{w=z-L}^{z+L}\mathrm {d}u \\= & {} \frac{Q_{z}}{8\pi \lambda }\int _{0}^{t}\exp \left( -\frac{r^{2}}{4k\left( t-t^{\prime }\right) }\right) \left. \mathrm {erf}\left( \frac{w}{2\sqrt{ k\left( t-t^{\prime }\right) }}\right) \right| _{w=z-L}^{z+L}\frac{ \mathrm {d}z^{\prime }}{t-t^{\prime }} \\= & {} \frac{q_{L,t}}{8}\int _{0}^{t}\frac{\mathrm {d}z^{\prime }}{\left[ \pi k\left( t-t^{\prime }\right) \right] ^{3/2}}\int _{-L}^{L}\exp \left( -\frac{ r^{2}+\left( z-z^{\prime }\right) ^{2}}{4k\left( t-t^{\prime }\right) } \right) \mathrm {d}z^{\prime }, \end{aligned}$$

where we have taken into account that \(q_{L,t}/k=Q_{z}/\lambda \). Exchanging the order of integration, we calculate the inner integral with the substitution \(w^{2}=(r^{2}+( z-z^{\prime }) ^{2})/ (4k(t-t^{\prime })) \), arriving at

$$\begin{aligned} v_\mathrm{d}\left( r,z,t\right)= & {} \frac{q_{L,t}}{8}\int _{-L}^{L}\mathrm {d}z^{\prime }\int _{0}^{t}\frac{\mathrm {d}z^{\prime }}{ \left[ \pi k\left( t-t^{\prime }\right) \right] ^{3/2}}\exp \left( -\frac{ r^{2}+\left( z-z^{\prime }\right) ^{2}}{4k\left( t-t^{\prime }\right) } \right) \\= & {} \frac{Q_{z}}{4\pi \lambda }\int _{-L}^{L}\mathrm {erfc}\left( \sqrt{\frac{ r^{2}+\left( z-z^{\prime }\right) ^{2}}{4k\left( t-t^{\prime }\right) }} \right) \frac{\mathrm {d}z^{\prime }}{\sqrt{r^{2}+\left( z-z^{\prime }\right) ^{2}}}, \end{aligned}$$

where we have applied the definition of the complementary error function [18, Eq. 7.2.2]. Finally, split the integration interval as \(\left( -L,L\right) =\left( -L,0\right) \cup \left( 0,L\right) \), and perform in the first interval the substitution \(z^{\prime }\rightarrow -z^{\prime }\) to obtain (33), grouping terms.

Dirichlet boundary condition

Following [5], we consider a sinusoidal temperature oscillation on the surface, thus we have the following Dirichlet boundary condition,

$$\begin{aligned} T\left( r,0,t\right) =T_{0}+T_\mathrm{s}\sin \omega t. \end{aligned}$$
(75)

The temperature components \(v_{0}\left( z,t\right) \), \(v_\mathrm{s}\left( z,t\right) \) and \(v_\mathrm{d}\left( r,z,t\right) \) of the time-dependent temperature field \(T\left( r,z,t\right) \) satisfying the boundary-value problem (1), (2) and (75) is [5, 6],

$$\begin{aligned} v_{0}\left( z,t\right) +v_\mathrm{s}\left( z,t\right) =T_{0}+k_{\text {geo}}z+\frac{ T_\mathrm{s}}{2}\mathrm {Im}\left( \mathrm {e}^{\mathrm {i}\omega t}\left[ A^{+}\left( z,t\right) +A^{-}\left( z,t\right) \right] \right) , \end{aligned}$$
(76)

where \(A^{\pm }\left( z,t\right) \) has been defined in (12), and

$$\begin{aligned} v_\mathrm{d}\left( r,z,t\right) =\frac{Q_{z}}{4\pi \lambda }\int _{r/\left( 2\sqrt{kt }\right) }^{\infty }\frac{\mathrm {e}^{-u^{2}}}{u}\left[ 2\mathrm {erf}\left( \frac{z}{r }u\right) -\mathrm {erf}\left( \frac{L+z}{r}u\right) +\mathrm {erf}\left( \frac{L-z}{r}u\right) \right] \mathrm {d}u. \end{aligned}$$
(77)

To calculate the average value of (76) along the borehole heat exchanger, we use the integral given in (22), arriving at

$$\begin{aligned} \left\langle v_{0}\left( z,t\right) +v_\mathrm{s}\left( z,t\right) \right\rangle =T_{0}+k_{\text {geo}}\frac{L}{2}+\frac{T_\mathrm{s}d_\mathrm{p}}{4L}\mathrm {Im}\left( \left( 1-\mathrm {i}\right) \mathrm {e}^{\mathrm {i}\omega t}\left[ A^{+}\left( z,t\right) +A^{-}\left( z,t\right) +2\,\mathrm {erfc}\left( \sqrt{\mathrm {i}\omega t}\right) \right] \right) , \end{aligned}$$
(78)

Also, in [5] we found

$$\begin{aligned} \left\langle v_\mathrm{d}\left( r,z,t\right) \right\rangle =\frac{Q_{z}}{4\pi \lambda }\int _{r/\sqrt{4kt}}^{\infty }\frac{\mathrm {e}^{-u^{2}}}{u} \left[ 4\mathrm {erf}\left( \frac{Lu}{r}\right) -2\mathrm {erf}\left( \frac{ 2Lu}{r}\right) -\frac{\left( 3+\mathrm {e}^{-4L^{2}u^{2}/r^{2}}-4\,\mathrm {e}^{-L^{2}u^{2}/r^{2}}\right) r}{\sqrt{\pi }Lu} \right] \mathrm {d}u, \end{aligned}$$
(79)

where with the aid of the tabulated integral [25, Eq. 3.461(5)],

$$\begin{aligned} \int _{x}^{\infty }\frac{\mathrm {e}^{-az^{2}}}{z^{2}}\mathrm {d}z=\frac{\mathrm {e}^{-ax^{2}}}{x}-\sqrt{ \pi a}\ \mathrm {erfc}\left( \sqrt{a}x\right) ,\quad \mathrm {Re}\,a>0, \quad x>0, \end{aligned}$$

we may rewrite (79) as

$$\begin{aligned} \left\langle v_\mathrm{d}\left( r,z,t\right) \right\rangle= & {} \frac{Q_{z}}{4\pi \lambda }\left\{ \int _{r/\sqrt{4kt}}^{\infty }\left[ 4 \mathrm {erf}\left( \frac{Lu}{r}\right) -2\mathrm {erf}\left( \frac{2Lu}{r} \right) \right] \frac{\mathrm {e}^{-u^{2}}}{u}\mathrm {d}u\right. \nonumber \\&-\,\frac{2\sqrt{kt}}{\sqrt{\pi }L}\exp \left( -\frac{4L^{2}+r^{2}}{4kt} \right) \left[ 1-4\exp \left( \frac{3L^{2}}{4kt}\right) +3\exp \left( \frac{ L^{2}}{kt}\right) \right] +\frac{3r}{L}\mathrm {erfc}\left( \frac{r}{2\sqrt{kt }}\right) \nonumber \\&\left. -\, 4\sqrt{1+\frac{r^{2}}{L^{2}}}\mathrm {erfc}\left( \frac{1}{2}\sqrt{ \frac{r^{2}+L^{2}}{kt}}\right) +\sqrt{4+\frac{r^{2}}{L^{2}}}\mathrm {erfc} \left( \frac{1}{2}\sqrt{\frac{r^{2}+4L^{2}}{kt}}\right) \right\} . \end{aligned}$$
(80)

It is worth noting that (78) and (80) are not given explicitly in the literature.

Regarding the asymptotic behavior of (78), we apply to (78) the result given in (24), thereby

$$\begin{aligned} \left\langle v_{0}\left( z,t\right) +v_\mathrm{s}\left( z,t\right) \right\rangle \approx T_{0}+k_{\text {geo}}\frac{L}{2}+\frac{T_\mathrm{s}d_\mathrm{p}}{\sqrt{2}L}\left[ \sin \left( \omega t-\frac{\pi }{4}\right) +\mathrm {e}^{-L/d_\mathrm{p}}\sin \left( \omega t- \frac{L}{d_\mathrm{p}}-\frac{\pi }{4}\right) \right] , t\rightarrow \infty {.} \end{aligned}$$
(81)

When \(d_\mathrm{p}\ll L\), we can neglect the last term in (81). It is worth noting that for the latter case, we found a typo in [5].

Finally, according to [5], the asymptotic formula of (79) for the long timescale \(t\gg L^{2}/4k\) is

$$\begin{aligned} \left\langle v_\mathrm{d}\left( r,z,t\right) \right\rangle\approx & {} \frac{Q_{z}}{ 4\pi \lambda }\left\{ 4\sinh ^{-1}\left( \frac{L}{r}\right) -2\sinh ^{-1}\left( \frac{2L}{r}\right) +3\frac{r}{L}-4\sqrt{1+\frac{r^{2}}{L^{2}}} \right. \nonumber \\&\qquad \quad +\,\left. \sqrt{4+\frac{r^{2}}{L^{2}}}-\frac{L^{3}}{12\sqrt{\pi }\left( kt\right) ^{3/2}}\left( 1-\frac{3\left( L^{2}+r^{2}\right) }{20kt}\right) \right\} , \end{aligned}$$
(82)

and for the intermediate timescale \(r^{2}/k\ll t\ll L^{2}/k\) is

$$\begin{aligned} \left\langle v_\mathrm{d}\left( r,z,t\right) \right\rangle \approx \frac{Q_{z}}{ 4\pi \lambda }\left\{ -\gamma +\log \left( \frac{4kt}{r^{2}}\right) +\frac{3r }{L}-\frac{6}{L}\sqrt{\frac{kt}{\pi }}+\frac{r^{2}}{4kt}-\frac{3r^{4}}{2L^{3} \sqrt{\pi kt}}\right\} . \end{aligned}$$
(83)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gónzález-Santander, J.L. Asymptotic expansions for the ground heat transfer due to a borehole heat exchanger with a Neumann boundary condition. J Eng Math 117, 47–64 (2019). https://doi.org/10.1007/s10665-019-10007-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-019-10007-9

Keywords

Mathematics Subject Classification

Navigation