Skip to main content
Log in

Exact solution of the Mindlin–Herrmann model for longitudinal vibration of an isotropic rod

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

This paper presents a new approach to the problem of coupled longitudinal and transversal propagations of stress waves in an isotropic thick and elastic rod, based on the Mindlin–Herrmann theory. The novelty is that Hamilton’s variational principle is used not only for derivation of the governing equations and set of natural boundary conditions, but also for obtaining the exact solution in terms of Green’s functions directly from the Lagrangian. The success of this approach is based on the existence of multiple orthogonalities of the eigenfunctions. The proposed method is much easier than the standard approach of building Green’s functions. A numerical example illustrates the method of finding eigenfrequencies and eigenfunctions for isotropic Mindlin–Herrmann rod.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rayleigh JWS (1877), re-issued (1945) Theory of sound. Dover Publication, New York

  2. Krawczuk M, Grabowska J, Palacz M (2006) Longitudinal wave propagation. Part I—comparison of rod theories. J Sound Vib 295:461–478

    Article  ADS  Google Scholar 

  3. Fedotov I, Polyanin AD, Shatalov M (2007) Theory of vibration of rigid rod based on Raleigh model. Phys-Dokl 417:1–7

    MathSciNet  MATH  Google Scholar 

  4. Rao JS (1992) Advanced theory of vibration. Wiley Eastern Limited, New Delhi

    Google Scholar 

  5. Fedotov I, Gai Y, Shatalov M (2006) Analysis of Rayleigh–Bishop model. Electron Trans Nume Anal 24:66–73

    Google Scholar 

  6. Mindlin RD, Herrmann G (1950) A one dimensional theory of compressional waves in an elastic rod. In: Proceedings of the first US national congress of applied mechanics, pp 187–191

  7. Graff KL (1991) Wave motion in elastic solid. Dover Publications, New York

    Google Scholar 

  8. Krihnaswamy S, Batra RC (1998) On extensional vibration modes of elastic rods of finite length which include the effect of lateral deformation. J Sound Vib 215:577–586

    Article  ADS  Google Scholar 

  9. Krihnaswamy S, Batra RC (1998) On extensional oscillations and waves in elastic rods. Math Mech Solids 3:277–295

    Article  MATH  Google Scholar 

  10. Krihnaswamy S, Batra RC (1998) Addendum to “On extensional oscillations and waves in elastic rods”. Math Mech Solids 3:297–301

    Article  Google Scholar 

  11. Zak A, Krawczuk M (2010) Assessment of rod behaviour theories used in spectral finite element modelling. J Sound Vib 329:2099–2113

    Article  ADS  Google Scholar 

  12. Anderson SP (2006) Higher-order rod approximations for the propagation of longitudinal stress wave in elastic bars. J Sound Vib 290:290–308

    Article  ADS  MATH  Google Scholar 

  13. Djouosseu Tenkam HM (2012) Hyperbolic problems of higher order with application to isotropic and piezoelectric rods. PhD thesis, Tshwane University of Technology

  14. Fedotov I, Fedotova T, Shatalov M, Tenkam HM (2009) Application of eigenfunction orthogonalities to vibration problems. In: Proceedngs of the world congress of engineering, London, 1–3 July 2009, vol 2, pp 1169–1174

  15. Duffy DG (2004) Transform methods for solving partial differential equations, 2nd edn. Chapman & Hall/CRC, New York

    Book  MATH  Google Scholar 

  16. Polyanin AD (2004) Handbook of linear partial differential equations for engineers and scientists. Chapman & Hall/CRC, New York

    MATH  Google Scholar 

  17. Duffy DG (2001) Green’s functions with applications. Chapman & Hall/CRC, New York

    Book  MATH  Google Scholar 

  18. Karl L (2001) On the waveguide modelling of dynamical stiffness of cylindrical vibration isolators. Part II: the dispersion relation solution, convergence analysis and comparison with simple models. J Sound Vib 244(2):235–257

    Article  ADS  Google Scholar 

  19. Mennicken R, Mller M (2003) Non-self-adjoint boundary eigenvalue problems. Elsevier Science, Amsterdam

    Google Scholar 

  20. Fedotov I, Shatalov M, Mwambakana JN (2008) Root of transcendental algebraic equations: A method of bracketing roots and selecting initial estimations. In: Proceedings of the TIME international conference, Buffelspoort, pp 162–173

  21. Zettl A (2005) Sturm–Liouville theory. American Mathematical Society, Providence

    MATH  Google Scholar 

  22. Hinton D, Shaefer PW (1997) Spectral theory and computational methods of Sturm–Liouville problems. Marcel Dekker, New York

    Google Scholar 

  23. Akhiezer NI, Glazam IM (1993) Theory of linear operator in Hilbert space. Dover Publications, New York

    Google Scholar 

  24. Elsgolts L (2003) Differential equations and the calculus of variations. University Press of the Pacific, Honolulu

    Google Scholar 

Download references

Acknowledgments

This material is based upon work supported financially by the National Research Foundation (NRF) of South Africa (Grant No: 85177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Tenkam.

Appendices

Appendix 1: Derivation of the Mindlin–Herrmann model

The aim here is to show how to derive the equations of motion and the associated boundary conditions using the Hamilton variational principle.

Using Eq. (1) the strains are obtained as follows:

$$\begin{aligned}&\varepsilon _{xx}=\frac{\partial u}{\partial x}=u^{\prime }_{1},\quad \varepsilon _{yy}=\frac{\partial v}{\partial y}=u_{2},\quad \varepsilon _{zz}=\frac{\partial v}{\partial z}=u_{2}=\varepsilon _{yy}, \nonumber \\&\varepsilon _{xy}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=yu^{\prime }_{2},\quad \varepsilon _{yz}=\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}=0,\quad \varepsilon _{zx}=\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z}=zu^{\prime }_{2}. \end{aligned}$$
(73)

The stresses of the rod are

$$\begin{aligned} \begin{array}{l} \sigma _{xx}=(\lambda +2\mu )\varepsilon _{xx}+\lambda (\varepsilon _{yy}+\varepsilon _{zz})=(\lambda +2\mu )u^{\prime }_{1}+2\lambda u_{2}, \\ \sigma _{yy}=(\lambda +2\mu )\varepsilon _{yy}+\lambda (\varepsilon _{xx}+\varepsilon _{zz})=2(\lambda +\mu )u_{2}+\lambda u^{\prime }_{1}, \\ \sigma _{zz}=(\lambda +2\mu )\varepsilon _{zz}+\lambda (\varepsilon _{xx}+\varepsilon _{yy})=2(\lambda +\mu )u_{2}+\lambda u^{\prime }_{1}=\sigma _{yy}, \\ \sigma _{xy}=\mu \varepsilon _{xy}=\mu yu^{\prime }_{2},\quad \sigma _{yz}=\mu \varepsilon _{yz}=0,\quad \sigma _{zx}=\mu \varepsilon _{zx}=\mu zu^{\prime }_{2}. \end{array} \end{aligned}$$
(74)

Kinetic energy is as follows:

$$\begin{aligned} K=\frac{\rho }{2}\int _{0}^{l}\int _{(s)}\left( \dot{u}^{2}+\dot{v}^{2}+\dot{w}^{2}\right) \mathrm{d}s\;\mathrm{d}x. \end{aligned}$$
(75)

Substituting expression (1) into Eq. (6) leads to

$$\begin{aligned} K=\frac{\rho }{2}\int _{0}^{l}\left( S\dot{u}^{2}_{1}+\dot{u}^{2}_{2}I_{p}\right) \mathrm{d}x. \end{aligned}$$
(76)

The arguments in all functions are sometimes omitted for simplicity.

Strain energy is as follows:

$$\begin{aligned} P=\frac{\rho }{2}\int _{0}^{l}\int _{(s)}\left( \sigma _{xx}\varepsilon _{xx}+\sigma _{yy}\varepsilon _{yy}+\sigma _{zz}\varepsilon _{zz}+\sigma _{xy}\varepsilon _{xy}+\sigma _{yz}\varepsilon _{yz}+\sigma _{zx}\varepsilon _{zx}\right) \mathrm{d}s\;\mathrm{d}x, \end{aligned}$$
(77)

where \(\sigma _{ij}\), \(\varepsilon _{ij}\) are given by Eqs. (73) and (74). Hence

$$\begin{aligned} P=\frac{1}{2}\int _{0}^{l}\left\{ S\left[ (\lambda +2\mu )u^{\prime 2}_{1}+4\lambda u_{2} u^{\prime }_{1}+4(\lambda +\mu )u^{2}_{2}\right] +\mu I_{p}u^{\prime 2}_{2}\right\} \mathrm{d}x. \end{aligned}$$
(78)

Let W be the work done by the distributed force \(f=f(x,t)\)

$$\begin{aligned} W=\int _{0}^{l}\int _{(s)}fu_{1}\mathrm{d}s\;\mathrm{d}x=\int _{0}^{l}fu_{1}S\;\mathrm{d}x. \end{aligned}$$
(79)

The Lagrangian is as follows:

$$\begin{aligned} \displaystyle L= & {} \displaystyle K-P+W \nonumber \\= & {} \displaystyle \frac{1}{2}\int _{0}^{l}\left\{ \rho S\dot{u}^{2}_{1}+\rho I_{p}\dot{u}^{2}_{2}-(\lambda +2\mu )Su^{\prime 2}_{1}-4\lambda Su^{\prime }_{1}u_{2} -4(\lambda +\mu )S u^{2}_{2}\right\} \mathrm{d}x \nonumber \\&+\,\frac{1}{2}\int _{0}^{l}\left\{ 2fu_{1}S-\mu I_{p}u^{\prime 2}_{2}\right\} \mathrm{d}x. \end{aligned}$$
(80)

Applying the Hamiltonian principle to the Lagrange functional Eq. (80), we obtain the system of equations of motion in general form:

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}\left( \frac{\partial L}{\partial \dot{u}_1}\right) +\frac{\mathrm{d}}{\mathrm{d}x}\left( \frac{\partial L}{\partial u^{\prime }_1}\right) -\frac{\partial L}{\partial u_1}=0, \quad \frac{d}{dt}\left( \frac{\partial L}{\partial \dot{u}_2}\right) +\frac{\mathrm{d}}{\mathrm{d}x}\left( \frac{\partial L}{\partial u^{\prime }_2}\right) -\frac{\partial L}{\partial u_2}=0 \end{aligned}$$
(81)

and the associated boundary conditions in general form is as follows

$$\begin{aligned} u_{1}\bigg |_{x=0,l}=0,\; u_{2}\bigg |_{x=0,l}=0 \quad \text{ for } \text{ fixed } \text{ ends } \end{aligned}$$
(82)

or

(83)

We assume that the rod has a constant cross-section and that parameters such as \(\lambda \), \(\mu \), S and \(I_{P}\) are constants. Hence, the explicit form of Eq. (81) is as follows:

$$\begin{aligned} \rho \ddot{u}_{1}-(\lambda +2\mu )u^{\prime \prime }_{1}-2\lambda u^{\prime }_{2}=f(x,t), \quad \rho I_{p}\ddot{u}_{2}+4(\lambda +\mu )Su_{2}-\mu I_{p}u^{\prime \prime }_{2}+2S\lambda u^{\prime }_{1}=0 \end{aligned}$$
(84)

with the following corresponding boundary conditions:

$$\begin{aligned} u_{1}|_{x=0,l}=0,\;u_{2}|_{x=0,l}=0 \quad \text{ for } \text{ fixed } \text{ ends } \end{aligned}$$
(85)

or

$$\begin{aligned} (\lambda +2\mu )u^{\prime }_{1}+2\lambda u_{2}|_{x=0,l}=0,\;\mu I_{p}u^{\prime }_{2}|_{x=0,l}=0 \quad \text{ for } \text{ free } \text{ ends. } \end{aligned}$$
(86)

Appendix 2: Analysis of the operator of the Sturm–Liouville problem

In this section, our goal is to determine the nature of the operator A of the Sturm–Liouville problem.

We firstly prove that A is self-adjoint on the class of functions \(C^{2}(D)\) satisfying boundary condition (20). Let \(\mathbf u =\left( \begin{array}{c} u_{1} \\ u_{2} \\ \end{array} \right) \) and \(\mathbf v =\left( \begin{array}{c} v_{1} \\ v_{2} \\ \end{array} \right) \). We define the scalar product as follows:

$$\begin{aligned}&(\mathbf u ,\mathbf v )=\int _{0}^{l}\mathbf u \cdot \mathbf v \mathrm{d}x, \end{aligned}$$
(87)
$$\begin{aligned}&\displaystyle (A\mathbf u ,\mathbf v ) = \displaystyle \int _{0}^{l}A\mathbf u \cdot \mathbf v \mathrm{d}x \nonumber \\&\qquad \quad = \displaystyle \int _{0}^{l}\left( a_{11}\frac{\mathrm{d}^{2}u_{1}}{\mathrm{d}x^{2}}v_{1}+a_{12}\frac{\mathrm{d}u_{2}}{\mathrm{d}x}v_{1}\right) \mathrm{d}x \quad +\,\int _{0}^{l}\left( -a_{12}\frac{\mathrm{d}u_{1}}{\mathrm{d}x}v_{2}+a_{22}\frac{\mathrm{d}^{2}u_{2}}{\mathrm{d}x^{2}}v_{2}-c_{22}u_{2}v_{2}\right) \mathrm{d}x. \end{aligned}$$
(88)

Integrating twice and once by part the terms with the second and first derivatives, respectively, of the expression (88) and applying boundary conditions (20), we obtain

$$\begin{aligned} (A\mathbf u ,\mathbf v )= & {} \displaystyle \int _{0}^{l}\left( a_{11}u_{1}\frac{\mathrm{d}^{2}v_{1}}{\mathrm{d}x^{2}}-a_{12}u_{2}\frac{\mathrm{d}v_{1}}{\mathrm{d}x}\right) \mathrm{d}x \quad +\,\int _{0}^{l}\left( a_{12}u_{1}\frac{\mathrm{d}v_{2}}{\mathrm{d}x}+a_{22}u_{2}\frac{\mathrm{d}^{2}v_{2}}{\mathrm{d}x^{2}}-c_{22}u_{2}v_{2}\right) \mathrm{d}x \nonumber \\= & {} \int _{0}^{l}u_{1}\left( a_{11}\frac{\mathrm{d}^{2}v_{1}}{\mathrm{d}x^{2}}+a_{12}\frac{\mathrm{d}v_{2}}{\mathrm{d}x}\right) \mathrm{d}x \quad +\,\int _{0}^{l}u_{2}\left( -a_{12}\frac{\mathrm{d}v_{1}}{\mathrm{d}x}+a_{22}\frac{\mathrm{d}^{2}v_{2}}{\mathrm{d}x^{2}}-c_{22}v_{2}\right) \mathrm{d}x \nonumber \\= & {} \int _{0}^{l}\left( \begin{array}{c} u_{1} \\ u_{2} \\ \end{array} \right) \cdot A\left( \begin{array}{c} v_{1} \\ v_{2} \\ \end{array} \right) \mathrm{d}x = (\mathbf u ,A\mathbf v ). \end{aligned}$$
(89)

Equality (89) shows that the operator is self-adjoint which means that all the eigenvalues of the Sturm–Liouville problem (19)–(20) are real.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenkam, H.M., Anguelov, R., Fedotov, I. et al. Exact solution of the Mindlin–Herrmann model for longitudinal vibration of an isotropic rod. J Eng Math 99, 185–201 (2016). https://doi.org/10.1007/s10665-015-9827-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-015-9827-5

Keywords

Mathematics Subject Classification

Navigation