Skip to main content
Log in

The shape of the fundamental sloshing mode in axisymmetric containers

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

We numerically study positions of high spots (extrema) of the fundamental sloshing mode of a liquid in an axisymmetric tank. Our approach is based on a linear model and reduces the problem to an appropriate Steklov eigenvalue problem. We propose a numerical scheme for calculating sloshing modes and a novel method for making images of an oscillating fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Faltinsen OM, Timokha AN (2012) Analytically approximate natural sloshing modes for a spherical tank shape. J Fluid Mech 703:301–391

    Article  MathSciNet  MATH  Google Scholar 

  2. Faltinsen OM, Timokha AN (2014) Analytically approximate natural sloshing modes and frequencies in two-dimensional tanks. Eur J Mech B 47:176–187

    Article  MathSciNet  MATH  Google Scholar 

  3. Fox DW, Kuttler JR (1983) Sloshing frequencies. Z Angew Math Phys 34(5):668–696

    Article  MathSciNet  MATH  Google Scholar 

  4. Kozlov V, Kuznetsov N (2004) The ice-fishing problem: the fundamental sloshing frequency versus geometry of holes. Math Methods Appl Sci 27(3):289–312

    Article  MathSciNet  MATH  Google Scholar 

  5. McIver P (1989) Sloshing frequencies for cylindrical and spherical containers filled to an arbitrary depth. J Fluid Mech 201:243–257

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Wu C-H, Chen B-F (2009) Sloshing waves and resonance modes of fluid in a 3D tank by a time-independent finite difference method. Ocean Eng 26(6–7):500–510

    Article  Google Scholar 

  7. Ardakani HA, Bridges TJ (2011) Shallow-water sloshing in vessels undergoing prescribed rigid-body motion in three dimensions. J Fluid Mech 667:474–519

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Herczyński A, Weidman PD (2012) Experiments on the periodic oscillations of free containers driven by liquid sloshing. J Fluid Mech 693:216–242

    Article  ADS  MATH  Google Scholar 

  9. Rebouillat S, Liksonov D (2010) Fluidstructure interaction in partially filled liquid containers: a comparative review of numerical approaches. Comput Fluids 39:739–746

    Article  MATH  Google Scholar 

  10. Ibrahim R (2005) Liquid sloshing dynamics, theory and applications. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  11. Kopachevsky ND, Krein SG (2001) Operator approach to linear problems of hydrodynamics, vol 1. In: Operator theory: advances and applications, vol 128. Birkhäuser Verlag, Basel

  12. Lamb H (1932) Hydrodynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  13. Moiseev NN (1964) Introduction to the theory of oscillations of liquid-containing bodies. Advances in applied mechanics, vol 8. Academic Press, New York

    MATH  Google Scholar 

  14. Troesch BA (1960) Free oscillations of a fluid in a container. In: Boundary problems in differential equations. University of Wisconsin Press, Madison

  15. Kulczycki T, Kwaśnicki M (2012) On high spots of the fundamental sloshing eigenfunctions in axially symmetric domains. Proc Lond Math Soc (3) 105(5):921–952

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuznetsov N, Kulczycki T, Kwaśnicki M, Nazarov A, Poborchi S, Polterovich I, Siudeja B (2014) The legacy of Vladimir Andreevich Steklov. Not AMS 61(1):9–22

    MathSciNet  MATH  Google Scholar 

  17. Kulczycki T, Kuznetsov N (2009) ‘High spots’ theorems for sloshing problems. Bull Lond Math Soc 41(3):495–505

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Kulczycki T, Kuznetsov N (2011) On the ‘high spots’ of fundamental sloshing modes in a trough. Proc R Soc Lond Ser A 467(2129):1491–1502

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Gavrilyuk I, Hermann M, Lukovsky I, Solodun O, Timokha A (2008) Natural sloshing frequencies in rigid truncated conical tanks. Eng Comput 25:518–540

    Article  MATH  Google Scholar 

  20. Lukovskiĭ IA, Barnyak MY, Komarenko AN (1984) Approximate methods for solving problems of the dynamics of a bounded volume of fluid. Naukova Dumka, Kiev

    Google Scholar 

  21. Blanchard P, Brüning E (1992) Variational methods in mathematical physics: a unified approach. Texts and monographs in physics. Springer, Berlin

    Book  MATH  Google Scholar 

  22. Babuška I, Osborn J (1991) Eigenvalue problems. Handbook of numerical analysis, vol II. North-Holland, Amsterdam

    MATH  Google Scholar 

  23. Bernardi C, Dauge M, Maday Y (1999) Spectral methods for axisymmetric domains. Series in applied mathematics (Paris), vol 3, Gauthier-Villars, Éditions Scientifiques et Médicales Elsevier/North-Holland, Paris/Amsterdam

  24. Kufner A (1980) Weighted Sobolev spaces, Teubner-Texte zur Mathematik [Teubner texts in mathematics], vol 31. BSB B. G. Teubner Verlagsgesellschaft, Leipzig

  25. Mercier B, Raugel G (1982) Résolution d’un problème aux limites dans un ouvert axisymétrique par éléments finis en \(r\), \(z\) et séries de Fourier en \(\theta \). RAIRO Anal Numér 16(4):405–461

    MathSciNet  MATH  Google Scholar 

  26. Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Pure and Applied Mathematics (New York). Wiley-Interscience, New York

  27. Armentano MG, Padra C (2008) A posteriori error estimates for the Steklov eigenvalue problem. Appl Numer Math 58(5):593–601

    Article  MathSciNet  MATH  Google Scholar 

  28. Garau EM, Morin P (2011) Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems. IMA J Numer Anal 31(3):914–946

    Article  MathSciNet  MATH  Google Scholar 

  29. Logg A, Mardal K-A, Wells G (2012) Automated solution of differential equations by the finite element method. The FEniCS book. Lecture Notes in Computational Science and Engineering, vol 84. Springer, Berlin

  30. Fox L, Henrici P, Moler C (1967) Approximations and bounds for eigenvalues of elliptic operators. SIAM J Numer Anal 4:89–102

    Article  MathSciNet  MATH  Google Scholar 

  31. Betcke T, Trefethen LN (2005) Reviving the method of particular solutions. SIAM Rev 47(3):469–491

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Bañuelos R, Kulczycki T, Polterovich I, Siudeja B (2010) Eigenvalue inequalities for mixed Steklov problems, operator theory and its applications. American Mathematical Society translations series 2. American Mathematical Society, Providence

  33. Komarenko AN, Lukovskii IA, Fescenko SF (1965) On an eigenvalue problem with a parameter in the boundary conditions. Ukr Math Z 17(6):22–30

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Bartłomiej Siudeja was partially supported by the Polish National Science Centre Grant 2012/07/B/ST1/03356. T. Kulczycki and M. Kwaśnicki were supported in part by Project S30011/I-18 of the Institute of Mathematics and Computer Science of Wrocław University of Technology. The authors would like to thank N. Kuznetsov for many useful discussions on the subject of the paper and for sharing his knowledge about the sloshing problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartłomiej Siudeja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulczycki, T., Kwaśnicki, M. & Siudeja, B. The shape of the fundamental sloshing mode in axisymmetric containers. J Eng Math 99, 157–183 (2016). https://doi.org/10.1007/s10665-015-9826-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-015-9826-6

Keywords

Mathematics Subject Classification

Navigation