Skip to main content

The Narimanov–Moiseev Multimodal Analysis of Nonlinear Sloshing in Circular Conical Tanks

  • Chapter
  • First Online:
Applied Mathematical Analysis: Theory, Methods, and Applications

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 177))

  • 767 Accesses

Abstract

The chapter reports mathematical aspects of the Narimanov–Moiseev multimodal modelling for the liquid sloshing in rigid circular conical tanks, which perform small-magnitude oscillatory motions with the forcing frequency close to the lowest natural sloshing frequency. To derive the corresponding nonlinear modal system (of ordinary differential equations), we introduce an infinite set of the sloshing-related generalised coordinates governing the free-surface elevation but the velocity potential is posed as a Fourier series by the natural sloshing modes where the time-depending coefficients are treated as the generalised velocities. The employed approximate natural sloshing modes exactly satisfy both the Laplace equation and the zero-Neumann boundary condition on the wetted tank walls. The Lukovsky non-conformal mapping technique transforms the inner (conical) tank (physical) domain to an artificial upright circular cylinder, for which the single-valued representation of the free surface is possible. Occurrence of secondary resonances for the V-shaped truncated conical tanks is evaluated. The Narimanov–Moiseev modal equations allow for deriving an analytical steady-state (periodic) solution, whose stability is studied. The latter procedure is illustrated for the case of longitudinal harmonic excitations. Standing (planar) waves and swirling as well as irregular sloshing (chaos) are established in certain frequency ranges. The corresponding amplitude response curves are drawn and extensively discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Casciati, F., De Stefano, A., Matta, E.: Simulating a conical tuned liquid damper. Simul. Model. Pract. Theory 11(11), 353–370 (2003)

    Article  Google Scholar 

  2. Faltinsen, O.M., Timokha, A.N.: Sloshing, p. 608. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  3. Faltinsen, O.M., Timokha, A.N.: On sloshing modes in a circular tank. J. Fluid Mech. 695, 467–477 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Faltinsen, O.M., Timokha, A.N.: Analytically approximate natural sloshing modes for a spherical tank shape. J. Fluid Mech. 703, 391–401 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Faltinsen, O.M., Timokha, A.N.: Multimodal analysis of weakly nonlinear sloshing in a spherical tank. J. Fluid Mech. 719, 129–164 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Faltinsen, O.M., Lukovsky, I.A., Timokha, A.N.: Resonant sloshing in an upright annular tank. J. Fluid Mech. 804, 608–645 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Faltinsen, O.M., Rognebakke, O.F., Timokha, A.N.: Adaptive multimodal approach to nonlinear sloshing in a rectangular tank. J. Fluid Mech. 432, 167–200 (2001)

    MATH  Google Scholar 

  8. Faltinsen, O.M., Rognebakke, O.F., Timokha, A.N.: Resonant three-dimensional nonlinear sloshing in a square base basin. J. Fluid Mech. 487, 1–42 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Faltinsen, O.M., Rognebakke, O.F., Timokha, A.N.: Classification of three-dimensional nonlinear sloshing in a square-base tank with finite depth. J. Fluids Struct. 20, 81–103 (2005)

    Article  MATH  Google Scholar 

  10. Faltinsen, O.M., Rognebakke, O.F., Timokha, A.N.: Transient and steady-state amplitudes of resonant three-dimensional sloshing in a square base tank with a finite fluid depth. Phys. Fluids 18, Art. No. 012103, 1–14 (2006)

    Google Scholar 

  11. Faltinsen, O.M., Rognebakke, O.F., Lukovsky, I.A., Timokha, A.N.: Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth. J. Fluid Mech. 407, 201–234 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feschenko, S.F., Lukovsky, I.A., Rabinovich, B.I., Dokuchaev, L.V.: Methods of Determining the Added Liquid Mass in Mobile Cavities. Naukova Dumka, Kiev (1969). (in Russian)

    Google Scholar 

  13. Gavrilyuk, I., Lukovsky, I., Timokha, A.: A multimodal approach to nonlinear sloshing in a circular cylindrical tank. Hybrid Methods Eng. 2(4), 463–483 (2000)

    Article  Google Scholar 

  14. Gavrilyuk, I., Lukovsky, I., Timokha, A.: Linear and nonlinear sloshing in a circular conical tank. Fluid Dyn. Res. 35, 399–429 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gavrilyuk, I., Hermann, M., Lukovsky, I., Solodun, A., Timokha, A.: Natural sloshing frequency in rigid truncated conical tank. Eng. Comput. 25(6), 518–540 (2008)

    Article  MATH  Google Scholar 

  16. Gavrilyuk, I., Lukovsky, I., Trotsenko, Y., Timokha, A.: Sloshing in a vertical circular cylindrical tank with an annular baffle. Part 2. Nonliear resonant waves. J. Eng. Math., 57, 57–78 (2007)

    Article  MATH  Google Scholar 

  17. Hermann, M., Timokha, A.: Modal modelling of the nonlinear resonant sloshing in a rectangular tank I: a single-dominant model. Math. Model. Methods Appl. Sci. 15, 1431–1458 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hermann, M., Timokha, A.: Modal modelling of the nonlinear resonant fluid sloshing in a rectangular tank II: secondary resonance. Math. Model. Methods Appl. Sci. 18, 1845–1867 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ikeda, T., Ibrahim, R.: Nonlinear random responses of a structure parametrically coupled with liquid sloshing in a cylindrical tank. J. Sound Vib. 284(12), 75–102 (2005)

    Article  Google Scholar 

  20. Ikeda, T., Ibrahim, R.A., Harata, Y., Kuriyama, T.: Nonlinear liquid sloshing in a square tank subjected to obliquely horizontal excitation. J. Fluid Mech. 700, 304–328 (2012)

    Article  MATH  Google Scholar 

  21. Limarchenko, O.S.: Specific features of application of perturbation techniques in problems of nonlinear oscillations of a liquid with free surface in cavities of noncylindrical shape. Ukrain. Math. J. 59(1), 45–69 (2007)

    Article  MathSciNet  Google Scholar 

  22. Lukovsky, I.A.: Nonlinear Liquid Sloshing in a Containers of Complex Geometric Shapes, p. 136. Naukova Dumka (1975). (In Russian)

    Google Scholar 

  23. Lukovsky, I.A.: To solving spectral problems linear theory of liquid sloshing in conical tanks. Report of the National Academy of Sciences of Ukraine, No. 5, 53–58 (2002). (In Ukrainian)

    Google Scholar 

  24. Lukovsky, I.A.: An Introduction to Nonlinear Dynamics of Bodies with Cavities Partially Filled by a Liquid, p. 296. Naukova Dumka (1990). (In Russian)

    Google Scholar 

  25. Lukovsky, I.A.: Nonlinear Dynamics: Mathematical Models for Rigid Bodies with a Liquid, p. 400. Walter de Gruyter (2015)

    Google Scholar 

  26. Lukovsky, I.A., Ovchynnykov, D.V., Timokha, A.N.: Asymptotic nonlinear multimodal method for liquid sloshing in an upright circular cylindrical tank. Part 1: modal equations. Nonlinear Oscil. 14(4), 512–525 (2012)

    Google Scholar 

  27. Lukovsky, I.A., Solodun, A.V., Timokha, A.N.: Nonlinear asymptotic modal theory of resonance liquid sloshing in truncated conical tanks. Akustychny visnyk 14(4), 37–64 (2011). (In Russian)

    Google Scholar 

  28. Lukovsky, I.A., Solodun, A.V., Timokha, A.N.: Internal resonances for sloshing in conical tanks. Appl. Hydromech. 10(4), 46–52 (2013). (In Russian)

    Google Scholar 

  29. Lukovsky, I.A., Timokha, A.N.: Variational Methods in Nonlinear Problems of the Dynamics of a Limited Liquid Volume. Institute of Mathematics of NASU (1995). (in Russian)

    Google Scholar 

  30. Lukovsky, I.A., Timokha, A.N.: Modal modeling of nonlinear sloshing in tanks with non-vertical walls. Non-conformal mapping technique. Int. J. Fluid Mech. Res. 29(2), 216–242 (2002)

    Google Scholar 

  31. Lukovsky, I., Timokha, A.: Combining Narimanov-Moiseev and Lukovsky-Miles schemes for nonlinear liquid sloshing. J. Num. App. Math. 2(105), 69–82 (2011)

    Google Scholar 

  32. Lukovsky, I., Timokha, A.: Multimodal method in sloshing. J. Math. Sci. 220, 239–253 (2017)

    Article  Google Scholar 

  33. Matta, E.: Sistemi di attenuazione della risposta dinamica a massa oscillante solida e fluida, Ph.D. Thesis Politecnico di Torino, Torino (2002)

    Google Scholar 

  34. Moiseyev, N.N.: To the theory of nonlinear oscillations of the limited liquid volume. App. Math. Mech. 22, 612–621 (1958). (In Russian)

    Google Scholar 

  35. Narimanov, G.S.: Movement of a tank partly filled by a fluid: the taking into account of non-smallness of amplitude. App. Math. Mech. (PMM) 21, 513–524 (1957)

    MathSciNet  Google Scholar 

  36. Raynovskyy, I.A., Timokha, A.N.: Damped steady-state resonant sloshing in a circular base container. Fluid Dyn. Res. 50, Article ID 045502, 1–27 (2018)

    Google Scholar 

  37. Takahara, H., Kimura, K.: Frequency response of sloshing in an annular cylindrical tank subjected to pitching excitation. J. Sound Vib. 331(13), 3199–3212 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Timokha .

Editor information

Editors and Affiliations

A Details of Derivation

A Details of Derivation

1.1 A.1 Generalised Coordinate \(\beta _0(t)\)

The generalised coordinate \(\beta _0(t)\) follows from the volume conservation condition appearing in the sloshing problem as the geometric constraint

$$\begin{aligned} \displaystyle \int _0^{2\pi }\!\int _{0}^{x_{20}} x_2\left( x_{10}^2 f + x_{10} f^2 +\frac{1}{3}f^3\right) dx_2 dx_3=0. \end{aligned}$$
(61)

Resolving this constraint makes this generalised coordinate \(\beta _0(t)\) an explicitly-given function of other generalised coordinates, \(p_{Mi}(t)\) and \(r_{mi}(t)\). The function can be found in an asymptotic sense keeping up to the \(O(\epsilon ^3)\)-order terms (here, all generalised coordinates have the first order of smallness)

$$\begin{aligned} \beta _0=\sum _{Mi} \beta _{Mi,Mi}^{pp} p_{Mi}^2 +\sum _{mi} \beta _{mi,mi}^{rr} r_{mi}^2 +\sum _{MNLijk} \beta _{Mi,Nj,Lk}^{ppp} p_{Mi} p_{Nj} p_{Lk} \nonumber \\ +\sum _{Mnlijk} \beta _{Mi,nj,lk}^{prr} p_{Mi} r_{nj} r_{lk}, \end{aligned}$$
(62)

The \(\beta \)-coefficients in (62) are as follows

$$\begin{aligned}&\beta _{Mi,Mi}^{pp}=-\frac{\Lambda _{MM}^{cc} \lambda _{Mi,Mi}}{\pi x_{10} x_{20}^2},\ \ \ \beta _{mi,mi}^{rr}=-\frac{\Lambda _{mm}^{ss} \lambda _{mi,mi}}{\pi x_{10} x_{20}^2},\nonumber \\&\quad \qquad \beta _{Mi,Nj,Lk}^{ppp}=-\frac{\Lambda _{MNL}^{ccc} \lambda _{Mi,Nj,Lk}}{3 \pi x_{10}^2 x_{20}^2},\ \ \ \beta _{Mi,nj,lk}^{prr}=-\frac{\Lambda _{Mnl}^{css} \lambda _{Mi,nj,lk}}{\pi x_{10}^2 x_{20}^2}, \end{aligned}$$
(63)

where we introduced the tensor-type coefficient

$$\begin{aligned} \Lambda _{\underbrace{i..j}_{N_1}\underbrace{k...l}_{N_2}}^{\overbrace{c...c}^{N_1}\overbrace{s...s}^{N_2}}= \!\int _{-\pi }^{\pi }\! \underbrace{\cos \left( ix_3\right) \!\cdot \!\ldots \!\cdot \!\cos \left( jx_3\right) }_{N_1}\!\cdot \! \underbrace{\sin \left( kx_3\right) \!\cdot \!\ldots \!\cdot \!\sin \left( lx_3\right) }_{N_2}dx_3 \end{aligned}$$
(64)

for the angular coordinate and the tensor-type coefficients are responsible for the radial direction

$$\begin{aligned} \lambda _{\underbrace{Mi,\ldots ,Nj}_{N_3}}=\int _{0}^{x_{20}} x_2 \underbrace{f_{Mi}\left( x_2\right) \cdot \ldots \cdot f_{Nj}\left( x_2\right) }_{N_3} dx_2. \end{aligned}$$
(65)

1.2 A.2 Integrals \(A_{Mi}^{p}\) and \(A_{mi}^{r}\) Defined by (28)

Expanding \(A_{Mi}^{p}\) and \(A_{mi}^{r}\) up to the third polynomial order in \(p_{Mi}\) and \(r_{mi}\) gives

$$\begin{aligned} A_{Ab}^p&=\mathbb {A}_{Ab}^p +\mathbb {A}_{Ab,Ab}^{p.p}\,p_{Ab} +\!\sum _{MNij}\!\!\mathbb {A}_{Ab,Mi,Nj}^{p.pp}p_{Mi}p_{Nj} +\!\sum _{mnij}\!\!\mathbb {A}_{Ab,mi,nj}^{p.rr}r_{mi}r_{nj} \nonumber \\&+\sum _{MNLijk}\!\!\mathbb {A}_{Ab,Mi,Nj,Lk}^{p.ppp}p_{Mi}p_{Nj}p_{Lk} +\sum _{Mnlijk}\!\!\mathbb {A}_{Ab,Mi,nj,lk}^{p.prr}p_{Mi}r_{nj}r_{lk}, \end{aligned}$$
(66a)
$$\begin{aligned} A_{ab}^r= \mathbb {A}_{ab,ab}^{r.r}\,r_{ab} +\!\sum _{Mnij}\mathbb {A}_{ab,Mi,nj}^{r.pr} p_{Mi} r_{nj}&+\!\sum _{MNlijk}\!\!\mathbb {A}_{ab,Mi,Nj,lk}^{r.ppr}p_{Mi}p_{Nj}r_{lk}\nonumber \\&+\!\sum _{mnlijk}\!\!\mathbb {A}_{ab,mi,nj,lk}^{r.rrr}r_{mi}r_{nj}r_{lk}. \end{aligned}$$
(66b)

All generalised coordinates have the first order of smallness (\(p_{Mi}\sim {r}_{mi}\sim \epsilon \)). The \(\mathbb {A}\)-coefficients take the following form

$$\begin{aligned} \begin{aligned}&\mathbb {A}_{Ab}^p=\Lambda _A^c \hat{\mathcal {E}}^{Ab,0}, \ \ \mathbb {A}_{Ab,Mi,Nj}^{p.pp}= \Lambda _{AMN}^{ccc} \hat{\mathcal {E}}^{Ab,2}_{Mi,Nj} +\delta _{MN} \delta _{ij} \Lambda _A^c \hat{\mathcal {E}}^{Ab,1} \beta _{Mi,Nj}^{pp}, \\&\mathbb {A}_{Ab,Ab}^{p.p}=\Lambda _{AA}^{cc} \hat{\mathcal {E}}^{Ab,1}_{Ab}, \ \ \mathbb {A}_{Ab,mi,nj}^{p.rr}= \Lambda _{Amn}^{css} \hat{\mathcal {E}}^{Ab,2}_{mi,nj} +\delta _{mn} \delta _{ij} \Lambda _A^c \hat{\mathcal {E}}^{Ab,1} \beta _{mi,nj}^{rr}, \\ \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} \mathbb {A}_{Ab,Mi,Nj,Lk}^{p.ppp}&= \Lambda _A^c \hat{\mathcal {E}}^{Ab,1} \beta _{Mi,Nj,Lk}^{ppp} +\Lambda _{AMNL}^{cccc} \hat{\mathcal {E}}^{Ab,3}_{Mi,Nj,Lk}\\&+2 \delta _{MA} \delta _{ib}\Lambda _{AM}^{cc} \hat{\mathcal {E}}^{Ab,2}_{Mi} \delta _{NL} \delta _{jk} \beta _{Nj,Lk}^{pp},\\ \mathbb {A}_{Ab,Mi,nj,lk}^{p.prr}&= \Lambda _A^c \hat{\mathcal {E}}^{Ab,1} \beta _{Mi,nj,lk}^{prr} +3 \Lambda _{AMnl}^{ccss} \hat{\mathcal {E}}^{Ab,3}_{Mi,nj,lk}\\&+2 \delta _{MA} \delta _{ib} \Lambda _{AM}^{cc} \hat{\mathcal {E}}^{Ab,2}_{Mi} \delta _{nl} \delta _{jk} \beta _{nj,lk}^{rr}, \end{aligned} \end{aligned}$$
(67a)
$$\begin{aligned} \begin{aligned} \mathbb {A}_{ab,ab}^{r.r}&=\Lambda _{aa}^{ss} \hat{\mathcal {E}}^{ab,1}_{ab}, \ \ \mathbb {A}_{ab,Mi,nj}^{r.pr}= 2 \Lambda _{Mna}^{css} \hat{\mathcal {E}}^{ab,2}_{Mi,nj}, \\ \mathbb {A}_{ab,Mi,Nj,lk}^{r.ppr}&= 3 \Lambda _{MNla}^{ccss} \hat{\mathcal {E}}^{ab,3}_{Mi,Nj,lk} +2 \delta _{al} \delta _{bk} \Lambda _{al}^{ss} \hat{\mathcal {E}}^{ab,2}_{lk} \delta _{MN} \delta _{ij} \beta _{Mi,Nj}^{pp}, \\ \mathbb {A}_{ab,mi,nj,lk}^{r.rrr}&= \Lambda _{mnla}^{ssss} \hat{\mathcal {E}}^{ab,3}_{mi,nj,lk} +2 \delta _{al} \delta _{bk} \Lambda _{al}^{ss} \hat{\mathcal {E}}^{ab,2}_{lk} \delta _{mn} \delta _{ij} \beta _{mi,nj}^{rr}, \end{aligned} \end{aligned}$$
(67b)

where

$$\begin{aligned} \hat{\mathcal {E}}^{Ab,e}_{\underbrace{Mi,\ldots ,Nj}_{N_3}}= \int _{0}^{x_{20}}x_2 B_e^{Ab}\left( x_2\right) \underbrace{f_{Mi}\left( x_2\right) \cdot \ldots \cdot f_{Nj}\left( x_2\right) }_{N_3}dx_2. \end{aligned}$$
(68)

Partial derivatives of \(A_{Ab}^p\) and \(A_{ab}^r\) and \(A_{N}\) (\(A_{N}=\left\{ \{A_{Ab}^{p}\}, \{A_{ab}^{r}\}\right\} \)) by the generalised coordinates \(p_{Mi}\) and \(r_{mi}\) take the following form

$$\begin{aligned} \begin{aligned} \frac{\partial A_{Ab}^p}{\partial p_{Eh}}&=\mathbb {V}_{Ab,Eh}^p +\!\sum _{Mi} \mathbb {V}_{Ab,Eh,Mi}^{p.p} p_{Mi}\\&+\!\sum _{MNij} \mathbb {V}_{Ab,Eh,Mi,Nj}^{p.pp} p_{Mi} p_{Nj} +\sum _{mnij} \mathbb {V}_{Ab,Eh,mi,nj}^{p.rr} r_{mi} r_{nj},\\ \frac{\partial A_{Ab}^p}{\partial r_{eh}}&= \sum _{mi} \mathbb {V}_{Ab,mi,eh}^{p.r} r_{mi} +\sum _{Mnij} \mathbb {V}_{Ab,Mi,nj,eh}^{p.pr} p_{Mi} r_{nj},\\ \frac{\partial A_{ab}^r}{\partial p_{Eh}}&= \sum _{mi} \mathbb {V}_{ab,Eh,mi}^{r.r} r_{mi} +\sum _{Mnij} \mathbb {V}_{ab,Eh,Mi,nj}^{r.pr} p_{Mi} r_{nj},\\ \frac{\partial A_{ab}^r}{\partial r_{eh}}&= \mathbb {V}_{ab,eh}^r +\sum _{Mi} \mathbb {V}_{ab,Mi,eh}^{r.p} p_{Mi} \\&+\sum _{MNij} \mathbb {V}_{ab,Mi,Nj,eh}^{r.pp} p_{Mi} p_{Nj} +\sum _{mnij} \mathbb {V}_{ab,mi,nj,eh}^{r.rr} r_{mi} r_{nj}, \end{aligned} \end{aligned}$$
(69)

where \(\mathbb {V}\)-coefficients are expressed in terms of (67) as follows

$$\begin{aligned}&\mathbb {V}_{Ab,Eh}^p=\mathbb {A}_{Ab,Eh}^{p.p},\ \ \mathbb {V}_{Ab,Eh,Mi}^{p.p}= 2 \mathbb {A}_{Ab,Eh,Mi}^{p.pp}p_{Mi}, \nonumber \\&\mathbb {V}_{ab,eh}^r=\mathbb {A}_{ab,eh}^{r.r}, \ \ \mathbb {V}_{Ab,Eh,Mi,Nj}^{p.pp}= \mathbb {A}_{Ab,Eh,Mi,Nj}^{p.ppp}+2 \mathbb {A}_{Ab,Mi,Eh,Nj}^{p.ppp},\nonumber \\&\mathbb {V}_{Ab,Eh,mi,nj}^{p.rr}=\mathbb {A}_{Ab,Eh,mi,nj}^{p.prr},\ \ \mathbb {V}_{Ab,Mi,nj,eh}^{p.pr}=2 \mathbb {A}_{Ab,Mi,nj,eh}^{p.prr}p_{Mi} r_{nj},\nonumber \\&\mathbb {V}_{Ab,mi,eh}^{p.r}=2 \mathbb {A}_{Ab,mi,eh}^{p.rr},\ \ \mathbb {V}_{ab,Eh,Mi,Nj}^{r.pr}=2 \mathbb {A}_{ab,Eh,Mi,nj}^{r.ppr}p_{Mi} r_{nj},\\&\mathbb {V}_{ab,Mi,eh}^{r.p}=\mathbb {A}_{ab,Mi,eh}^{r.pr}, \ \ \mathbb {V}_{ab,mi,nj,eh}^{r.rr}=2 \mathbb {A}_{ab,eh,mi,nj}^{r.rrr}+\mathbb {A}_{ab,mi,nj,eh}^{r.rrr},\nonumber \\&\mathbb {V}_{ab,Eh,mi}^{r.r}=\mathbb {A}_{ab,Eh,mi}^{r.pr},\ \ \mathbb {V}_{ab,Mi,Nj,eh}^{r.pp}=\mathbb {A}_{ab,Mi,Nj,eh}^{r.ppr}.\nonumber \end{aligned}$$
(70)

1.3 A.3 Integrals \(A_{NK}\) Defined by (29)

By expanding elements of (29) (\(A_{NK}=\left\{ \{A_{NK}^{pp}, A_{NK}^{pr}\},\right. \) \(\left. \{A_{NK}^{pr}, A_{NK}^{rr}\}\right\} \)) to the second polynomial order by the generalised coordinates \(p_{Mi} \) and \(r_{mi}\), we get the following expressions

$$\begin{aligned} \begin{aligned} A_{Ab,Cd}^{pp}&=\mathbb {B}_{Ab,Cd}^{pp.0} +\sum _{Mi}\mathbb {B}_{Ab,Cd,Mi}^{pp.p} p_{Mi} \\&+\sum _{MNij}\!\!\mathbb {B}_{Ab,Cd,Mi,Nj}^{pp.pp} p_{Mi} p_{Nj} +\sum _{mnij}\!\!\mathbb {B}_{Ab,Cd,mi,nj}^{pp.rr} r_{mi} r_{nj},\\ A_{ab,cd}^{rr}&=\mathbb {B}_{ab,cd}^{rr.0} +\sum _{Mi}\mathbb {B}_{ab,cd,Mi}^{rr.p} p_{Mi} \\&+\sum _{MNij}\!\!\mathbb {B}_{ab,cd,Mi,Nj}^{rr.pp} p_{Mi} p_{Nj} +\sum _{mnij}\!\!\mathbb {B}_{ab,cd,mi,nj}^{rr.rr} r_{mi} r_{nj},\\ A_{Ab,cd}^{pr}&= \sum _{mi}\mathbb {B}_{Ab,cd,mi}^{pr.r} r_{mi} +\sum _{Mnij}\!\!\mathbb {B}_{Ab,cd,Mi,nj}^{pr.pr}p_{Mi} r_{nj}. \end{aligned} \end{aligned}$$
(71)

The \(\mathbb {B}\)-coefficients are as follows

$$\begin{aligned} \begin{aligned}&\mathbb {B}_{Ab,Cd}^{pp.0}= \Lambda _{AC}^{cc} \tilde{\mathcal {E}}^{Ab,Cd,0} +\Lambda _{AC}^{ss} \bar{\mathcal {E}}^{Ab,Cd,0}, \\&\mathbb {B}_{Ab,Cd,Mi}^{pp.p}= \Lambda _{ACM}^{ccc} \tilde{\mathcal {E}}^{Ab,Cd,1}_{Mi} +\Lambda _{MAC}^{css} \bar{\mathcal {E}}^{Ab,Cd,1}_{Mi},\\&\mathbb {B}_{Ab,Cd,Mi,Nj}^{pp.pp}= \Lambda _{ACMN}^{cccc} \tilde{\mathcal {E}}^{Ab,Cd,2}_{Mi,Nj} +\Lambda _{MNAC}^{ccss} \bar{\mathcal {E}}^{Ab,Cd,2}_{Mi,Nj} \\&\qquad +\left( \Lambda _{AC}^{cc} \tilde{\mathcal {E}}^{Ab,Cd,1} +\Lambda _{AC}^{ss} \bar{\mathcal {E}}^{Ab,Cd,1}\right) \delta _{MN} \delta _{ij} \beta _{Mi,Nj}^{pp}, \\&\mathbb {B}_{Ab,Cd,mi,nj}^{pp.rr}= \Lambda _{A,C,m,n}^{ccss} \tilde{\mathcal {E}}^{Ab,Cd,2}_{mi,nj} +\Lambda _{A,C,m,n}^{ssss} \bar{\mathcal {E}}^{Ab,Cd,2}_{mi,nj} \\&\qquad +\left( \Lambda _{AC}^{cc} \tilde{\mathcal {E}}^{Ab,Cd,1} +\Lambda _{AC}^{ss} \bar{\mathcal {E}}^{Ab,Cd,1}\right) \delta _{mn} \delta _{ij} \beta _{mi,nj}^{rr}, \end{aligned} \end{aligned}$$
(72a)
$$\begin{aligned} \begin{aligned}&\mathbb {B}_{ab,cd}^{rr.0}= \delta _{ac} \Lambda _{ac}^{ss} \tilde{\mathcal {E}}^{ab,cd,0} +\delta _{ac}\Lambda _{ac}^{cc} \bar{\mathcal {E}}^{ab,cd,0},\\&\mathbb {B}_{ab,cd,Mi}^{rr.p}= \Lambda _{Mac}^{css} \tilde{\mathcal {E}}^ {ab,cd,1}_{Mi} +\Lambda _{acM}^{ccc}\bar{\mathcal {E}}^{ab,cd,1}_{Mi},\\&\mathbb {B}_{ab,cd,Mi,Nj}^{rr.pp}= \Lambda _{MNac}^{ccss} \tilde{\mathcal {E}}^{ab,cd,2}_{Mi,Nj} +\Lambda _{acMN}^{cccc} \bar{\mathcal {E}}^{ab,cd,2}_{Mi,Nj} \\&\qquad +\left( \Lambda _{ac}^{ss} \tilde{\mathcal {E}}^{ab,cd,1} +\Lambda _{ac}^{cc} \bar{\mathcal {E}}^{ab,cd,1}\right) \delta _{m1} \delta _{i1} \delta _{MN} \delta _{ij} \beta _{Mi,Nj}^{pp},\\&\mathbb {B}_{ab,cd,mi,nj}^{rr.rr}= \Lambda _{mnac}^{ssss} \tilde{\mathcal {E}}^{ab,cd,2}_{mi,nj} +\Lambda _{acmn}^{ccss} \bar{\mathcal {E}}^{ab,cd,2}_{mi,nj} \\&\qquad +\left( \Lambda _{ac}^{ss} \tilde{\mathcal {E}}^{ab,cd,1} +\Lambda _{ac}^{cc} \bar{\mathcal {E}}^{ab,cd,1}\right) \delta _{m1} \delta _{i1} \delta _{mn} \delta _{ij} \beta _{mi,nj}^{rr}, \end{aligned} \end{aligned}$$
(72b)
$$\begin{aligned} \begin{aligned}&\mathbb {B}_{Ab,cd,mi}^{pr.r}= \Lambda _{Acm}^{css} \tilde{\mathcal {E}}^{Ab,cd,1}_{mi} -\Lambda _{cAm}^{css}\bar{\mathcal {E}}^{Ab,cd,1}_{mi}, \\&\mathbb {B}_{Ab,cd,Mi,nj}^{pr.pr}= 2 \left( \Lambda _{AMcn}^{ccss} \tilde{\mathcal {E}}^{Ab,cd,2}_{Mi,nj} -\Lambda _{cMAn}^{ccss} \bar{\mathcal {E}}^{Ab,cd,2}_{Mi,nj}\right) , \end{aligned} \end{aligned}$$
(72c)

where

$$\begin{aligned} \tilde{\mathcal {E}}^{Ab,Cd,e}_{\underbrace{Mi,\ldots ,Nj}_{N_3}}= \int _{0}^{x_{20}} F_e^{AbCd}\left( x_2\right) \underbrace{f_{Mi}\left( x_2\right) \cdot \ldots \cdot f_{Nj}\left( x_2\right) }_{N_3} dx_2, \end{aligned}$$
(73a)
$$\begin{aligned} \bar{\mathcal {E}}^{Ab,Cd,e}_{\underbrace{Mi,\ldots ,Nj}_{N_3}}= A C \int _{0}^{x_{20}} \frac{1}{x_2} {B_e^{AbCd}\left( x_2\right) \underbrace{f_{Mi}\left( x_2\right) \cdot \ldots \cdot f_{Nj}\left( x_2\right) }}_{{N_3}} dx_2. \end{aligned}$$
(73b)

The partial derivatives of \(A_{MiNj}^{pp}\), \(A_{minj}^{rr}\) and \(A_{Minj}^{pr}\) by \(p_{Mi}\), \(r_{mi}\) are

$$\begin{aligned} \begin{aligned}&\frac{\partial A_{Ab,Cd}^{pp}}{\partial p_{Eh}}= \mathbb {W}_{Ab,Cd,Eh}^{pp.p} +\sum _{Mi} \mathbb {W}_{Ab,Cd,Eh,Mi}^{pp.pp}p_{Mi},\\&\frac{\partial A_{Ab,Cd}^{pp}}{\partial r_{eh}}= \sum _{mi} \mathbb {W}_{Ab,Cd,mi,eh}^{pp.rr} r_{mi},\\&\frac{\partial A_{ab,cd}^{rr}}{\partial p_{Eh}}= \mathbb {W}_{ab,cd,Eh}^{rr.p} +\sum _{Mi} \mathbb {W}_{ab,cd,Eh,Mi}^{rr.pp} p_{Mi},\\&\frac{\partial A_{ab,cd}^{rr}}{\partial r_{eh}}=\sum _{m,i} \mathbb {W}_{ab,cd,mi,eh}^{rr.rr} r_{mi},\\&\frac{\partial A_{Ab,cd}^{pr}}{\partial p_{Eh}}=\sum _{mi} \mathbb {W}_{Ab,cd,Eh,mi}^{pr.pr} r_{mi},\\&\frac{\partial A_{Ab,cd}^{pr}}{\partial r_{eh}} =\mathbb {W}_{eh}^{pr.r} +\sum _{Mi} \mathbb {W}_{Ab,cd,Mi,eh}^{pr.pr}p_{Mi}, \end{aligned} \end{aligned}$$
(74)

where the \(\mathbb {W}\)-coefficients are expressed in terms of the matrix \(A_{NK}\) (72)

$$\begin{aligned} \begin{aligned}&\mathbb {W}_{Ab,Cd,Eh}^{pp.p}=\mathbb {B}_{Ab,Cd,Eh}^{pp.p}, \\&\mathbb {W}_{Ab,Cd,Eh,Mi}^{pp.pp}= 2\mathbb {B}_{Ab,Cd,Eh,Mi}^{pp.pp} =2 \mathbb {B}_{Ab,Cd,Mi,Eh}^{pp.pp},\\&\mathbb {W}_{Ab,Cd,mi,eh}^{pp.rr} =2\mathbb {B}_{Ab,Cd,eh,mi}^{pp.rr} =2 \mathbb {B}_{Ab,Cd,mi,eh}^{pp.rr},\\&\mathbb {W}_{ab,cd,Eh,Mi}^{rr.pp}= 2\mathbb {B}_{ab,cd,Eh,Mi}^{rr.pp}= 2 \mathbb {B}_{ab,cd,Mi,Eh}^{rr.pp},\\&\mathbb {W}_{ab,cd,mi,eh}^{rr.rr}= 2\mathbb {B}_{ab,cd,eh,mi}^{rr.rr}= 2 \mathbb {B}_{ab,cd,mi,eh}^{rr.rr},\\&\mathbb {W}_{ab,cd,Eh}^{rr.p}=\mathbb {B}_{ab,cd,Eh}^{rr.p}, \ \ \mathbb {W}_{Ab,cd,Eh,mi}^{pr.pr}=\mathbb {B}_{Ab,cd,Eh,mi}^{pr.pr},\\&\mathbb {W}_{Ab,cd,eh}^{pr.r}=\mathbb {B}_{Ab,cd,eh}^{pr.r}, \ \ \mathbb {W}_{Ab,cd,Mi,eh}^{pr.pr}=\mathbb {B}_{Ab,cd,Mi,eh}^{pr.pr}. \end{aligned} \end{aligned}$$
(75)

1.4 A.4 Generalised Velocities \(P_{Cd}\) and \(R_{cd}\)

After substituting expressions for the generalised velocities (33) into the kinematic equation (25), accounting for the derivatives (69) and (74) and collecting similar terms, we derive the \(\mathbb {Z}\)-coefficients as follows

$$\begin{aligned}&\mathbb {Z}_{Ab}^p=\frac{\mathbb {V}_{Ab,Ab}^p}{\mathbb {B}_{Ab,Ab}^{pp.0}},\ \ \mathbb {Z}_{Mi,Nj}^{pp,Ab}=\frac{\mathbb {V}_{Ab,Nj,Mi}^{p.p}-\mathbb {B}_{Ab,Nj,Mi}^{pp.p} \mathbb {Z}_{Nj}^p}{\mathbb {B}_{Ab,Ab}^{pp.0}},\nonumber \\&\mathbb {Z}_{Mi,Nj,Lk}^{ppp,Ab}=\frac{\mathbb {V}_{Ab,Lk,Mi,Nj}^{p.pp} -\mathbb {B}_{Ab,Lk,Mi,Nj}^{pp.pp} \mathbb {Z}_{Lk}^p -\sum _{Cd} \mathbb {B}_{Ab,Cd,Mi}^{pp.p} \mathbb {Z}_{Nj,Lk}^{pp,Cd}}{\mathbb {B}_{Ab,Ab}^{pp.0}},\nonumber \\&\qquad \qquad \qquad \mathbb {Z}_{mi,nj}^{rr,Ab}= \frac{\mathbb {V}_{Ab,mi,nj}^{p.r}-\mathbb {B}_{Ab,nj,mi}^{pr.r}\mathbb {Z}_{nj}^r}{\mathbb {B}_{Ab,Ab}^{pp.0}},\ \ \ \mathbb {Z}_{Mi,nj,lk}^{prr,Ab}= \nonumber \\&\frac{\mathbb {V}_{Ab,Mi,nj,lk}^{p.pr} -\mathbb {B}_{Ab,lk,Mi,nj}^{pr.pr} \mathbb {Z}_{lk}^r -\mathbb {B}_{Ab,cd,nj}^{pr.r} \mathbb {Z}_{Mi,lk}^{pr,cd} -\sum _{Cd} \mathbb {B}_{Ab,Cd,Mi}^{pp.p} \mathbb {Z}_{nj,lk}^{rr,Cd}}{\mathbb {B}_{Ab,Ab}^{pp.0}},\nonumber \\&\qquad \quad \mathbb {Z}_{mi,nj,Lk}^{rrp,Ab}=\frac{\mathbb {V}_{Ab,Lk,mi,nj}^{p.rr}- \mathbb {B}_{Ab,Lk,mi,nj}^{pp.rr}\mathbb {Z}_{Lk}^p -\mathbb {B}_{Ab,cd,nj}^{pr.r} \mathbb {Z}_{mi,Lk}^{rp,cd}}{\mathbb {B}_{Ab,Ab}^{pp.0}}, \end{aligned}$$
(76a)
$$\begin{aligned} \mathbb {Z}_{ab}^r=\frac{\mathbb {V}_{ab,ab}^r}{\mathbb {B}_{ab,ab}^{rr.0}},\, \, \,&\mathbb {Z}_{Mi,nj}^{pr,ab} =\frac{\mathbb {V}_{ab,Mi,nj}^{r.p} -\mathbb {B}_{ab,nj,Mi}^{rr.p} \mathbb {Z}_{nj}^r}{\mathbb {B}_{ab,ab}^{rr.0}},\nonumber \\&\quad \mathbb {Z}_{mi,Nj}^{rp,ab}=\frac{\mathbb {V}_{ab,Nj,mi}^{r.r} -\mathbb {B}_{Nj,ab,mi}^{pr.r} \mathbb {Z}_{Nj}^p}{\mathbb {B}_{ab,ab}^{rr.0}},\nonumber \\ \mathbb {Z}_{Mi,Nj,lk}^{ppr,ab}=&\; \frac{\mathbb {V}_{ab,Mi,Nj,lk}^{r.pp}-\mathbb {B}_{ab,lk,Mi,Nj}^{rr.pp}\mathbb {Z}_{lk}^r -\sum _{cd} \mathbb {B}_{ab,cd,Mi}^{rr.p} \mathbb {Z}_{Nj,lk}^{pr,cd}}{\mathbb {B}_{ab,ab}^{rr.0}},\nonumber \\ \mathbb {Z}_{mi,nj,lk}^{rrr,ab}=&\; \frac{\mathbb {V}_{ab,mi,nj,lk}^{r.rr}-\mathbb {B}_{ab,lk,mi,nj}^{rr.rr} \mathbb {Z}_{lk}^r -\sum _{Cd} \mathbb {B}_{Cd,ab,nj}^{pr.r} \mathbb {Z}_{mi,lk}^{rr,Cd}}{\mathbb {B}_{ab,ab}^{rr.0}},\nonumber \\ \mathbb {Z}_{Mi,nj,Lk}^{prp,ab}=&\; \bigg (\mathbb {V}_{ab,Lk,Mi,nj}^{r.pr} -\mathbb {B}_{Lk,ab,Mi,nj}^{pr.pr} \mathbb {Z}_{Lk}^p -\sum _{Cd} \mathbb {B}_{Cd,ab,nj}^{pr.r} \mathbb {Z}_{Mi,Lk}^{pp,Cd} \nonumber \\&\qquad \qquad \qquad \qquad \qquad -\sum _{cd} \mathbb {B}_{ab,cd,Mi}^{rr.p} \mathbb {Z}_{nj,Lk}^{rp,cd}\bigg )\bigg / {\mathbb {B}_{ab,ab}^{rr.0}}. \end{aligned}$$
(76b)

1.5 A.5 Integrals \(l_{i}\)

Expressions for \(\varvec{l}\) (see, (13)) appearing in the dynamic equations (26) take the form

$$\begin{aligned} \begin{aligned}&l_1=\rho \int _0^{2 \pi }\int _{0}^{x_{20}}\int _{0}^{f^*\left( x_2,x_3,t\right) +x_{10}}x_1^3 x_2dx_1dx_2dx_3,\\&l_2=\rho \int _0^{2 \pi }\int _{0}^{x_{20}}\int _{0}^{f^*\left( x_2,x_3,t\right) +x_{10}}x_1^3 x_2^2 \cos \left( x_3\right) dx_1dx_2dx_3,\\&l_3=\rho \int _0^{2 \pi }\int _{0}^{x_{20}}\int _{0}^{f^*\left( x_2,x_3,t\right) +x_{10}}x_1^3 x_2^2 \sin \left( x_3\right) dx_1dx_2dx_3. \end{aligned} \end{aligned}$$
(77)

Coefficients \(\hat{\mathbf {l}}_{Mi}^{\mathbf {r}\beta }\), \(\hat{\mathbf {l}}_{Mi,Nj}^{\mathbf {r}\beta \beta }\), \(\hat{\mathbf {l}}_{Mi,Nj,Lk}^{\mathbf {r}\beta \beta \beta }\) in (34) are determined by the following expressions (\(h_t\) and \(h_b\) are distances from the cone vertex to the unperturbed free surface and the bottom, respectively; the \(\beta _{Mi,Nj}^{pp}\) coefficients appear in expression for \(\beta _0\) (20), and \(\delta _{ij}\) is the Kronecker delta):

$$\begin{aligned} \begin{aligned}&\mathbf {l}^x=\frac{\pi }{4}\left( h_t^4-h_b^4\right) x_{20}^2,\ \ \mathbf {l}_{Mi,Nj}^{xpp}=\frac{h_t^2}{2} \delta _{MN} \delta _{ij} \Lambda _{MN}^{cc} \lambda _{Mi,Nj},\\&\mathbf {l}_{mi,nj}^{xrr}=\frac{h_t^2}{2} \delta _{mn} \delta _{ij} \Lambda _{mn}^{ss} \lambda _{mi,nj},\ \ \mathbf {l}_{Mi,Nj,Lk}^{xppp}=\frac{2}{3} h_t \Lambda _{MNL}^{ccc} \lambda _{Mi,Nj,Lk},\\&\mathbf {l}_{Mi,nj,lk}^{xprr}=2 h_t \Lambda _{Mnl}^{css} \lambda _{Mi,nj,lk},\quad \hat{\mathbf {l}}_{Mi}^{yp}=h_t^3 \delta _{1,M} \Lambda _{1M}^{cc} \hat{\lambda }_{Mi},\\&\hat{\mathbf {l}}_{Mi,Nj,Lk}^{yppp}=h_t \Lambda _{1MNL}^{cccc} \hat{\lambda }_{Mi,Nj,Lk} +3 h_t^2 \delta _{1M} \Lambda _{1M}^{cc} \hat{\lambda }_{Mi} \delta _{NL} \delta _{jk} \beta _{Nj,Lk}^{pp},\\&\hat{\mathbf {l}}_{Mi,Nj}^{ypp}=\frac{3}{2} h_t^2 \Lambda _{1MN}^{ccc} \hat{\lambda }_{Mi,Nj},\ \ \hat{\mathbf {l}}_{mi,nj}^{yrr}=\frac{3}{2} h_t^2 \Lambda _{1mn}^{css} \hat{\lambda }_{mi,nj},\\&\hat{\mathbf {l}}_{Mi,nj,lk}^{yprr}=3 h_t \Lambda _{1Mnl}^{ccss} \hat{\lambda }_{Mi,nj,lk} +3 h_t^2 \delta _{1M} \Lambda _{1M}^{cc} \hat{\lambda }_{Mi} \delta _{nl} \delta _{jk} \beta _{nj,lk}^{rr},\\&\hat{\mathbf {l}}_{mi}^{zp}=h_t^3 \delta _{1m} \Lambda _{m1}^{ss} \hat{\lambda }_{mi},\ \ \hat{\mathbf {l}}_{Mi,nj}^{zpr}=3 h_t^2 \Lambda _{Mn1}^{css} \hat{\lambda }_{Mi,nj},\\&\hat{\mathbf {l}}_{Mi,Nj,lk}^{zppr}=3 h_t \Lambda _{MNl1}^{ccss} \hat{\lambda }_{Mi,Nj,lk} +3 h_t^2 \delta _{1l} \Lambda _{l1}^{ss} \hat{\lambda }_{lk} \delta _{MN} \delta _{ij} \beta _{Mi,Nj}^{pp},\\&\hat{\mathbf {l}}_{mi,nj,lk}^{zrrr}=h_t \Lambda _{mnl1}^{ssss} \hat{\lambda }_{mi,nj,lk} +3 h_t^2 \delta _{1l} \Lambda _{l1}^{ss} \hat{\lambda }_{lk} \delta _{mn} \delta _{ij} \beta _{mi,nj}^{rr}. \end{aligned} \end{aligned}$$
(78)

The following notation is adopted

$$\begin{aligned} \displaystyle \hat{\lambda }_{\underbrace{Mi,\ldots ,Nj}_{N_3}}\!=\!\!\int _{0}^{x_{20}}\!\!\! x_2^2\underbrace{f_{Mi}\left( x_2\right) \cdot \ldots \cdot {f}_{Nj}\left( x_2\right) }_{N_3}dx_2, \end{aligned}$$
(79)

in addition to (64) and (65).

When using the Moiseev-Narimanov asymptotics (37) in (34), we deduce that only the following components should be kept

$$\begin{aligned} \begin{aligned} \displaystyle l_1&= \mathbf {l}^x+\mathbf {l}_{11,11}^{xpp} p_{11}^2 +\mathbf {l}_{11,11}^{xrr} r_{11}^2 +\mathbf {l}_{11,11,11}^{xprr} p_{11} r_{11}^2 +\mathbf {l}_{11,11,11}^{xppp} p_{11}^3,\\ \displaystyle l_2&= \hat{\mathbf {l}}_{11,11}^{ypp} p_{11}^2 +\hat{\mathbf {l}}_{11,11}^{yrr} r_{11}^2 +\hat{\mathbf {l}}_{11,11,11}^{yprr} p_{11} r_{11}^2 +\hat{\mathbf {l}}_{11,11,11}^{yppp} p_{11}^3\\ \displaystyle&+\sum _{i}\hat{\mathbf {l}}_{1i}^{yp} p_{1i} +\sum _{i}\!\left( \hat{\mathbf {l}}_{0i,11}^{ypp} +\hat{\mathbf {l}}_{11,0i}^{ypp}\right) p_{11} p_{0i}\\ \displaystyle&+\sum _{i}\!\left( \hat{\mathbf {l}}_{2i,11}^{ypp} +\hat{\mathbf {l}}_{11,2i}^{ypp}\right) p_{11} p_{2i} +\sum _{i}\!\left( \hat{\mathbf {l}}_{2i,11}^{yrr}\! +\hat{\mathbf {l}}_{11,2i}^{yrr}\right) r_{11} r_{2i},\\ \displaystyle l_3&=\hat{\mathbf {l}}_{11,11}^{zpr} p_{11} r_{11} +\hat{\mathbf {l}}_{11,11,11}^{zrrr} r_{11}^3 +\hat{\mathbf {l}}_{11,11,11}^{zppr} p_{11}^2 r_{11}\\ \displaystyle&+\sum _{i}\hat{\mathbf {l}}_{1i}^{zp} r_{1i} +\sum _{i}\hat{\mathbf {l}}_{0i,11}^{zpr} r_{11} p_{0i} +\sum _{i}\hat{\mathbf {l}}_{11,2i}^{zpr} p_{11} r_{2i} +\sum _{i}\hat{\mathbf {l}}_{2i,11}^{zpr} r_{11} p_{2i}. \end{aligned} \end{aligned}$$
(80)

The derivatives \({\partial l_1}/{\partial \beta _{N}}\) by \(p_{Mi}\) and \(r_{mi}\) take the following form

$$\begin{aligned} \begin{aligned} \displaystyle \frac{\partial l_1}{\partial p_{Eh}}&= \bar{\mathbf {l}}_{Eh,Eh}^{xpp} p_{Eh} +\sum _{MNij}\!\bar{\mathbf {l}}_{Eh,Mi,Nj}^{xppp} p_{Mi} p_{Nj} +\sum _{mnij}\!\bar{\mathbf {l}}_{Eh,mi,nj}^{xprr} r_{mi} r_{nj}\\ \displaystyle&+\sum _{MNLijk}\!\!\bar{\mathbf {l}}_{Eh,Mi,Nj,Lk}^{xpppp} p_{Mi} p_{Nj} p_{Lk} +\sum _{Mnlijk}\!\!\bar{\mathbf {l}}_{Eh,Mi,nj,lk}^{xpprr} p_{Mi} r_{nj} r_{lk}, \end{aligned} \end{aligned}$$
(81a)
$$\begin{aligned} \begin{aligned} \displaystyle \frac{\partial l_1}{\partial r_{eh}}&= \bar{\mathbf {l}}_{eh,eh}^{xrr} r_{eh} +\sum _{Mnij}\!\bar{\mathbf {l}}_{Mi,nj,eh}^{xprr} p_{Mi} r_{nj}\\ \displaystyle&+\sum _{MNlijk}\!\!\bar{\mathbf {l}}_{Mi,Nj,lk,eh}^{xpprr} p_{Mi} p_{Nj} r_{lk} +\sum _{mnlijk}\!\!\bar{\mathbf {l}}_{mi,nj,lk,eh}^{xrrrr} r_{mi} r_{nj} r_{lk}, \end{aligned} \end{aligned}$$
(81b)

where the derived \(\bar{\mathbf {l}}\)-coefficients are expressed in terms of \(l_1\) as follows

$$\begin{aligned} \begin{aligned} \displaystyle&\bar{\mathbf {l}}_{Eh,Eh}^{xpp}=2 \mathbf {l}_{Eh,Eh}^{xpp},\ \ \bar{\mathbf {l}}_{Eh,Mi,Nj}^{xppp}=3 \mathbf {l}_{Eh,Mi,Nj}^{xppp},\ \ \bar{\mathbf {l}}_{Eh,mi,nj}^{xprr}=\mathbf {l}_{Eh,mi,nj}^{xprr},\\ \displaystyle&\bar{\mathbf {l}}_{Eh,Mi,Nj,Lk}^{xpppp}=4 \mathbf {l}_{Eh,Mi,Nj,Lk}^{xpppp},\ \ \bar{\mathbf {l}}_{Eh,Mi,nj,lk}^{xpprr}=2 \mathbf {l}_{Eh,Mi,nj,lk}^{xpprr},\\ \displaystyle&\bar{\mathbf {l}}_{Mi,nj,eh}^{xprr}=2 \mathbf {l}_{Mi,nj,eh}^{xprr},\ \ \bar{\mathbf {l}}_{Mi,Nj,lk,eh}^{xpprr}=2 \mathbf {l}_{Mi,Nj,lk,eh}^{xpprr},\\ \displaystyle&\bar{\mathbf {l}}_{eh,eh}^{xrr}=2 \mathbf {l}_{eh,eh}^{xrr},\ \ \bar{\mathbf {l}}_{mi,nj,lk,eh}^{xrrrr}=4 \mathbf {l}_{mi,nj,lk,eh}^{xrrrr}. \end{aligned} \end{aligned}$$
(82)

For the steady-state sloshing regimes (53), (55), using the Moiseev-Narimanov asymptotics derives the second time derivative for horizontal components of the vector \(\varvec{l}\) as

$$\begin{aligned} \begin{aligned}&\ddot{l}_2 = B_s \left( \lambda _{y1}^{s} +A_c^2 \lambda _{y1}^{ccs}+B_s^2 \lambda _{y1}^{sss}\right) \sigma ^2 \sin \sigma t + B_s \left( A_c^2-B_s^2\right) \lambda _{y3}^{sss} \sigma ^2 \sin 3 \sigma t,\\&\ddot{l}_3 = A_c \left( \lambda _{z1}^c +A_c^2 \lambda _{z1}^{ccc}+B_s^2 \lambda _{z1}^{css}\right) \sigma ^2 \cos \sigma t + A_c \left( A_c^2-B_s^2\right) \lambda _{z3}^{ccc} \sigma ^2 \cos 3 \sigma t, \end{aligned} \end{aligned}$$
(83)

where coefficients \(\lambda _{ijk}\) are

$$\begin{aligned}{}\begin{array}[c]{l} \displaystyle \lambda _{y1}^s = \lambda _{z1}^c = -\pi h_t^3 \hat{\lambda }_{11},\quad \hat{\lambda }_{111} = \frac{{x_{20}^2 \hat{\lambda }_{11,11,11} -4 \hat{\lambda }_{11} \lambda _{11,11}}}{{4 h_t x_{20}^2}},\\ \lambda _{y1}^{sss}=\lambda _{yo1}^{sss}+\lambda _{yn1}^{sss},\ \lambda _{y1}^{ccs}=\lambda _{yo1}^{ccs}+\lambda _{yn1}^{ccs},\ \lambda _{y3}^{sss}=\lambda _{yo3}^{sss}+\lambda _{yn3}^{sss},\\ \lambda _{z1}^{ccc}=\lambda _{zo1}^{ccc}+\lambda _{zn1}^{ccc},\ \lambda _{z1}^{css}=\lambda _{zo1}^{css}+\lambda _{zn1}^{css},\ \lambda _{z3}^{ccc}=\lambda _{zo3}^{ccc}+\lambda _{zn3}^{ccc},\\ \lambda _{yo1}^{sss} = \lambda _{zo1}^{ccc} = -\frac{3}{4} \pi h_t^2 \left( 3 \hat{\lambda }_{111} + 2\left( 2\mathbf {o}_{010} + \mathbf {o}_{012}\right) \hat{\lambda }_{01,11} \right. \\ \left. \qquad + 2\left( \mathbf {o}_{210} + \mathbf {o}_{212} \right) \hat{\lambda }_{21,11}\right) ,\\ \lambda _{yo1}^{ccs} = \lambda _{zo1}^{css} = -\frac{3}{4} \pi h_t^2 \left( \hat{\lambda }_{111} + 2\left( 2\mathbf {o}_{010} - \mathbf {o}_{012}\right) \hat{\lambda }_{01,11} \right. \\ \left. \qquad - \left( 2 \mathbf {o}_{210} - 3 \mathbf {o}_{212}\right) \hat{\lambda }_{21,11}\right) ,\\ \lambda _{yo3}^{sss} = \lambda _{z3}^{ccc} = -\frac{27}{4} \pi h_t^2 \left( \hat{\lambda }_{111} + 2\mathbf {o}_{012} \hat{\lambda }_{01,11} + \mathbf {o}_{212} \hat{\lambda }_{21,11} \right) ,\\ \lambda _{yn1}^{ccc} = \frac{1}{2}\pi h_t^2 \left( 2 h_t G_{11}^{\hat{\lambda }_1} -3\left( 2 C_0^{\hat{\lambda }_{01}} + C_2^{\hat{\lambda }_{01}} + S_0^{\hat{\lambda }_{21}} + \frac{1}{2}{S_2^{\hat{\lambda }_{21}}}\right) \right) ,\\ \lambda _{yn1}^{css}= \frac{1}{2}\pi h_t^2 \left( 2 h_t G_{12}^{\hat{\lambda }_1} -3\left( 2 C_0^{\hat{\lambda }_{01}} + C_2^{\hat{\lambda }_{01}} + S_0^{\hat{\lambda }_{21}} - \frac{3}{2}{S_2^{\hat{\lambda }_{21}}}\right) \right) ,\\ \lambda _{yn3}^{ccc} = \frac{9}{2} \pi h_t^2 \left( 2 h_t G_3^{\hat{\lambda }_1} -3 C_2^{\hat{\lambda }_{01}} -\frac{3}{2}{S_2^{\hat{\lambda }_{21}}}\right) , \end{array} \end{aligned}$$
(84)

and

$$\begin{aligned}{}\begin{array}[c]{l} \displaystyle C_j^{\hat{\lambda }_{k1}} = \sum _{i=2}^{\infty } \hat{\lambda }_{ki11} \mathbf {o}_{0ij},\quad S_j^{\hat{\lambda }_{k1}} = \sum _{i=2}^{\infty } \hat{\lambda }_{ki11} \mathbf {o}_{2ij},\\ [1.2mm] \displaystyle G_3^{\hat{\lambda }_1} = \sum _{i=2}^{\infty } \hat{\lambda }_{1i} \mathbf {o}_{1i3},\quad G_{jk}^{\hat{\lambda }_1} = \sum _{i=2}^{\infty } \hat{\lambda }_{1i} \mathbf {o}_{1ijk}. \end{array} \end{aligned}$$
(85)

1.6 A.6 The \(\mathbf {d}\)-, \(\mathbf {g}\)-, \(\mathbf {t}\)-Coefficients in (35)

The \(\mathbf {d}\)-, \(\mathbf {g}\)-, \(\mathbf {t}\)-coefficients of the infinite-dimensional nonlinear modal equation (35) are computed by the formulas

$$\begin{aligned}&\mathbf {d}_{Mi}^{p,Eh}=\delta _{M,E} \delta _{i,h} \mathbb {V}_{Mi,Eh}^p \mathbb {Z}_{Mi}^p,\ \ \ \mathbf {g}_{Mi}^{p,Eh}=\delta _{M,E} \delta _{i,h} {\bar{\mathbf {l}}}_{Eh,Mi}^{opp},\\&\mathbf {g}_{Mi,Nj}^{pp,Eh}={\bar{\mathbf {l}}}_{Eh,Mi,Nj}^{oppp},\ \ \ \mathbf {g}_{Mi,nj,lk}^{prr,Eh}={\bar{\mathbf {l}}}_{Eh,Mi,nj,lk}^{opprr},\\&\mathbf {d}_{Mi,Nj}^{pp,Eh}= \mathbb {V}_{Nj,Eh,Mi}^{p.p} \mathbb {Z}_{Nj}^p +\sum _{Ab} \delta _{A,E} \delta _{b,h} \mathbb {V}_{Ab,Eh}^p \mathbb {Z}_{Mi,Nj}^{pp,Ab},\\&\mathbf {d}_{mi,nj}^{rr,Eh}= \mathbb {V}_{nj,Eh,mi}^{r.r} \mathbb {Z}_{nj}^r+\sum _{Ab} \delta _{A,E} \delta _{b,h} \mathbb {V}_{Ab,Eh}^p \mathbb {Z}_{mi,nj}^{rr,Ab}, \\&\mathbf {t}_{Mi,Nj}^{pp,Eh}=\frac{1}{2} \mathbb {W}_{Mi,Nj,Eh}^{pp.p} \mathbb {Z}_{Mi}^p \mathbb {Z}_{Nj}^p +\sum _{Ab} \delta _{A,E} \delta _{b,h} \mathbb {V}_{Ab,Eh}^p \mathbb {Z}_{Mi,Nj}^{pp,Ab},\\&\mathbf {t}_{mi,nj}^{rr,Eh}= \frac{1}{2} \mathbb {W}_{mi,nj,Eh}^{rr.p} \mathbb {Z}_{mi}^r \mathbb {Z}_{nj}^r +\sum _{Ab} \delta _{AE} \delta _{bh} \mathbb {V}_{Ab,Eh}^p \mathbb {Z}_{mi,nj}^{rr,Ab},\\&\mathbf {d}_{Mi,Nj,Lk}^{ppp,Eh}= \mathbb {V}_{Lk,Eh,Mi,Nj}^{p.pp} \mathbb {Z}_{Lk}^p +\sum _{Ab} {\mathbb {V}}_{Ab,Eh,Mi}^{p.p} \mathbb {Z}_{Nj,Lk}^{pp,Ab}\\&\qquad +\sum _{Ab} \delta _{AE} \delta _{bh} \mathbb {V}_{Ab,Eh}^p \mathbb {Z}_{Mi,Nj,Lk}^{ppp,Ab},\\&\mathbf {d}_{Mi,nj,lk}^{prr,Eh}= \mathbb {V}_{lk,Eh,Mi,nj}^{r.pr} \mathbb {Z}_{lk}^r +\sum _{ab} \mathbb {V}_{ab,Eh,nj}^{r.r} \mathbb {Z}_{Mi,lk}^{pr,ab}\\&\qquad +\sum _{Ab} \mathbb {V}_{Ab,Eh,Mi}^{p.p} \mathbb {Z}_{nj,lk}^{rr,Ab} +\sum _{Ab} \delta _{AE} \delta _{bh} \mathbb {V}_{Ab,Eh}^p \mathbb {Z}_{Mi,nj,lk}^{prr,Ab}, \\&\mathbf {g}_{mi,nj}^{rr,Eh}={\bar{\mathbf {l}}}_{Eh,mi,nj}^{oprr},\ \ \mathbf {g}_{Mi,Nj,Lk}^{ppp,Eh}=\bar{\mathbf {l}}_{Eh,Mi,Nj,Lk}^{opppp}, \end{aligned}$$
$$\begin{aligned}&\mathbf {d}_{mi,nj,Lk}^{rrp,Eh}\!=\mathbb {V}_{Lk,Eh,mi,nj}^{p.rr}\mathbb {Z}_{Lk}^p +\!\sum _{ab} \mathbb {V}_{ab,Eh,mi}^{r.r} \mathbb {Z}_{nj,Lk}^{rp,ab}\\&\qquad +\sum _{Ab} \delta _{AE} \delta _{bh} \mathbb {V}_{Ab,Eh}^p \mathbb {Z}_{mi,nj,Lk}^{rrp,Ab},\\&\mathbf {t}_{Mi,Nj,Lk}^{ppp,Eh}= \frac{1}{2} \mathbb {W}_{Nj,Lk,Eh,Mi}^{pp.pp} \mathbb {Z}_{Nj}^p \mathbb {Z}_{Lk}^p +\sum _{Ab} \mathbb {V}_{Ab,Eh,Mi}^{p.p} \mathbb {Z}_{Nj,Lk}^{pp,Ab}\\&\qquad +\sum _{Cd} \frac{1}{2} \left( \mathbb {W}_{Cd,Nj,Eh}^{pp.p} +\mathbb {W}_{Nj,Cd,Eh}^{pp.p}\right) \mathbb {Z}_{Nj}^p \mathbb {Z}_{Mi,Lk}^{pp,Cd} \\&\qquad +\sum _{Ab} \delta _{AE} \delta _{bh} \mathbb {V}_{Ab,Eh}^p \left( \mathbb {Z}_{Mi,Nj,Lk}^{ppp,Ab} +\mathbb {Z}_{Nj,Mi,Lk}^{ppp,Ab}\right) , \end{aligned}$$
$$\begin{aligned}&\mathbf {t}_{Mi,nj,lk}^{prr,Eh}= \sum _{Ab} \mathbb {V}_{Ab,Eh,Mi}^{p.p} \mathbb {Z}_{nj,lk}^{rr,Ab} +\sum _{Ab} \delta _{AE} \delta _{bh} \mathbb {V}_{Ab,Eh}^p \mathbb {Z}_{Mi,nj,lk}^{prr,Ab}\\&+\frac{1}{2} \mathbb {W}_{nj,lk,Eh,Mi}^{rr.pp} \mathbb {Z}_{nj}^r \mathbb {Z}_{lk}^r +\sum _{cd} \frac{1}{2} \left( \mathbb {W}_{cd,lk,Eh}^{rr.p} +\mathbb {W}_{lk,cd,Eh}^{rr.p}\right) \mathbb {Z}_{lk}^r \mathbb {Z}_{Mi,nj}^{pr,cd},\\&\mathbf {t}_{mi,Nj,lk}^{rpr,Eh}= \mathbb {W}_{Nj,lk,Eh,mi}^{pr.pr} \mathbb {Z}_{Nj}^p \mathbb {Z}_{lk}^r +\sum _{Cd} \frac{1}{2} \left( \mathbb {W}_{Cd,Nj,Eh}^{pp.p} +\mathbb {W}_{Nj,Cd,Eh}^{pp.p}\right) \\&\qquad \times \mathbb {Z}_{Nj}^p \mathbb {Z}_{mi,lk}^{rr,Cd} +\sum _{cd} \frac{1}{2} \left( \mathbb {W}_{cd,lk,Eh}^{rr.p} +\mathbb {W}_{lk,cd,Eh}^{rr.p}\right) \mathbb {Z}_{lk}^r \mathbb {Z}_{mi,Nj}^{rp,cd} \\&\qquad +\sum _{ab} \mathbb {V}_{ab,Eh,mi}^{r.r} \left( \mathbb {Z}_{Nj,lk}^{pr,ab}+\mathbb {Z}_{lk,Nj}^{rp,ab}\right) \\&\qquad +\sum _{Ab} \delta _{AE} \delta _{bh} \mathbb {V}_{Ab,Eh}^p \left( \mathbb {Z}_{Nj,mi,lk}^{prr,Ab} +\mathbb {Z}_{mi,lk,Nj}^{rrp,Ab}+\mathbb {Z}_{lk,mi,Nj}^{rrp,Ab}\right) , \end{aligned}$$
$$\begin{aligned}&\mathbf {d}_{mi}^{r,eh}=\delta _{m,e} \delta _{i,h} \mathbb {V}_{mi,eh}^r \mathbb {Z}_{mi}^r,\ \ \mathbf {g}_{mi}^{r,eh}=\delta _{m,e} \delta _{i,h} {\bar{\mathbf {l}}}_{mi,eh}^{orr},\\&\mathbf {g}_{Mi,nj}^{pr,eh}={\bar{\mathbf {l}}}_{Mi,nj,eh}^{oprr},\ \ \mathbf {g}_{Mi,Nj,lk}^{ppr,eh}={\bar{\mathbf {l}}}_{Mi,Nj,lk,eh}^{opprr},\ \ \ \mathbf {g}_{mi,nj,lk}^{rrr,eh}={\bar{\mathbf {l}}}_{mi,nj,lk,eh}^{orrrr},\\&\mathbf {t}_{Mi,nj}^{pr,eh}= \mathbb {W}_{eh}^{pr.r} \mathbb {Z}_{Mi}^p \mathbb {Z}_{nj}^r +\sum _{ab} \delta _{ae} \delta _{bh} \mathbb {V}_{ab,eh}^r \left( \mathbb {Z}_{Mi,nj}^{pr,ab} +\mathbb {Z}_{nj,Mi}^{rp,ab}\right) ,\\&\mathbf {d}_{Mi,nj}^{pr,eh}= \mathbb {V}_{nj,Mi,eh}^{r.p} \mathbb {Z}_{nj}^r +\sum _{ab} \delta _{ae} \delta _{bh} \mathbb {V}_{ab,eh}^r \mathbb {Z}_{Mi,nj}^{pr,ab},\\&\mathbf {d}_{mi,Nj}^{rp,eh}= \mathbb {V}_{Nj,mi,eh}^{p.r} \mathbb {Z}_{Nj}^p +\sum _{ab} \delta _{ae} \delta _{bh} \mathbb {V}_{ab,eh}^r \mathbb {Z}_{mi,Nj}^{rp,ab}, \end{aligned}$$
$$\begin{aligned}&\mathbf {d}_{Mi,nj,Lk}^{prp,eh}\!= \mathbb {V}_{Lk,Mi,nj,eh}^{p.pr}\mathbb {Z}_{Lk}^p +\sum _{Ab}\!\mathbb {V}_{Ab,nj,eh}^{p.r} \mathbb {Z}_{Mi,Lk}^{pp,Ab}\\&\qquad +\sum _{ab}\!\mathbb {V}_{ab,Mi,eh}^{r.p} \mathbb {Z}_{nj,Lk}^{rp,ab} +\sum _{ab} \delta _{ae} \delta _{bh} \mathbb {V}_{ab,eh}^r \mathbb {Z}_{Mi,nj,Lk}^{prp,ab},\\&\mathbf {d}_{Mi,Nj,lk}^{ppr,eh}= \mathbb {V}_{lk,Mi,Nj,eh}^{r.pp} \mathbb {Z}_{lk}^r +\sum _{ab} \mathbb {V}_{ab,Mi,eh}^{r.p}\mathbb {Z}_{Nj,lk}^{pr,ab}\\&\qquad +\sum _{ab} \delta _{ae} \delta _{bh} \mathbb {V}_{ab,eh}^r \mathbb {Z}_{Mi,Nj,lk}^{ppr,ab},\\&\mathbf {d}_{mi,nj,lk}^{rrr,eh} =\mathbb {V}_{lk,mi,nj,eh}^{r.rr} \mathbb {Z}_{lk}^r +\sum _{Ab} \mathbb {V}_{Ab,mi,eh}^{p.r} \mathbb {Z}_{nj,lk}^{rr,Ab}\\&\qquad +\sum _{ab} \delta _{ae} \delta _{bh} \mathbb {V}_{ab,eh}^r \mathbb {Z}_{mi,nj,lk}^{rrr,ab}, \end{aligned}$$
$$\begin{aligned}&\mathbf {t}_{mi,Nj,Lk}^{rpp,eh}= \frac{1}{2} \mathbb {W}_{Nj,Lk,mi,eh}^{pp.rr} \mathbb {Z}_{Nj}^p \mathbb {Z}_{Lk}^p +\sum _{Ab} \mathbb {V}_{Ab,mi,eh}^{p.r} \mathbb {Z}_{Nj,Lk}^{pp,Ab}\\&\qquad +\sum _{cd} \mathbb {W}_{Nj,cd,eh}^{pr.r} \mathbb {Z}_{mi,Lk}^{rp,cd} \mathbb {Z}_{Nj}^p +\sum _{ab} \delta _{ae} \delta _{bh} \mathbb {V}_{ab,eh}^r \mathbb {Z}_{Nj,mi,Lk}^{prp,ab},\\&\mathbf {t}_{Mi,Nj,lk}^{ppr,eh}= \mathbb {W}_{Nj,lk,Mi,eh}^{pr.pr} \mathbb {Z}_{Nj}^p \mathbb {Z}_{lk}^r +\sum _{cd}\mathbb {W}_{Nj,cd,eh}^{pr.r} \mathbb {Z}_{Mi,lk}^{pr,cd} \mathbb {Z}_{Nj}^p\\&\qquad +\sum _{Ab}\mathbb {W}_{Ab,lk,eh}^{pr.r} \mathbb {Z}_{Mi,Nj}^{pp,Ab} \mathbb {Z}_{lk}^r +\sum _{ab}\mathbb {V}_{ab,Mi,eh}^{r.p} \left( \mathbb {Z}_{Nj,lk}^{pr,ab}+\mathbb {Z}_{lk,Nj}^{rp,ab}\right) \\&\qquad +\sum _{ab}\delta _{ae}\delta _{bh}\mathbb {V}_{ab,eh}^r \left( \mathbb {Z}_{Mi,Nj,lk}^{ppr,ab}+\mathbb {Z}_{Nj,Mi,lk}^{ppr,ab}+\mathbb {Z}_{Mi,lk,Nj}^{prp,ab}\right) ,\\&\mathbf {t}_{mi,nj,lk}^{rrr,eh}= \frac{1}{2} \mathbb {W}_{nj,lk,mi,eh}^{rr.rr} \mathbb {Z}_{nj}^r \mathbb {Z}_{lk}^r +\sum _{Ab} \mathbb {W}_{Ab,lk,eh}^{pr.r} \mathbb {Z}_{mi,nj}^{rr,Ab} \mathbb {Z}_{lk}^r\\&\qquad +\sum _{Ab} \mathbb {V}_{Ab,mi,eh}^{p.r} \mathbb {Z}_{nj,lk}^{rr,Ab} +\sum _{ab} \delta _{ae} \delta _{bh} \mathbb {V}_{ab,eh}^r \left( \mathbb {Z}_{mi,nj,lk}^{rrr,ab} +\mathbb {Z}_{nj,mi,lk}^{rrr,ab}\right) . \end{aligned}$$

1.7 A.7 Coefficients of the Modal System (38)

The nonzero hydrodynamic coefficients in (38) take the form

$$\begin{aligned}&\mu _{0h}^p=\mathbf {d}_{1i}^{p,1i}= \mu _{0h}^r=\mathbf {d}_{1i}^{r,li}, \ \sigma _{0h}^2=\mathbf {g}_{1i}^{p,1i}/\mathbf {d}_{1i}^{p,1i},\ \mathcal {G}_{0h}=\mathbf {g}_{11,11}^{pp,1i}=\mathbf {g}_{11,11}^{rr,1i},\\&d _{8,h}=\mathbf {t}_{11,11}^{pp.1i}=\mathbf {t}_{11,11}^{rr,1i},\ \ d _{10,h}=\mathbf {d}_{11,11}^{pp,1i}=\mathbf {d}_{11,11}^{rr,1i},\\&\mu _{2h}^p=\mathbf {d}_{2h}^{p,2h}= \mu _{1k}^r=\mathbf {d}_{2h}^{r,2h},\ \ \sigma _{2h}^2= \mathbf {g}_{2h}^{p,2h}/\mathbf {d}_{2h}^{p,2h} =\mathbf {g}_{2h}^{r,2h}/\mathbf {d}_{2h}^{r,2h},\\&\mathcal {G}_{4,h}=\mathbf {g}_{11,11}^{pp,2h}= -\mathbf {g}_{11,11}^{rr,2h}= \tfrac{1}{2}\mathbf {g}_{11,11}^{pr,2h},\ \ d _{7,h}=\mathbf {t}_{11,11}^{pp,2h}=-\mathbf {t}_{11,11}^{rr,2h}= \tfrac{1}{2}\mathbf {t}_{11,11}^{pr,2h}, \end{aligned}$$
$$\begin{aligned}&d _{9,h}=\mathbf {d}_{11,11}^{pp,2h}=-\mathbf {d}_{11,11}^{rr,2h}= \mathbf {d}_{11,11}^{pr,2h}=\mathbf {d}_{11,11}^{rp,2h},\\&\mu _{11}^p=\mathbf {d}_{11}^{p,11} =\mu _{1k}^r=\mathbf {d}_{11}^{r,11},\ \sigma _{11}^2=\mathbf {g}_{11}^{p,11}/\mathbf {d}_{11}^{p,11} =\mathbf {g}_{11}^{r,11}/\mathbf {d}_{11}^{r,11},\\&\mathcal {G}_1=\mathbf {g}_{11,11,11}^{ppp,11}=\mathbf {g}_{11,11,11}^{prr,11}= \mathbf {g}_{11,11,11}^{ppr,11}=\mathbf {g}_{11,11,11}^{rrr,11},\ \ \mathcal {G}_2^j=\mathbf {g}_{0j,11}^{pp,11}+\mathbf {g}_{11,0j}^{pp,11}= \mathbf {g}_{0j,11}^{pr,11},\\&\mathcal {G}_3^j=\mathbf {g}_{11,2j}^{pp,11}+\mathbf {g}_{2j,11}^{pp,11} = \mathbf {g}_{11,2j}^{rr,11}+\mathbf {g}_{2j,11}^{rr,11}=\mathbf {g}_{11,2j}^{pr,11}= -\mathbf {g}_{2j,11}^{pr,11}, \end{aligned}$$
$$\begin{aligned}&d _1=\mathbf {d}_{11,11,11}^{ppp,11}=\mathbf {d}_{11,11,11}^{prr,11} =\mathbf {t}_{11,11,11}^{ppp,11}=\mathbf {t}_{11,11,11}^{prr,11} =\mathbf {d}_{11,11,11}^{prp,11}=\mathbf {d}_{11,11,11}^{rrr,11}\\& = \mathbf {t}_{11,11,11}^{rpp,11}=\mathbf {t}_{11,11,11}^{rrr,11},\\&d _2=\mathbf {d}_{11,11,11}^{rrp,11}=-\mathbf {d}_{11,11,11}^{prr,11}= \tfrac{1}{2} \mathbf {t}_{11,11,11}^{rpr,11}= -\tfrac{1}{2} \mathbf {t}_{11,11,11}^{prr,11} =\mathbf {d}_{11,11,11}^{ppr,11}\\&\qquad =-\mathbf {d}_{11,11,11}^{prp,11}= \tfrac{1}{2} \mathbf {t}_{11,11,11}^{ppr,11}= -\tfrac{1}{2} \mathbf {t}_{11,11,11}^{rpp,11},\\&d _3^j=\mathbf {d}_{2j,11}^{pp,11}=\mathbf {d}_{2j,11}^{rr,11} =\mathbf {t}_{2j,11}^{pp,11}+\mathbf {t}_{11,2j}^{pp,11}= \mathbf {t}_{2j,11}^{rr,11}+\mathbf {t}_{11,2j}^{rr,11} =\mathbf {d}_{2j,11}^{rp,11}\\&=-\mathbf {d}_{2j,11}^{pr,11}= \mathbf {t}_{11,2j}^{pr,11} =-\mathbf {t}_{2j,11}^{pr,11},\\&d _4^j=\mathbf {d}_{11,2j}^{pp,11}=\mathbf {d}_{11,2j}^{rr,11}= \mathbf {d}_{11,2j}^{pr,11}=-\mathbf {d}_{11,2j}^{rp,11}, \end{aligned}$$
$$\begin{aligned}&d _5^j=\mathbf {d}_{0j,11}^{pp,11} =\mathbf {t}_{0j,11}^{pp,11}+\mathbf {t}_{11,0j}^{pp,11}= \mathbf {d}_{0j,11,11}^{pr,11}=\mathbf {t}_{0j,11,11}^{pr},\\&d _6^j=\mathbf {d}_{11,0j}^{pp,11}=\mathbf {d}_{11,0j}^{rp,11},\\&\mu _{3h}^p=\mathbf {d}_{3h}^{p,3h} =\mu _{3h}^r=\mathbf {d}_{3h}^{r,3h},\ \sigma _{3h}^2=\mathbf {g}_{3h}^{p,3h}/\mathbf {d}_{3h}^{p,3h} =\mathbf {g}_{3h}^{r,3h}/\mathbf {d}_{3h}^{r,3h},\\&\mathcal {G}_{6,h}=\mathbf {g}_{11,11,11}^{ppp,3h}= -\tfrac{1}{3} \mathbf {g}_{11,11,11}^{prr,3h}=\tfrac{1}{3}\mathbf {g}_{11,11,11}^{ppr,3h}= -\mathbf {g}_{11,11,11}^{rrr,3h},\\&\mathcal {G}_{5,h}^j= \mathbf {g}_{11,2j}^{pp,3h}+\mathbf {g}_{2j,11}^{pp,3h}= -\mathbf {g}_{11,2j}^{rr,3h}-\mathbf {g}_{2j,11}^{rr,3h}= \mathbf {g}_{11,2j}^{pr,3h}=\mathbf {g}_{2j,11}^{pr,3h}, \end{aligned}$$
$$\begin{aligned}&d _{11,h}= \mathbf {d}_{11,11,11}^{ppp,3h}= -\mathbf {d}_{11,11,11}^{rrp,3h}= -\tfrac{1}{2} \mathbf {d}_{11,11,11}^{prr,3h}=\mathbf {d}_{11,11,11}^{ppr,3h}= -\mathbf {d}_{11,11,11}^{rrr,3h} =\tfrac{1}{2} \mathbf {d}_{11,11,11}^{prp,3h},\\&d _{12,h}= \mathbf {t}_{11,11,11}^{ppp}= -\mathbf {t}_{11,11,11}^{prr,3h}= -\tfrac{1}{2} \mathbf {t}_{11,11,11}^{rpr,3h}= \mathbf {t}_{11,11,11}^{rpp,3h} = -\mathbf {t}_{11,11,11}^{rrr,3h}=\tfrac{1}{2} \mathbf {t}_{11,11,11}^{ppr,3h}, \end{aligned}$$
$$\begin{aligned}&d _{13,h}^j=\mathbf {d}_{2j,11}^{pp,3h}=-\mathbf {d}_{2j,11}^{rr,3h}= \mathbf {d}_{2j,11}^{rp,3h}=\mathbf {d}_{2j,11}^{pr,3h},\\&d _{14,h}^j=\mathbf {d}_{11,2j}^{pp,3h}=-\mathbf {d}_{11,2j}^{rr,3h}= \mathbf {d}_{11,2j}^{pr,3h}=\mathbf {d}_{11,2j}^{rp,3h},\\&d _{15,h}^j=\mathbf {t}_{2j,11}^{pp,3h}+\mathbf {t}_{11,2j}^{pp,3h} = -\mathbf {t}_{2j,11}^{rr,3h}-\mathbf {t}_{11,2j}^{rr,3h}=\mathbf {t}_{11,2j}^{pr,3h}= \mathbf {t}_{2j,11}^{pr,3h}, \end{aligned}$$
$$\begin{aligned}&\mu _{1k}^p=\mathbf {d}_{1k}^{p,1k} =\mu _{1k}^r=\mathbf {d}_{1k}^{r,1k},\ \ \sigma _{1k}^2=\mathbf {g}_{1k}^{p,1k}/\mathbf {d}_{1k}^{p,1k} =\mathbf {g}_{1k}^{r,1k}/\mathbf {d}_{1k}^{r,1k},\\&\mathcal {G}_{1k}= \mathbf {g}_{11,11,11}^{ppp,1k}=\mathbf {g}_{11,11,11}^{prr,1k}= \mathbf {g}_{11,11,11}^{ppr,1k}=\mathbf {g}_{11,11,11}^{rrr,1k},\\&\mathcal {G}_{2,k}^j= \mathbf {g}_{11,2j}^{pp,1k}+\mathbf {g}_{2j,11}^{pp,1k}= \mathbf {g}_{11,2j}^{rr,1k}+\mathbf {g}_{2j,11}^{rr,1k}= \mathbf {g}_{1k,11,2j}^{pr,1k}=-\mathbf {g}_{2j,11}^{pr,1k},\\&\mathcal {G}_{3,k}^j= \mathbf {g}_{0j,11}^{pp,1k}+\mathbf {g}_{11,0j}^{pp,1k}= \mathbf {g}_{1k,0j,11}^{pr}, \end{aligned}$$
$$\begin{aligned}&d _{16,k}^j= \mathbf {d}_{11,11,11}^{ppp,1k}=\mathbf {d}_{11,11,11}^{prr,1k} = \mathbf {d}_{11,11,11}^{prp,1k}=\mathbf {d}_{11,11,11}^{rrr,1k},\\&d _{17,k}^j= \mathbf {d}_{11,11,11}^{rrp,1k}=-\mathbf {d}_{11,11,11}^{prr,1k} =\mathbf {d}_{11,11,11}^{ppr,1k} =-\mathbf {d}_{11,11,11}^{prp,1k},\\&d _{18,k}^j= \mathbf {t}_{11,11,11}^{ppp,1k}=\mathbf {t}_{11,11,11}^{prr,1k}= \mathbf {t}_{11,11,11}^{rpp,1k}=\mathbf {t}_{11,11,11}^{rrr,1k},\\&d _{19,k}^j= \mathbf {t}_{11,11,11}^{rpr,1k}=-\mathbf {t}_{11,11,11}^{prr,1k}= \mathbf {t}_{11,11,11}^{ppr,1k}=-\mathbf {t}_{11,11,11}^{rpp,1k}, \end{aligned}$$
$$\begin{aligned}&d _{20,k}^j= \mathbf {d}_{2j,11}^{pp,1k} =\mathbf {d}_{2j,11}^{rr,1k}= \mathbf {d}_{2j,11}^{rp,1k}=-\mathbf {d}_{2j,11}^{pr,1k},\\&d _{21k}^j= \mathbf {d}_{11,2j}^{pp,1k}=\mathbf {d}_{11,2j}^{rr,1k}= -\mathbf {d}_{11,2j}^{rp,1k} =\mathbf {d}_{11,2j}^{pr,1k},\\&d _{22,k}^j= \mathbf {t}_{2j,11}^{pp,1k}+\mathbf {t}_{11,2j}^{pp,1k}= \mathbf {t}_{2j,11}^{rr,1k}+\mathbf {t}_{11,2j}^{rr,1k}= \mathbf {t}_{11,2j}^{pr,1k}=-\mathbf {t}_{2j,11}^{pr,1k},\\&d _{23,k}^j=\mathbf {d}_{0j,11}^{pp,1k}=\mathbf {d}_{0j,11}^{pr,1k},\ \ d _{24,k}^j=\mathbf {d}_{11,0j}^{pp,1k}=\mathbf {d}_{11,0j}^{rp,1k},\\&d _{25,k}^j=\mathbf {t}_{0j,11}^{pp,1k}+\mathbf {t}_{11,0j}^{pp,1k}= \mathbf {t}_{0j,11}^{pr,1k}. \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Solodun, A.V., Timokha, A.N. (2020). The Narimanov–Moiseev Multimodal Analysis of Nonlinear Sloshing in Circular Conical Tanks. In: Dutta, H., Peters, J. (eds) Applied Mathematical Analysis: Theory, Methods, and Applications. Studies in Systems, Decision and Control, vol 177. Springer, Cham. https://doi.org/10.1007/978-3-319-99918-0_9

Download citation

Publish with us

Policies and ethics