Skip to main content
Log in

A new mixed finite-element approach for the elastoplastic analysis of Mindlin plates

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The objective of this paper is to develop an accurate and efficient solution procedure for elastoplastic problems in structural mechanics in the framework of a two-field mixed variational principle. A novel solution algorithm is proposed and applied to the elastoplastic analysis of Mindlin plates. The Hellinger–Reissner principle is adopted to obtain the global finite-element equations of the problem. Instead of a static condensation, the stress-type field variables are preserved during the solution. According to the proposed approach, the strain increments within a nonlinear solution step are obtained directly at the nodal points from matrix operations instead of gradients of a displacement field. In the present implementation, the von Mises yield criterion with linear hardening is adopted. For the integration of the elastoplastic constitutive rate equations at the nodal points, a 3D fully implicit algorithm is employed. A layered approach is followed to enable the resolution of the plastic strains through the plate thickness. The mixed formulation of the Mindlin plate theory is shear-locking free by construction. The proposed solution strategy is verified by solving several benchmark problems that demonstrate the high accuracy and convergence rate of the presented layered mixed formulation for elastoplastic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Zienkiewicz OC, Taylor RL, Fox DD (2014) The finite element method for solid and structural mechanics, 7th edn. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  2. Bathe K-J (1996) Finite element procedures. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  3. Doğruoğlu AN, Omurtag MH (2000) Stability analysis of composite-plate foundation interaction by mixed FEM. J Eng Mech ASCE 126:928–936

    Article  Google Scholar 

  4. Kutlu A, Omurtag MH (2012) Large deflection bending analysis of elliptic plates on orthotropic elastic foundation with mixed finite element method. Int J Mech Sci 65:64–74

    Article  Google Scholar 

  5. Omurtag MH, Aköz AY (1995) Isoparametric mixed finite element formulation of orthotropic cylindrical shells. Comput Struct 55:915–924

    Article  ADS  MATH  Google Scholar 

  6. Putcha NS, Reddy JN (1986) A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates. Comput Struct 22:529–538

    Article  MATH  Google Scholar 

  7. Wisniewski K, Turska E (2012) Four-node mixed Hu–Washizu shell element with drilling rotation. Int J Numer Methods Eng 90:506–536

    Article  MathSciNet  MATH  Google Scholar 

  8. Papachristidis A, Fragiadakis M, Papadrakakis M (2010) A 3D fibre beam-column element with shear modelling for the inelastic analysis of steel structures. Comput Mech 45:553–572

    Article  MATH  Google Scholar 

  9. Soydas O, Saritas A (2013) An accurate nonlinear 3d Timoshenko beam element based on Hu–Washizu functional. Int J Mech Sci 74:1–14

    Article  Google Scholar 

  10. Tort C, Hajjar JF (2009) Mixed finite-element modeling of rectangular concrete-filled steel tube members and frames under static and dynamic loads. J Struct Eng 136:654–664

    Article  Google Scholar 

  11. Wackerfuß J, Gruttmann F (2011) A nonlinear Hu–Washizu variational formulation and related finite-element implementation for spatial beams with arbitrary moderate thick cross-sections. Comput Methods Appl Mech Eng 200:1671–1690

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Taylor RL, Filippou FC, Saritas A, Auricchio F (2003) A mixed finite element method for beam and frame problems. Comput Mech 31:192–203

    Article  MATH  Google Scholar 

  13. Hjelmstad KD, Taciroglu E (2002) Mixed methods and flexibility approaches for nonlinear frame analysis. J Constr Steel Res 58:967–993

    Article  Google Scholar 

  14. Saritas A, Soydas O (2012) Variational base and solution strategies for non-linear force-based beam finite elements. Int J Non-Linear Mech 47:54–64

    Article  Google Scholar 

  15. Nukala PKVV, White DW (2004) Variationally consistent state determination algorithms for nonlinear mixed beam finite elements. Comput Methods Appl Mech Eng 193:3647–3666

    Article  ADS  MATH  Google Scholar 

  16. Freiberger W, Tekinalp B (1956) Minimum weight design of circular plates. J Mech Phys Solids 4:294–299

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Hopkins HG, Wang AJ (1955) Load-carrying capacities for circular plates of perfectly-plastic material with arbitrary yield condition. J Mech Phys Solids 3:117–129

    Article  ADS  MathSciNet  Google Scholar 

  18. Sobotka Z (2013) Theory of plasticity and limit design of plates. Elsevier, Amsterdam

    MATH  Google Scholar 

  19. Bleyer J, Van Le C, de Buhan P (2015) Locking-free discontinuous finite elements for the upper bound yield design of thick plates. Int J Numer Methods Eng. doi:10.1002/nme.4912

  20. Eggers H, Kröplin B (1978) Yielding of plates with hardening and large deformations. Int J Numer Methods Eng 12:739–750

    Article  MATH  Google Scholar 

  21. Dinis LMS, Owen DRJ (1978) Elastic–viscoplastic analysis of plates by the finite element method. Comput Struct 8:207–215

    Article  MATH  Google Scholar 

  22. Owen DRJ, Hinton E (1980) Finite elements in plasticity: theory and practice. Pineridge Press, Swansea

    MATH  Google Scholar 

  23. Bathe K, Bolourchi S (1980) A geometric and material nonlinear plate and shell element. Comput Struct 11:23–48

    Article  MATH  Google Scholar 

  24. Dinis LMS, Owen DRJ (1982) Elasto-viscoplastic and elasto-plastic large deformation analysis of thin plates and shells. Int J Numer Methods Eng 18:591–607

    Article  MATH  Google Scholar 

  25. Reddy BD, Mitchell GP (1983) The analysis of elastic–plastic plates: a quadratic programming problem and its solution by finite elements. Comput Methods Appl Mech Eng 41:237–248

    Article  ADS  MATH  Google Scholar 

  26. Wempner G, Chao-Meng H (1984) A simple model of elastic–plastic plates. Int J Solids Struct 20:77–80

    Article  Google Scholar 

  27. Papadopoulos P, Taylor RL (1990) Elasto-plastic analysis of Reissner–Mindlin plates. Appl Mech Rev 43:S40–S50

    Article  ADS  MathSciNet  Google Scholar 

  28. Daye MA, Toridis TG (1991) Elasto-plastic algorithms for plates and shells under static and dynamic loads. Comput Struct 39:195–205

    Article  MATH  Google Scholar 

  29. Papadopoulos P, Taylor RL (1991) An analysis of inelastic Reissner–Mindlin plates. Finite Element Anal Des 10:221–233

    Article  MATH  Google Scholar 

  30. Ibrahimbegović A, Frey F (1993) An efficient implementation of stress resultant plasticity in analysis of Reissner–Mindlin plates. Int J Numer Methods Eng 36:303–320

    Article  MATH  Google Scholar 

  31. Auricchio F, Taylor RL (1994) A generalized elastoplastic plate theory and its algorithmic implementation. Int J Numer Methods Eng 37:2583–2608

    Article  MATH  Google Scholar 

  32. Croce LD, Venini P, Nascimbene R (2003) Numerical simulation of an elastoplastic plate via mixed finite elements. J Eng Math 46:69–86

    Article  MathSciNet  MATH  Google Scholar 

  33. Rabczuk T, Areias PMA, Belytschko T (2007) A meshfree thin shell method for non-linear dynamic fracture. Int J Numer Methods Eng 72:524–548

    Article  MathSciNet  MATH  Google Scholar 

  34. Areias P, Rabczuk T (2013) Finite strain fracture of plates and shells with configurational forces and edge rotations. Int J Numer Methods Eng 94:1099–1122

    Article  MathSciNet  Google Scholar 

  35. Areias P, Rabczuk T, César de Sá JM, Garção JE (2015) Finite strain quadrilateral shell using least-squares fit of relative Lagrangian in-plane strains. Finite Elem Anal Des 98:26–40

    Article  MathSciNet  Google Scholar 

  36. Liu GR, Nguyen-Thoi T, Lam KY (2008) A novel alpha finite element method (\(\alpha \)FEM) for exact solution to mechanics problems using triangular and tetrahedral elements. Comput Methods Appl Mech Eng 197:3883–3897

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Thai-Hoang C, Nguyen-Thanh N, Nguyen-Xuan H, Rabczuk T (2011) An alternative alpha finite element method with discrete shear gap technique for analysis of laminated composite plates. Appl Math Comput 217:7324–7348

    Article  MathSciNet  MATH  Google Scholar 

  38. Thai CH, Ferreira AJM, Bordas SPA, Rabczuk T, Nguyen-Xuan H (2014) Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory. Eur J Mech A Solids 43:89–108

    Article  Google Scholar 

  39. Omurtag MH, Aköz AY (1993) A compatible cylindrical shell element for stiffened cylindrical shells in a mixed finite element formulation. Comput Struct 49:363–370

    Article  MATH  Google Scholar 

  40. De Souza RM (2000) Force-based finite element for large displacement inelastic analysis of frames. Doctoral Dissertation, University of California, Berkeley

  41. Ugural AC, Fenster SK (2003) Advanced strength and applied elasticity. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  42. Voyiadjis GZ, Woelke P (2008) Elasto-plastic and damage analysis of plates and shells. Springer, Berlin

    MATH  Google Scholar 

  43. Ortiz M, Popov EP (1985) Accuracy and stability of integration algorithms for elastoplastic constitutive relations. Int J Numer Methods Eng 21:1561–1576

    Article  MathSciNet  MATH  Google Scholar 

  44. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  45. Meschke G (2011) Finite element method for nonlinear analysis of inelastic materials and structures. Lecture Notes. Institute for Structural Mechanics—Ruhr-University Bochum, Bochum

  46. Reddy JN (2006) Theory and analysis of elastic plates and shells. CRC Press, Boca Raton

    Google Scholar 

  47. Belinha J, Dinis LMJS (2006) Elasto-plastic analysis of plates by the element free Galerkin method. Eng Comput 23:525–551

    Article  MATH  Google Scholar 

  48. Hughes TJR, Cohen M (1978) The “heterosis” finite element for plate bending. Comput Struct 9:445–450

    Article  MATH  Google Scholar 

  49. Nguyen-Xuan H, Rabczuk T, Bordas S, Debongnie JF (2008) A smoothed finite element method for plate analysis. Comput Methods Appl Mech Eng 197:1184–1203

    Article  ADS  MATH  Google Scholar 

  50. Bathe K, Dvorkin EN (1985) A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int J Numer Methods Eng 21:367–383

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors are immensely grateful to the Institute for Structural Mechanics, Ruhr-University, Bochum, Bochum, Germany, for hosting Dr Kutlu as a visiting researcher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akif Kutlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutlu, A., Meschke, G. & Omurtag, M.H. A new mixed finite-element approach for the elastoplastic analysis of Mindlin plates. J Eng Math 99, 137–155 (2016). https://doi.org/10.1007/s10665-015-9825-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-015-9825-7

Keywords

Mathematics Subject Classification

Navigation