Skip to main content
Log in

Effect of inertia on electrified film flow over a wavy wall

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The effect of inertia on the steady flow of a liquid layer down a wavy wall in the presence of an electric field is investigated. Both the liquid film and the region above it are assumed to act as perfect dielectrics. A linearised perturbation analysis is performed for flow down a wall with small-amplitude sinusoidal corrugations, and the free-surface amplitude and phase shift are computed numerically for a broad range of flow conditions. It is shown that the electric field can be used to manipulate the phase shift between the free surface and the wall. In particular, when the Reynolds number lies below a threshold value, an electric field of sufficient strength will bring the free surface precisely into phase with the wall. An electric field can also be used to mitigate the resonance effect identified by previous workers, in which the free surface suffers significant amplification in comparison to the height of the wall corrugations at a particular Reynolds number. Working on the basis of the lubrication approximation, a nonlinear equation for the film thickness is derived featuring a non-local term due to the electric field. Numerical solutions for flow over a wavy wall of finite amplitude reveal that the effect of inertia on the free-surface characteristics depends on the electrical properties of the fluid layer and the strength of the imposed electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stillwagon LE, Larson RG (1988) Fundamentals of topographic substrate leveling. J Appl Phys 63(11): 5251–5258

    Article  ADS  Google Scholar 

  2. Stillwagon LE, Larson RG (1990) Leveling of thin films over uneven substrates during spin coating. Phys Fluids A 2(11): 1937–1944

    Article  ADS  Google Scholar 

  3. Webb RL (1994) Principles of enhanced heat transfer. Wiley, New York

    Google Scholar 

  4. Karniadakis G, Beskok A, Aluru N (2005) Microflows and nanoflows: fundamentals and simulation. Springer, New York

    MATH  Google Scholar 

  5. Wang CY (1981) Liquid film flowing slowly down a wavy incline. AICh E J 27: 207–212

    Article  Google Scholar 

  6. Tougou H (1978) Long waves on a film flow of a viscous fluid down an inclined uneven wall. J Phys Soc Jpn 44: 1014–1019

    Article  ADS  Google Scholar 

  7. Wang CY (1984) Thin film flowing down a curved surface. J Appl Math Phys (ZAMP) 35(4): 532–544

    Article  Google Scholar 

  8. Wierschem A, Scholle M, Aksel N (2002) Comparison of different theoretical approaches to experiments on film flow down an inclined wavy wall. Exp Fluids 33: 429–442

    Google Scholar 

  9. Pozrikidis C (1988) The flow of a liquid film along a periodic wall. J Fluid Mech 188: 275–300

    Article  MATH  ADS  Google Scholar 

  10. Wierschem A, Scholle M, Aksel N (2003) Vortices in film flow over strongly undulated bottom profiles at low Reynolds numbers. Phys Fluids 15: 426–435

    Article  ADS  MathSciNet  Google Scholar 

  11. Scholle M, Wierschem A, Aksel N (2004) Creeping films with vortices over strongly undulated bottoms. Acta Mech 168: 167–193

    Article  MATH  Google Scholar 

  12. Wierschem A, Aksel N (2004) Influence of inertia on eddies created in films creeping over strongly undulated substrates. Phys Fluids 16(12): 4566–4574

    Article  ADS  Google Scholar 

  13. Malamataris NA, Bontozoglou V (1999) Computer aided analysis of viscous film flow along an inclined wavy wall. J Comput Phys 154: 372–392

    Article  MATH  ADS  Google Scholar 

  14. Trifonov YY (1999) Viscous liquid film flows over a periodic surface. Int J Multiph Flow 24(7): 1139–1161

    Article  Google Scholar 

  15. Gu F, Liu CJ, Yuan XG, Yu GC (2004) CFD simulation of liquid film flow on inclined plates. Chem Eng Technol 27(10): 1099–1104

    Article  Google Scholar 

  16. Luo H, Pozrikidis C (2006) Shear-driven and channel flow of a liquid film over a corrugated or indented wall. J Fluid Mech 556: 167–188

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Luo H, Blyth MG, Pozrikidis C (2008) Two-layer flow in a corrugated channel. J Eng Math 60: 127–147

    Article  MATH  MathSciNet  Google Scholar 

  18. Gaskell PH, Jimack PK, Sellier M, Thompson HM, Wilson MCT (2004) Gravity-driven flow of continuous thin liquid films on non-porous substrates with topography. J Fluid Mech 509: 253–280

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Saprykin S, Koopmans RJ, Kalliadasis S (2007) Free-surface thin-film flows over topography: influence of inertia and viscoelasticity. J Fluid Mech 578: 271–293

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Tseluiko D, Blyth MG, Papageorgiou DT, Vanden-Broeck J-M (2008) Effect of an electric field on film flow down a corrugated wall at zero Reynolds number. Phys Fluids 20(4): 042103

    Article  ADS  Google Scholar 

  21. Tseluiko D, Papageorgiou DT (2006) Wave evolution on electrified falling films. J Fluid Mech 556: 361–386

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Tseluiko D, Blyth MG, Papageorgiou DT, Vanden-Broeck J-M (2008) Electrified viscous thin film flow over topography. J Fluid Mech 597: 449–475

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Melcher JR, Taylor GI (1969) Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu Rev Fluid Mech 1: 111–146

    Article  ADS  Google Scholar 

  24. Jackson JD (1963) Classical electrodynamics. Wiley, New York

    MATH  Google Scholar 

  25. Yih C-H (1963) Stability of liquid flow down an inclined plane. Phys Fluids 6: 321–334

    Article  MATH  ADS  Google Scholar 

  26. Kim H, Bankoff SG, Miksis MJ (1992) The effect of an electrostatic field on film flow down an inclined plane. Phys Fluids A 4: 2117–2130

    Article  MATH  ADS  Google Scholar 

  27. Blyth MG (2007) Effect of an electric field on the stability of contaminated film flow down an inclined plane. J Fluid Mech 595: 221–237

    ADS  MathSciNet  Google Scholar 

  28. Vlachogiannis M, Bontozoglou V (2002) Experiments on laminar film flow along a periodic wall. J Fluid Mech 457: 133–156

    Article  MATH  ADS  Google Scholar 

  29. Wierschem A, Aksel N (2003) Instability of a liquid film flowing down an inclined wavy plane. Physica D 186: 221–237

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Wierschem A, Aksel N (2005) Effect of long undulated bottoms on thin gravity-driven films. Acta Mech 179: 41–66

    Article  MATH  Google Scholar 

  31. Bontozoglou V, Papapolymerou G (1997) Laminar film flow down a wavy incline. Int J Multiph Flow 23(1): 69–79

    Article  MATH  Google Scholar 

  32. Wierschem A, Bontozoglou V, Heining C, Uecker H, Aksel N (2008) Linear resonance in viscous films on inclined wavy planes. Int J Mulitph Flow 34: 580–589

    Google Scholar 

  33. Argyriadi K, Vlachogiannis M, Bontozoglou V (2006) Experimental study of inclined film flow along periodic corrugations: the effect of wall steepness. Phys Fluids 18: 012102

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Blyth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseluiko, D., Blyth, M.G. Effect of inertia on electrified film flow over a wavy wall. J Eng Math 65, 229–242 (2009). https://doi.org/10.1007/s10665-009-9283-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-009-9283-1

Keywords

Navigation