Skip to main content
Log in

Lighthill and the triple-deck, separation and transition

  • Original Paper
  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

In 1953 James Lighthill, conducting an investigation into the potential mechanisms for upstream influence within boundary layers in supersonic flow, published a theoretical approach which explicitly took into account the influence of viscosity on a disturbance to an incident boundary-layer profile. In doing so he was able to predict a length-scale for upstream influence which scales with the global Reynolds number R, assumed large, as R −3/8. The physical process he identified is now referred to as a pressure–displacement (or viscous–inviscid) interaction. This article discusses Lighthill’s original paper and then proceeds to show how an appreciation of this interaction mechanism can help in the solution of many other problems in fluid mechanics and especially those of flow separation and late-stage laminar–turbulent transition. Finally, the article gives a brief description of the similarities between these two processes as seen from the unifying viewpoint of Lighthill’s pressure–displacement interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prandtl L (1905) Über Flüsskigkeitsbewegung bei sehr kleiner Reibung. In: Vehr. III. Intern Math Kongr Heidelberg, pp 484–491

  2. Goldstein S (1930) Concerning some solutions of the boundary-layer equations in hydrodynamics. Proc Camb Phil Soc 26:1–30

    Article  MATH  Google Scholar 

  3. Goldstein S (1948) On laminar boundary-layer flow near a position of separation. Quart J Mech Appl Math 1:43–69

    Article  MATH  MathSciNet  Google Scholar 

  4. Stewartson K (1969) On the flow near the trailing edge of a flat plate. Mathematika 16:106–121

    Google Scholar 

  5. Messiter AF (1970) Boundary-layer flow near the trailing edge of a flat plate. SIAM J Appl Math 18:241–257

    Article  MATH  Google Scholar 

  6. Neiland VYa (1969) Towards a theory of separation of the laminar boundary layer in a supersonic stream. Izv Akad Nauk SSSR, Mekh Zhidk i Gaza 4:53–57

    Google Scholar 

  7. Stewartson K (1970) Is the singularity at separation removable? J Fluid Mech 44:347–364

    Article  MATH  ADS  Google Scholar 

  8. Stewartson K (1981) D’Alembert’s paradox. SIAM Rev 23:308–343

    Article  MATH  MathSciNet  Google Scholar 

  9. Lighthill MJ (1953) On boundary layers and upstream influence. II. Supersonic flows without separation. Proc Roy Soc London (A217):478–507

    ADS  Google Scholar 

  10. Lighthill MJ (1950) Reflection at a laminar boundary layer of a weak steady disturbance to a supersonic stream, neglecting viscosity and heat conduction. Quart J Mech Appl Math 3:303–325

    Article  MATH  MathSciNet  Google Scholar 

  11. Stewartson K (1951) On the interaction between shock waves and boundary layers. Proc Camb Phil Soc 47:545–553

    MATH  MathSciNet  Google Scholar 

  12. Lighthill MJ (1958) Introduction to Fourier analysis and generalised functions. Cambridge University Press

  13. Van Dyke M (1964) Perturbation methods in fluid mechanics. Academic Press, New York

    MATH  Google Scholar 

  14. Kaplun S (1957) Low Reynolds number flow past a circular cylinder. J Math Mech 6:595–603

    MATH  MathSciNet  Google Scholar 

  15. Lagerstrom PA, Cole PA (1955) Examples illustrating expansion proceedures for the Navier-Stokes equations. J Rat Mech Anal 4:817–882

    MathSciNet  Google Scholar 

  16. Lighthill MJ (1949) A technique for rendering approximate solutions to physical problems uniformly valid. Phil Mag 40:1179–1201

    MATH  MathSciNet  Google Scholar 

  17. Smith FT (1976) Flow through constricted or dilated pipes and channels: Part 1. Quart J Mech Appl Math 29:343–364

    Article  MATH  Google Scholar 

  18. Smith FT (1976) Flow through constricted or dilated pipes and channels: Part 2. Quart J Mech Appl Math 29:365–376

    Article  MATH  Google Scholar 

  19. Gajjar J, Smith FT (1983) On hypersonic free interactions, hydraulic jumps and boundary layers with algebraic growth. Mathematika 30:77–93

    MATH  MathSciNet  Google Scholar 

  20. Bowles RI, Smith FT (1992) The standing hydraulic jump: theory, computations and comparisons with experiments. J Fluid Mech 242:145–168

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Stewartson K, Williams PG (1969) Self-induced separation. Proc Roy Soc London 312:181–206

    MATH  ADS  Google Scholar 

  22. Smith FT (1977) The laminar separation of an incompressible fluid streaming past a smooth surface. Proc Roy Soc London A365:433–463

    ADS  Google Scholar 

  23. Smith FT (1986) Steady and unsteady boundary-layer separation. Ann Rev Fluid Mech 18:197–220

    Article  ADS  Google Scholar 

  24. Tollmien W (1929) Über die entstehung der Turbulenz. Nach Ges Wiss Göttingen, pp 79–114

  25. Lin CC (1946) On the stability of two-dimensional parallel flows. Quart Appl Math 3:117–142, 213–234, 277–301

    Google Scholar 

  26. Smith FT (1979) On the non-parallel flow stability of the Blasius boundary layer. Proc Roy Soc London A366:91–109

    ADS  Google Scholar 

  27. Smith FT (1979) Nonlinear stability of boundary layers for disturbances of various sizes. Proc Roy Soc London 368: 573–589

    Article  MATH  ADS  Google Scholar 

  28. Rosenhead L (1963) Laminar boundary layers. Dover Publications, New York

    MATH  Google Scholar 

  29. Hoyle JM, Smith FT (1994) On finite-time break-up in three-dimensional unsteady interacting boundary layers. Proc Roy Soc London A447:467–492

    ADS  MathSciNet  Google Scholar 

  30. Stewart PA, Smith FT (1987) The resonant-triad nonlinear interaction in boundary-layer transition. J Fluid Mech 179: 227–252

    Article  MATH  ADS  Google Scholar 

  31. Smith FT, Walton AG (1989) Nonlinear interaction of near-planar TS waves and longitudinal vortices in boundary-layer transition. Mathematika 36:262–289

    MATH  MathSciNet  Google Scholar 

  32. Stewart PA, Smith FT (1992)Three-dimensional nonlinear blow-up from a nearly planar initial disturbance in boundary-layer transition; theory and experimental comparisons. J Fluid Mech 244:649–676

    Article  ADS  MathSciNet  Google Scholar 

  33. Sandham ND, Kleiser L (1992) The late stages of transition to turbulence in channel flow. J Fluid Mech 245:319–348

    Article  MATH  ADS  Google Scholar 

  34. Kachanov YS (1994) Physical mechanisms of laminar-boundary-layer transition. Ann rev Fluid Mech 26:411–482

    ADS  MathSciNet  Google Scholar 

  35. Bake S, Fernholz HH, Kachanov YS (2000) Resemblance of K- and N- regimes of boundary-layer transition at late stages. Eur J Mech B Fluids 19(1):1–22

    MATH  Google Scholar 

  36. Han G, Tumin A, Wygnanski I (1999) Laminar-turbulent transition in Poiseuille pipe flow subjected to periodic perturbation emanating from the wall. Part 2. Late stage of transition. J Fluid Mech 419:1–27

    Article  ADS  Google Scholar 

  37. Smith FT (1988) Finite-time break-up can occur in any unsteady interacting boundary layer. Mathematika 35:256–373

    Article  MATH  MathSciNet  Google Scholar 

  38. Smith FT and Bowles RI (1992) Transition theory and experimental comparisons on (a) amplification into streets and (b) a strongly nonlinear break-up criterion. Proc Roy Soc London A439:163–175

    ADS  Google Scholar 

  39. Li L, Walker JDA, Bowles RI, Smith FT (1998) Short-scale break-up in unsteady interactive layers: local development of normal pressure gradients and vortex wind-up. J Fluid Mech 374:335–378

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Bowles RI (2000) Transition to turbulent flow in aerodynamics. Phil Trans Roy Soc London 358:245–260

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. Smith FT, Bowles RI, Walker JDA (2000) Wind-up of a spanwise vortex in deepening transition and stall. Theoret Comput Fluid Dynamics 14:135–165

    Article  MATH  ADS  Google Scholar 

  42. Bowles RI (2000) On vortex interaction in the latter stages of boundary-layer transition. In: Fasel H, Saric WS (eds) Laminar-turbulent transition, IUTAM Symposium, Sedona, Arizona, USA, 1999. Springer-Verlag, Berlin, pp 275–280

    Google Scholar 

  43. Whitham GB (1974) Linear and nonlinear waves. Wiley-Interscience, New York

    MATH  Google Scholar 

  44. Lighthill MJ (2004) Waves in fluids. Cambridge University Press

  45. Marshall TJ (2004) A study of three-dimensional effects in end-stage boundary layer transition. PhD thesis, University College London

  46. Bowles RI, Davies C, Marshall JT, Smith FT (2005) Stall, transition and turbulence: a tribute to JDAW. AIAA paper 2005-4934. Presented at 4th AIAA Theoretical Fluid Mechanics Meeting, Toronto, Canada, 6–9 June 2005

  47. Ryzhov OS (2006) Transition length in turbine/compressor blade flows. Proc Roy Soc London A462:2281–2298

    ADS  MathSciNet  Google Scholar 

  48. Bowles RI, Davies C, Smith FT (2003) On the spiking stages in deep transition and unsteady separation. J Eng Math 45:227–245

    Article  MATH  MathSciNet  Google Scholar 

  49. van Dommelen LL, Shen SF (1980) The spontaneous generation of the singularity in a separating laminar boundary layer. J Comput Phys 38:125–140

    Article  MATH  ADS  MathSciNet  Google Scholar 

  50. van Dommelen LL (1981) Unsteady boundary-layer separation. PhD thesis, Cornell University, Ithaca, NY

  51. Cowley SJ (1983) Computer extension and analaytic continuation of Blasius’ expansion for impulsive flow past a cylinder. J Fluid Mech 135:389–405

    Article  MATH  ADS  MathSciNet  Google Scholar 

  52. Elliott JW, Cowley SJ, Smith FT (1983) Breakdown of boundary layers: (i) on moving surfaces; (ii) in semi-similar unsteady flow; (iii) in fully unsteady flow. Geophys Astrophys Fluid Dyn 25:77–138

    Article  ADS  MathSciNet  Google Scholar 

  53. Cassel KW, Smith FT, Walker JDA (1996) The onset of instability in unsteady boundary-layer separation. J Fluid Mech 315:223–256

    Article  MATH  ADS  Google Scholar 

  54. Obabko AV, Cassel KW (2000) Large-scale and small-scale interaction in unsteady separation. In: Fluids 2000, Denver Colorado, June 19–22, number AIAA Paper 2000–2469

  55. Cassel KW (2000) A comparison of Navier–Stokes solutions with the theoretical description of unsteady separation. Phil Trans Roy Soc London A 358:3207–3227

    Article  MATH  ADS  MathSciNet  Google Scholar 

  56. Brinkman KW, Walker JDA (2001) Instability in a viscous flow driven by streamwise vortices. J Fluid Mech 432:127–166

    ADS  Google Scholar 

  57. Obabko AV, Cassel KW (2002) Navier–Stokes solutions of unsteady separation induced by a vortex. J Fluid Mech 465:99–130

    Article  MATH  ADS  MathSciNet  Google Scholar 

  58. Obabko AV, Cassel KW (2005) On the ejection-induced instability in Navier–Stokes solutions of unsteady separation. Phil Trans Roy Soc London A 363:1189–1198

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Obabko AV, Cassel KW A Rayleigh instability in a vortex induced unsteady boundary layer. J Fluid Mech (To be published)

  60. Bodonyi RJ, Smith FT (1985) On the short-scale inviscid instabilities in flow past surface-mounted obstacles and other parallel motions. Aero J (June/July):205–212

  61. Cowley SJ (2000) Laminar boundary-layer theory: a 20th century paradox?. In: Aref H, Phillips JW (eds) Proc 20th Int Congr of Theoret and Appl Mech, Chicago, IL, pp 389–411

  62. Lighthill MJ (2000) Upstream influence in boundary layers 45 years ago. Phil Trans Roy Soc London 358:3047–3061

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Bowles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowles, R. Lighthill and the triple-deck, separation and transition. J Eng Math 56, 445–460 (2006). https://doi.org/10.1007/s10665-006-9093-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-006-9093-7

Keywords

Navigation