Skip to main content
Log in

Asymptotic methods for delay equations

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Asymptotic methods for singularly perturbed delay differential equations are in many ways more challenging to implement than for ordinary differential equations. In this paper, four examples of delayed systems which occur in practical models are considered :the delayed recruitment equation, relaxation oscillations in stem cell control, the delayed logistic equation, and density wave oscillations in boilers, the last of these being a problem of concern in engineering two-phase flows. The ways in which asymptotic methods can be used vary from the straightforward to the perverse, and illustrate the general technical difficulties that delay equations provide for the central technique of the applied mathematician

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Driver R.D. (1977). Ordinary and Delay Differential Equations. Springer-Verlag, New York, ix+501 pp

    MATH  Google Scholar 

  2. Hale J.K., Verduyn Lunel S.M. Introduction to Functional-Differential Equations; Volume 99 of Applied Mathematical Sciences. New York: Springer-Verlag (1993) x+447 pp

  3. Diekmann O., S.A. van Gils, S.M. Verduyn Lunel and H.-O. Walther, Delay Equations: Functional, Complex, and Nonlinear Analysis; Volume 110 of Applied Mathematical Sciences. New York: Springer-Verlag (1995) xii+534 pp

  4. Bender C.M., and Orszag S.A. (1978). Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill Book Co., New York xiv+593 pp

    MATH  Google Scholar 

  5. Kevorkian J., and Cole J.D. Perturbation Methods in Applied Mathematics; Volume 34 of Applied Mathematical Sciences. New York: Springer-Verlag (1981) x+558 pp

  6. Morris H.C. (1976). A perturbative approach to periodic solutions of delay-differential equations. J. Inst. Math. Appl. 18: 15–24

    Article  MATH  MathSciNet  Google Scholar 

  7. Fowler A.C. (1982). An asymptotic analysis of the delayed logistic equation when the delay is large. IMA J. Appl. Math. 28:41–49

    Article  MATH  MathSciNet  Google Scholar 

  8. Gurney W.S.C., Blythe S.P., Nisbet R.M. (1980). Nicholson’s blowflies revisited. Nature 287:17–21

    Article  ADS  Google Scholar 

  9. Mackey M.C., and Glass L. (1977). Oscillations and chaos in physiological control systems. Science 197:287–289

    Article  PubMed  ADS  Google Scholar 

  10. Keener J., and Sneyd J., Mathematical Physiology; Volume 8 of Interdisciplinary Applied Mathematics. New York: Springer-Verlag (1998) xx+766 pp

  11. S.-N. Chow and J. Mallet-Paret, Singularly perturbed delay-differential equations. In: Coupled Nonlinear Oscillators (Los Alamos, N.M., 1981); Volume 80 of North-Holland Math. Stud. Amsterdam North-Holland (1983) pp. 7–12

  12. Mallet-Paret J., Nussbaum R.D. (2003). Boundary layer phenomena for differential-delay equations with state-dependent time lags III. J. Diff. Equ. 189:640–692

    Article  MATH  MathSciNet  Google Scholar 

  13. Wattis J.A.D. Bifurcations and chaos in a differential-delay equation. Dissertation, M. Sc. in mathematical modelling and numerical analysis Oxford University (1990)

  14. Mackey M.C. (1978). A unified hypothesis for the origin of aplastic anemia and periodic haematopoiesis. Blood 51:941–956

    PubMed  Google Scholar 

  15. Mackey M.C. Mathematical models of hematopoietic cell replication and control. In: Othmer M.A.L.H.G., Adler F.R., and Dallon J.C (eds). The Art of Mathematical Modelling: Case Studies in Ecology, Physiology and Biofluids. New Jersey Prentice-Hall (1997) pp. 149–178

  16. Haurie C., Dale D.C., and Mackey M.C. (1998). Cyclical neutropenia and other periodic hematological disorders: a review of mechanisms and mathematical models. Blood 92:2629–2640

    PubMed  Google Scholar 

  17. Fowler A.C., and Mackey M.C. (2002). Relaxation oscillations in a class of delay differential equations. SIAM J. Appl. Math. 63:299–323

    Article  MATH  MathSciNet  Google Scholar 

  18. Murray J.D. Mathematical Biology. I: An Introduction; Volume 17 of Interdisciplinary Applied Mathematics. New York: Springer-Verlag (2002) xxiv+551 pp

  19. Murray J.D., Mathematical Biology. II: Spatial Models and Biomedical Applications; Volume 18 of Interdisciplinary Applied Mathematics. New York: Springer-Verlag (2003) xxvi+811 pp

  20. Fowler A.C. (2000). The effect of incubation time distribution on the extinction characteristics of a rabies epizootic. Bull. Math. Biol. 62:633–655

    Article  PubMed  Google Scholar 

  21. Nicholson A.J. (1954). An outline of the dynamics of animal populations. Aust. J. Zool. 2:9–65

    Article  Google Scholar 

  22. May R.M. (1973). Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton N. J. 292 pp

    Google Scholar 

  23. Hutchinson G.E. (1948). Circular causal systems in ecology. Ann. N. Y. Acad. Sci. 50:221–240

    Article  Google Scholar 

  24. Calder E., private communication

  25. Davies A.L., and Potter R., Hydraulic stability: an analysis of the causes of unstable flow in parallel channels. Symposium on Two-Phase Flow Dynamics. Eindhoven EUR4288e (1967) pp. 1225–1266

  26. Aldridge C.J., and Fowler A.C. (1996). Stability and instability in evaporating two-phase flows. Surveys Math. Indust. 6: 75–107

    MATH  MathSciNet  Google Scholar 

  27. Delmastro D., Juanicó L., Clausse A. (2001). A delay theory for boiling flow stability analysis. Int. J. Multiphase Flow 27:657–671

    Article  Google Scholar 

  28. Fowler A.C. (1978). Linear and nonlinear stability of heat exchangers. J. Inst. Math. Appl. 22:361–382

    Article  MATH  MathSciNet  Google Scholar 

  29. Achard J.L., Drew D.A., Lahey R.T. (1980). The effect of gravity and friction on the stability of boiling flow in a channel. AIChE Symp. Ser. 199:104–115

    Google Scholar 

  30. Dykhuizen R.C., Roy R.P., and Kalra S.P. (1986). Two-fluid model simulation of density-wave oscillations in a boiling flow system. Nucl. Sci. Engng. 94:167–179

    Article  Google Scholar 

  31. Ledinegg M. (1938). Instability of flow during natural and forced circulation. Die Wärme 61:891–898

    Google Scholar 

  32. Pauchon C., and Banerjee S. (1986). Interphase momentum interaction effects in the averaged multifield model Part I: void propagation in bubbly flows. Int. J. Multiphase Flow 12:559–573

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Fowler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fowler, A.C. Asymptotic methods for delay equations. J Eng Math 53, 271–290 (2005). https://doi.org/10.1007/s10665-005-9016-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-005-9016-z

Keywords

Navigation