Skip to main content
Log in

Quenching of self-excited vibrations

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Stable normal-mode vibrations in engineering can be undesirable and one of the possibilities for quenching these is by embedding the oscillator in an autoparametric system by coupling to a damped oscillator. There exists the possibility of destabilizing the undesirable vibrations by a suitable tuning and choice of nonlinear coupling parameters. An additional feature is that, to make the quenching effective in the case of relaxation oscillations, one also has to deform the slow manifold by choosing appropriate coupling; this is illustrated for Rayleigh and van der Pol relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tondl A., Ruijgrok T., Verhulst F. and Nabergoj R. (2000). Autoparametric Resonance in Mechanical Systems. Cambridge University Press, New York Cambridge, 196 pp

    MATH  Google Scholar 

  2. Schmidt G. and Tondl A. (1986). Non-linear Vibrations. Akademie-Verlag, Berlin, 420 pp

    Google Scholar 

  3. Cartmell M. (1990). Introduction to Linear, Parametric and Nonlinear Vibrations. Chapman & Hall, London

    MATH  Google Scholar 

  4. Verhulst F. and Abadi (2005). Autoparametric resonance of relaxation oscilations. ZAMM 85: 122–131

    Article  MATH  MathSciNet  Google Scholar 

  5. Verhulst F. (2000). Nonlinear Differential Equations and Dynamical Systems. Springer-Verlag, New York 304 pp

    Google Scholar 

  6. Abadi (2001). On self-excited auto-parametric systems. Nonlinear Dynamics 24: 147–166

    Article  MATH  MathSciNet  Google Scholar 

  7. Grasman J. (1987). Asymptotic Methods for Relaxation Oscillations and Applications. Springer-Verlag, New York, 222 pp

    MATH  Google Scholar 

  8. T.J. Kaper, An introduction to geometric methods and dynamical systems theory for singular perturbation problems. In: J. C. and R. E. O’Malley, Jr. (eds.), Analyzing Multiscale Phenomena Using Singular Perturbation Methods. Proc. Symposia Appl. Math, AMS 56 (1999) pp. 85–131.

  9. Verhulst F. (2005). Methods and applications of singular perturbations, boundary layers and multiple timescale dyanmics. Springer-Verlag, Berlin, 340 pp

    Google Scholar 

  10. Fenichel N. (1971). Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21: 193–225

    Article  MATH  MathSciNet  Google Scholar 

  11. Fenichel N. (1974). Asymptotic stability with rate conditions. Indiana Univ. Math. J. 23: 1109–1137

    Article  MATH  MathSciNet  Google Scholar 

  12. Fenichel N. (1977). Asymptotic stability with rate conditions, II. Indiana Univ. Math. J. 26: 81–93

    Article  MATH  MathSciNet  Google Scholar 

  13. Fenichel N. (1979). Geometric singular perturbations theory for ordinary differential equations. J. Diff. Eq. 31: 53–98

    Article  MATH  MathSciNet  Google Scholar 

  14. Jones C.K.R.T. (1994). Geometric singular perturbation theory. In: Johnson R. (eds) Dynamical Systems. Montecatini Terme, Lecture Notes in Mathematics 1609. Springer-Verlag, Berlin, pp. 44–118

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinand Verhulst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verhulst, F. Quenching of self-excited vibrations. J Eng Math 53, 349–358 (2005). https://doi.org/10.1007/s10665-005-9008-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-005-9008-z

Keywords

Navigation