Skip to main content
Log in

Investigation of heavy metals uptake in root-shoot of native plant species adjoining wastewater channels

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Metal pollution in water, soil, and vegetation is an emerging environmental issue. Therefore, this study investigated the abundance of heavy metals (HMs) within roots and shoots of native plant species i.e., Bromus pectinatus, Cynodon dactylon, Poa annua, Euphorbia heliscopa, Anagallis arvensis, and Stellaria media grown in the adjoining area of municipal wastewater channels of a Pakistani city of Abbottabad. HMs concentrations (mg L−1) in municipal wastewater were: chromium (Cr) (0.55) > nickel (Ni) (0.09) > lead (Pb) (0.07) > cadmium (Cd) (0.03). Accumulation of HMs in both roots and shoots of plant species varied as B. pectinatus > C. dactylon > P. annua > E. heliscopa > A. arvensis > S. media. Irrespective of the plant species, roots exhibited higher concentrations of HMs than shoots. Higher amount of Cr (131.70 mg kg−1) was detected in the roots of B. pectinatus and the lowest amount (81 mg kg−1) in A. arvensis, Highest Cd concentration was found in the shoot of B. pectinatus and the lowest in the E. heliscopa. The highest concentration of Ni was found in the roots of S. media (37.40 mg kg−1) and the shoot of C. dactylon (15.70 mg kg−1) whereas the lowest Ni concentration was achieved in the roots of A. arvensis (12.10 mg kg−1) and the shoot of E. heliscopa (5.90 mg kg−1). The concentration of HMs in individual plant species was less than 1000 mg kg−1. Considering the higher values (> 1) of biological concentration factor (BCF), biological accumulation co-efficient (BAC), and translocation factor (TF), B. pectinatus and S. media species showed greater potential for HMs accumulation than other species. Therefore, these plants might be helpful for the remediation of HM-contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data will be available upon request.

References

  • Ahmad, J. U., & Goni, M. A. (2010). Heavy metal contamination in water, soil, and vegetables of the industrial areas in Dhaka, Bangladesh. Environmental Monitoring and Assessment, 166(1), 347–357. https://doi.org/10.1007/s10661-009-1006-6

    Article  CAS  Google Scholar 

  • Akhtar, N., Syakir Ishak, M. I., Bhawani, S. A., & Umar, K. (2021). Various natural and anthropogenic factors responsible for water quality degradation: A review. Water, 13(19), 2660. https://doi.org/10.3390/w13192660

  • Aung, P. P., Mao, Y., Hu, T., Qi, S., Tian, Q., Chen, Z., & Xing, X. (2019). Metal concentrations and pollution assessment in bottom sediments from Inle Lake, Myanmer. Journal of Geochemical Exploration, 207, 106357. https://doi.org/10.1016/j.gexplo.2019.106357

    Article  CAS  Google Scholar 

  • Baker, A. J., & Brooks, R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery, 1(2), 81–126.

    CAS  Google Scholar 

  • Bedair, H., Ghosh, S., Abdelsalam, I. M., Keerio, A. A., & AlKafaas, S. S. (2022). Potential implementation of trees to remediate contaminated soil in Egypt. Environmental Science and Pollution Research, 29(52), 78132–78151. https://doi.org/10.1007/s11356-022-22984-z

    Article  CAS  Google Scholar 

  • Chen, X.-X., Liu, Y.-M., Zhao, Q.-Y., Cao, W.-Q., Chen, X.-P., & Zou, C.-Q. (2020). Health risk assessment associated with heavy metal accumulation in wheat after long-term phosphorus fertilizer application. Environmental Pollution, 262, 114348. https://doi.org/10.1016/j.envpol.2020.114348

    Article  CAS  Google Scholar 

  • Cui, S., Zhou, Q., & Chao, L. (2007). Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China. Environmental Geology, 51(6), 1043–1048. https://doi.org/10.1007/s00254-006-0373-3

    Article  CAS  Google Scholar 

  • Chunilall, V., Kindness, A., Jonnalagadda, S. B. (2005). Heavy metal uptake by two edible Amaranthus herbs grown on soils contaminated with lead, mercury, cadmium and nickel. Journal of Environmental Science and Health B, 40, 375–384. https://doi.org/10.1081/PFC-200045573

    Article  CAS  Google Scholar 

  • Czarnocka, W., & Karpiński, S. (2018). Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radical Biology and Medicine, 122, 4–20. https://doi.org/10.1016/j.freeradbiomed.2018.01.011

    Article  CAS  Google Scholar 

  • de-Bashan, L. E., Hernandez, J.- P., & Bashan, Y. (2012). The potential contribution of plant growth-promoting bacteria to reduce environmental degradation – A comprehensive evaluation. Applied Soil Ecology, 61, 171–189. https://doi.org/10.1016/j.apsoil.2011.09.003

  • Deng, L., Shahab, A., Xiao, H., Li, J., Rad, S., Jiang, J., Guo, Y., Jiang, P., Huang, H., Li, X., Ahmad, B., & Siddique, J. (2021). Spatial and temporal variation of dissolved heavy metals in the Lijiang River, China: implication of rainstorm on drinking water quality. Environmental Science and Pollution Research, 28(48), 68475–68486. https://doi.org/10.1007/s11356-021-15383-3

    Article  CAS  Google Scholar 

  • Dubis, B., Szatkowski, A., & Jankowski, K. J. (2022). Sewage sludge, digestate, and mineral fertilizer application affects the yield and energy balance of Amur silvergrass. Industrial Crops and Products, 175, 114235. https://doi.org/10.1016/j.indcrop.2021.114235

    Article  CAS  Google Scholar 

  • Eid, E. M., Galal, T. M., Sewelam, N. A., Talha, N. I., & Abdallah, S. M. (2020). Phytoremediation of heavy metals by four aquatic macrophytes and their potential use as contamination indicators: A comparative assessment. Environmental Science and Pollution Research, 27(11), 12138–12151. https://doi.org/10.1007/s11356-020-07839-9

    Article  CAS  Google Scholar 

  • Ghosh, M., & Singh, S. (2005). A review on phytoremediation of heavy metals and utilization of it’s by products. Asia Pacific Journal of Energy and Environment, 6(4), 18.

    Google Scholar 

  • Golubnitschaja, O., Liskova, A., Koklesova, L., Samec, M., Biringer, K., Büsselberg, D., Podbielska, H., Kunin, A. A., Evsevyeva, M. E., Shapira, N., Paul, F., Erb, C., Dietrich, D. E., Felbel, D., Karabatsiakis, A., Bubnov, R., Polivka, J., Polivka, J., Birkenbihl, C., … Kubatka, P. (2021). Caution, “normal” BMI: Health risks associated with potentially masked individual underweight—EPMA Position Paper 2021. EPMA Journal, 12(3), 243–264. https://doi.org/10.1007/s13167-021-00251-4

    Article  Google Scholar 

  • Haque, F. U., Faridullah, F., Irshad, M., Bacha, A-U-R., Ullah, Z., Fawad, M., Hafeez, F., Iqbal, A., Nazir, R., Alrefaei, A. F., & Almutairi, M. H. (2023). Distribution and speciation of trace elements in soils of four land-use systems. Land, 12(10), 1894. https://doi.org/10.3390/land12101894

  • Imran, U., Ullah, A., Shaikh, K., Mehmood, R., & Saeed, M. (2019). (2019) Health risk assessment of the exposure of heavy metal contamination in surface water of lower Sindh, Pakistan. SN Applied Sciences, 1, 589. https://doi.org/10.1007/s42452-019-0594-1

    Article  CAS  Google Scholar 

  • Imran, U., Ullah, A., Bux, R. M., & Shaikh, K. (2023). Distribution, Source Identification, and Ecological Risk Assessment of Selected Trace Elements in Sediments from Manchar Lake, Pakistan, Soil and Sediment Contamination. An International Journal, 32, 615–635. https://doi.org/10.1080/15320383.2022.2122929

    Article  CAS  Google Scholar 

  • Irshad, M., Aurangzeb, N., Hussain, F., & Mahmood, Q. (2011). Comparing heavy metals accumulation potential in natural vegetation and soil adjoining wastewater canal. Journal of the Chemical Society of Pakistan, 33(6), 661.

    Google Scholar 

  • Irshad, M., Ruqia, B., & Hussain, Z. (2015). Phytoaccumulation of heavy metals in natural vegetation at the municipal wastewater site in Abbottabad, Pakistan. International Journal of Phytoremediation, 17(12), 1269–1273. https://doi.org/10.1080/15226514.2014.950409

    Article  CAS  Google Scholar 

  • Islam, M. D., Hasan, M. M., Rahaman, A., Haque, P., Islam, M. S., & Rahman, M. M. (2020). Translocation and bioaccumulation of trace metals from industrial effluent to locally grown vegetables and assessment of human health risk in Bangladesh. SN Applied Sciences, 2, 1315. https://doi.org/10.1007/s42452-020-3123-3

    Article  CAS  Google Scholar 

  • Jadoon, S., Muhammad, S., Hilal, Z., Ali, M., Khan, S., & Khattak, N. U. (2020). Spatial distribution of potentially toxic elements in urban soils of Abbottabad city, (N Pakistan): Evaluation for potential risk. Microchemical Journal, 153, 104489. https://doi.org/10.1016/j.microc.2019.104489

    Article  CAS  Google Scholar 

  • Jafarpour, A., Sharif, J. A., & Eivazi, A. (2017). Reducing destructive environmental impacts of Sungun copper mine effluents with using of phytoremediation processes. International Journal of Pure Applied Bioscience, 5(2), 43–55.

    Article  Google Scholar 

  • Jaishankar, M., Mathew, B. B., Shah, M. S., & Gowda, K. (2014). Biosorption of few heavy metal ions using agricultural wastes. Journal of Environment Pollution Human Health, 2(1), 1–6. https://doi.org/10.12691/jephh-2-1-1

    Article  Google Scholar 

  • Keesstra, S., Nunes, J., Novara, A., Finger, D., Avelar, D., Kalantari, Z., & Cerdà, A. (2018). The superior effect of nature based solutions in land management for enhancing ecosystem services. Science of the Total Environment, 610–611, 997–1009. https://doi.org/10.1016/j.scitotenv.2017.08.077

    Article  CAS  Google Scholar 

  • Kumar Sharma, R., Agrawal, M., & Marshall, F. (2007). Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicology and Environmental Safety, 66(2), 258–266. https://doi.org/10.1016/j.ecoenv.2005.11.007

    Article  CAS  Google Scholar 

  • Lasat, M. M. (2002). Phytoextraction of toxic metals: A review of biological mechanisms. Journal of Environmental Quality, 31(1), 109–120. https://doi.org/10.2134/jeq2002.1090

    Article  CAS  Google Scholar 

  • Lécrivain, N., Aurenche, V., Cottin, N., Frossard, V., & Clément, B. (2018). Multi-contamination (heavy metals, polychlorinated biphenyls and polycyclic aromatic hydrocarbons) of littoral sediments and the associated ecological risk assessment in a large lake in France (Lake Bourget). Science of the Total Environment, 619–620, 845–865. https://doi.org/10.1016/j.scitotenv.2017.11.151

  • Li, M. S., Luo, Y. P., & Su, Z. Y. (2007). Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China. Environmental Pollution, 147(1), 168–175. https://doi.org/10.1016/j.envpol.2006.08.006

    Article  CAS  Google Scholar 

  • Malik, R. N., Husain, S. Z., & Nazir, I. (2010). Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan. Pakistan Journal of Botany, 42(1), 291–301.

    CAS  Google Scholar 

  • Millward, D. J. (2017). Nutrition, infection and stunting: The roles of deficiencies of individual nutrients and foods, and of inflammation, as determinants of reduced linear growth of children. Nutrition Research Reviews, 30(1), 50–72. https://doi.org/10.1017/S0954422416000238

    Article  CAS  Google Scholar 

  • Morais, S., Garcia e Costa, F., & de Lourdes Pereira, M. (2012). Heavy metals and human health. In Environmental health-emerging issues and practice (Vol. 10, Issue 1, pp. 227–245).

  • Nedjimi, B. (2021). Phytoremediation: A sustainable environmental technology for heavy metals decontamination. SN Applied Sciences, 3(3), 286. https://doi.org/10.1007/s42452-021-04301-4

    Article  CAS  Google Scholar 

  • Nejat, N., & Mantri, N. (2017). Plant immune system: Crosstalk between responses to biotic and abiotic stresses the missing link in understanding plant defence. Current Issues in Molecular Biology, 23(1), 1–16. https://doi.org/10.21775/cimb.023.001

  • Noureen, R., Irshad, M., & Faridullah, F. (2015). Assessing selected heavy metals in vegetables and soils irrigated with wastewater at Haripur, Pakistan. Minerva Biotecnologica, 27, 99–105.

  • Page, A. L. (Ed.) (1982).  Methods of soil analysis. Part 2. Chemical and microbiological properties (1159 pp.). American Society of Agronomy, Soil Science Society of America.

  • Pathak, S., Agarwal A. V., & Pandey, V. C. (2020). 1 – Phytoremediation—a holistic approach for remediation of heavy metals and metalloids. In Bioremediation of pollutants (pp. 3–16). https://doi.org/10.1016/B978-0-12-819025-8.00001-6

  • Rahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environmental Monitoring and Assessment, 191(7), 419. https://doi.org/10.1007/s10661-019-7528-7

    Article  CAS  Google Scholar 

  • Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F., & Kim, K.-H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125, 365–385. https://doi.org/10.1016/j.envint.2019.01.067

    Article  CAS  Google Scholar 

  • Razum, I., Rubinić, V., Miko, S., Ružičić, S., & Durn, G. (2023). Coherent provenance analysis of terra rossa from the northern Adriatic based on heavy mineral assemblages reveals the emerged Adriatic shelf as the main recurring source of siliciclastic material for their formation. CATENA, 226, 107083. https://doi.org/10.1016/j.catena.2023.107083

    Article  Google Scholar 

  • Riffat, N. M., Syed, Z. H., & Ishfaq, N. (2010). Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan. Pakistan Journal of Botany, 42(1), 291–301

    Google Scholar 

  • SAS Institute. (1999). SAS system software. Release 8.02. SAS Institute, Inc.

  • Saxena, G., Purchase, D., Mulla, S. I., Saratale, G. D., & Bharagava, R. N. (2019). Phytoremediation of heavy metal-contaminated sites: Eco-environmental concerns, field studies, sustainability issues, and future prospects. In P. de Voogt (Ed.), Reviews of environmental contamination and toxicology (Vol. 249). Springer. https://doi.org/10.1007/398_2019_24

  • Schindler, M., Mantha, H., & Hochella, M. F. (2019). The formation of spinel-group minerals in contaminated soils: The sequestration of metal(loid)s by unexpected incidental nanoparticles. Geochemical Transactions, 20(1), 1. https://doi.org/10.1186/s12932-019-0061-3

    Article  CAS  Google Scholar 

  • Sharma, P. (2021). Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. Bioresource Technology, 328, 124835. https://doi.org/10.1016/j.biortech.2021.124835

    Article  CAS  Google Scholar 

  • Sharma, P., Tripathi, S., & Chandra, R. (2020). Phytoremediation potential of heavy metal accumulator plants for waste management in the pulp and paper industry. Heliyon, 6(7), e04559. https://doi.org/10.1016/j.heliyon.2020.e04559

  • Sharma, P., Bano, A., Singh, S. P., Sharma, S., Xia, C., Nadda, A. K., Lam, S. S., & Tong, Y. W. (2022). Engineered microbes as effective tools for the remediation of polyaromatic aromatic hydrocarbons and heavy metals. Chemosphere, 306, 135538. https://doi.org/10.1016/j.chemosphere.2022.135538

    Article  CAS  Google Scholar 

  • Sheoran, V., Sheoran, A. S., & Poonia, P. (2009). Phytomining: A review. Minerals Engineering, 22(12), 1007–1019. https://doi.org/10.1016/j.mineng.2009.04.001

    Article  CAS  Google Scholar 

  • Shojaei, S., Jafarpour, A., Shojaei, S., Gyasi-Agyei, Y., & Rodrigo-Comino, J. (2021). Heavy metal uptake by plants from wastewater of different pulp concentrations and contaminated soils. Journal of Cleaner Production, 296, 126345. https://doi.org/10.1016/j.jclepro.2021.126345

    Article  CAS  Google Scholar 

  • Sial, R. A., Chaudhary, M. F., Abbas, S. T., Latif, M. I., & Khan, A. G. (2006). Quality of effluents from Hattar Industrial Estate. Journal of Zhejiang University SCIENCE B, 7(12), 974–980. https://doi.org/10.1631/jzus.2006.B0974

    Article  CAS  Google Scholar 

  • Singh, K. P., Mohan, D., Sinha, S., & Dalwani, R. (2004). Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health, agricultural, and environmental quality in the wastewater disposal area. Chemosphere, 55(2), 227–255. https://doi.org/10.1016/j.chemosphere.2003.10.050

    Article  CAS  Google Scholar 

  • Siyar, R., Doulati Ardejani, F., Norouzi, P., Maghsoudy, S., Yavarzadeh, M., Taherdangkoo, R., & Butscher, C. (2022). Phytoremediation potential of native hyperaccumulator plants growing on heavy metal-contaminated soil of Khatunabad copper smelter and refinery, Iran. Water, 14, 3597. https://doi.org/10.3390/soilsystems8010008

    Article  CAS  Google Scholar 

  • Tordoff, G. M., Baker, A. J. M., & Willis, A. J. (2000). Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere, 41(1), 219–228. https://doi.org/10.1016/S0045-6535(99)00414-2

    Article  CAS  Google Scholar 

  • Ugulu, I., Khan, Z. I., Alrefaei, A. F., Bibi, S., Ahmad, K., Memona, H., Mahpara, S., Mehmood, N., Almutairi, M. H., Batool, A. I., Ashfaq, A. & Noorka, I. R. (2023). Influence of industrial wastewater irrigation on heavy metal content in coriander (Coriandrum sativum L.): Ecological and health risk assessment. Plants, 12(20), 3652. https://doi.org/10.3390/plants12203652

  • Ullah, A., Heng, S., Munis, M. F. H., Fahad, S., & Yang, X. (2015). Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environmental and Experimental Botany, 117, 28–40. https://doi.org/10.1016/j.envexpbot.2015.05.001

    Article  CAS  Google Scholar 

  • Verma, M. (2020). Ecotoxicology of heavy metals: Sources, effects and toxicity. In Bioremediation and biotechnology (vol. 2, pp. 13–23). Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-030-40333-1_2

  • WHO. (1996). Permissible limits of heavy metals in soil and plants. World Health Organization.

  • Wu, L., Cheng, M., Li, Z., Ren, J., Shen, L., Wang, S., Luo, Y., & Christie, P. (2012). Major nutrients, heavy metals and PBDEs in soils after long-term sewage sludge application. Journal of Soils and Sediments, 12(4), 531–541. https://doi.org/10.1007/s11368-012-0485-1

    Article  CAS  Google Scholar 

  • Yanqun, Z., Yuan, L., Schvartz, C., Langlade, L., & Fan, L. (2004). Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead–zinc mine area, China. Environment International, 30(4), 567–576. https://doi.org/10.1016/j.envint.2003.10.012

    Article  CAS  Google Scholar 

  • Yavari, S., Malakahmad, A., & Sapari, N. B. (2015). A Review on Phytoremediation of Crude Oil Spills. Water, Air, & Soil Pollution, 226(8), 279. https://doi.org/10.1007/s11270-015-2550-z

    Article  CAS  Google Scholar 

  • Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368(2), 456–464. https://doi.org/10.1016/j.scitotenv.2006.01.016

    Article  CAS  Google Scholar 

  • Zu, Y. Q., Li, Y., Christian, S., Laurent, L., Lin, F. (2004). Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China. Environment International, 30, 567–576. https://doi.org/10.1016/j.envint.2003.10.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support received from their Institutes.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Sardar Khyzer Bashir: formal analysis and writing – original draft. Muhammad Irshad: Conceptualization, supervision, data curation, and writing – original draft preparation. Aziz Ur Rahim Bacha: data curation, writing (original draft preparation, reviewing, and editing). Ping An: writing – reviewing and editing. Faridullah Faridullah: writing – reviewing and editing. Zahid Ullah: writing – reviewing and editing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Muhammad Irshad or Aziz Ur Rahim Bacha.

Ethics declarations

Consent to participate

Not applicable.

Consent to publish

All the authors mentioned in the manuscript have agreed to authorship, read and approved the manuscript, and given consent for submission and subsequent publication of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, S.K., Irshad, M., Bacha, A.U.R. et al. Investigation of heavy metals uptake in root-shoot of native plant species adjoining wastewater channels. Environ Monit Assess 196, 541 (2024). https://doi.org/10.1007/s10661-024-12714-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12714-y

Keywords

Navigation