Skip to main content
Log in

Temporal variation of the PM2.5/PM10 ratio and its association with meteorological factors in a South American megacity: Metropolitan Area of Lima-Callao, Peru

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Metropolitan Area of Lima-Callao (MALC) is a South American megacity that has suffered a serious deterioration in air quality due to high levels of particulate matter (PM2.5 and PM10). Studies on the behavior of the PM2.5/PM10 ratio and its temporal variability in relation to meteorological parameters are still very limited. The objective of this study was to analyze the temporal trends of the PM2.5/PM10 ratio, its temporal variability, and its association with meteorological variables over a period of 5 years (2015–2019). For this, the Theil-Sen estimator, bivariate polar plots, and correlation analysis were used. The regions of highest mean concentrations of PM2.5 and PM10 were identified at eastern Lima (ATE station—41.2 µg/m3) and southern Lima (VMT station—126.7 µg/m3), respectively. The lowest concentrations were recorded in downtown Lima (CDM station—16.8 µg/m3 and 34.0 µg/m3, respectively). The highest average PM2.5/PM10 ratio was found at the CDM station (0.55) and the lowest at the VMT station (0.27), indicating a predominance of emissions from the vehicular fleet within central Lima and a greater emission of coarse particles by resuspension in southern Lima. The temporal progression of the ratio of PM2.5/PM10 showed positive and highly significant trends in northern and central Lima with values of 0.03 and 0.1 units of PM2.5/PM10 per year, respectively. In the southern region of Lima, the trend was also significant, showcasing a value of 0.02 units of PM2.5/PM10 per year. At the hourly and monthly level, the PM2.5/PM10 ratio presented a negative and significant correlation with wind speed and air temperature, and a positive and significant correlation with relative humidity. These findings offer insights into identifying the sources of PM pollution and are useful for implementing regulations to reduce air emissions considering both anthropogenic sources and meteorological dispersion patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  • Adães, J., & Pires, J. C. M. (2019). Analysis and modelling of PM2.5 temporal and spatial behaviors in European cities. Sustainability, 11(21), 6019. https://doi.org/10.3390/su11216019

    Article  CAS  Google Scholar 

  • Al-Janabi, S., Mohammad, M., & Al-Sultan, A. (2020). A new method for prediction of air pollution based on intelligent computation. Soft Computing, 24(1), 661–680. https://doi.org/10.1007/s00500-019-04495-1

    Article  Google Scholar 

  • Arghavani, S., Malakooti, H., & Bidokhti, A. A. (2019). Numerical evaluation of urban green space scenarios effects on gaseous air pollutants in Tehran Metropolis based on WRF-Chem model. Atmospheric Environment, 214, 116832. https://doi.org/10.1016/j.atmosenv.2019.116832

    Article  CAS  Google Scholar 

  • Athira, V., Geetha, P., Vinayakumar, R., & Soman, K. P. (2018). Deepairnet: Applying recurrent networks for air quality prediction. Procedia Computer Science, 132, 1394–1403. https://doi.org/10.1016/j.procs.2018.05.068

    Article  Google Scholar 

  • Austin, S. M., & Weaver, M. A. (2022). Association between fire-related particulate matter exposure and childhood asthma in Peru: A burden of disease assessment. The North Carolina Journal of Mathematics and Statistics, 8, 1–14. Retrieved March 20, 2023, from https://libjournal.uncg.edu/ncjms/article/view/2292

  • Blanco-Becerra, L. C., Gáfaro-Rojas, A. I., & Rojas-Roa, N. Y. (2015). Influence of precipitation scavenging on the PM2.5/PM10 ratio at the Kennedy locality of Bogotá, Colombia. Revista Facultad de Ingeniería Universidad de Antioquia, 76, 58–65. https://doi.org/10.17533/udea.redin.n76a07

    Article  CAS  Google Scholar 

  • Bodor, K., Szép, R., & Bodor, Z. (2022). The human health risk assessment of particulate air pollution (PM2.5 and PM10) in Romania. Toxicology Reports, 9, 556–562. https://doi.org/10.1016/j.toxrep.2022.03.022

    Article  CAS  Google Scholar 

  • Bolaño-Diaz, S., Camargo-Caicedo, Y., Tovar Bernal, F., & Bolaño-Ortiz, T. R. (2022). The effect of forest fire events on air quality: A case study of northern Colombia. Fire, 5(6), 191. https://doi.org/10.3390/fire5060191

    Article  Google Scholar 

  • Bonilla, E. X., Mickley, L. J., Raheja, G., Eastham, S. D., Buonocore, J. J., Alencar, A., Verchot, L., Westervelt, D. M., & Castro, M. C. (2023). Health impacts of smoke exposure in South America: Increased risk for populations in the Amazonian Indigenous territories. Environmental Research Health, 1(2), 021007. https://doi.org/10.1088/2752-5309/acb22b

    Article  Google Scholar 

  • Butt, E. W., Conibear, L., Knote, C., & Spracklen, D. V. (2021). Large air quality and public health impacts due to Amazonian deforestation fires in 2019. GeoHealth, 5(7), e2021GH000429. https://doi.org/10.1029/2021GH000429

    Article  Google Scholar 

  • Carslaw, D.C. (2023). Package “Openair”: Tools for the analysis of air pollution data. Version 2.13–0. Retrieved January 7, 2023, from https://cran.r-project.org/web/packages/openair/openair.pdf

  • Carslaw, D. C., & Beevers, S. D. (2013). Characterising and understanding emission sources using bivariate polar plots and k-means clustering. Environmental Modelling & Software, 40, 325–329. https://doi.org/10.1016/j.envsoft.2012.09.005

    Article  Google Scholar 

  • Carslaw, D. C., & Ropkins, K. (2012). Openair—An R package for air quality data analysis. Environmental Modelling & Software, 27, 52–61. https://doi.org/10.1016/j.envsoft.2011.09.008

    Article  Google Scholar 

  • Cesari, D., De Benedetto, G. E., Bonasoni, P., Busetto, M., Dinoi, A., Merico, E., Chirizzi, D., Cristofanelli, P., Donateo, A., Grasso, F. M., Marinoni, A., Pennetta, A., & Contini, D. (2018). Seasonal variability of PM2.5 and PM10 composition and sources in an urban background site in Southern Italy. Science of the Total Environment, 612, 202–213. https://doi.org/10.1016/j.scitotenv.2017.08.230

    Article  CAS  Google Scholar 

  • Chen, G., Guo, Y., Yue, X., Tong, S., Gasparrini, A., Bell, M.L., Armstrong, B., Schwartz, J., Jaakkola, J.J.K., Zanobetti, A., Lavigne, E., Nascimento Saldiva, P.H., Kan, H., Roye, D., Milojevic, A., Overcenco, A., Urban, A., Schneider, A., Entezari, A., … & Li S. (2021). Mortality risk attributable to wildfire-related PM2.5 pollution: A global time series study in 749 locations. Lancet Planet Health, 5(9), e579–e587. https://doi.org/10.1016/S2542-5196(21)00200-X

  • Chen, H. W., Chen, C. Y., Chang, T. W., & Lin, G. Y. (2023). Spatial-temporal evaluation of PM2.5 concentration for health risk reduction strategy development in a basin with different weather patterns. Atmospheric Pollution Research, 14(10), 101884. https://doi.org/10.1016/j.apr.2023.101884

    Article  CAS  Google Scholar 

  • Chu, H.-J., Huang, B., & Lin, C.-Y. (2015). Modeling the spatio-temporal heterogeneity in the PM10-PM2.5 relationship. Atmospheric Environment, 102, 176–182. https://doi.org/10.1016/j.atmosenv.2014.11.062

    Article  CAS  Google Scholar 

  • Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., … Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet, 389(10082), 1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6

    Article  Google Scholar 

  • Coskuner, G., Jassim, M. S., & Munir, S. (2018). Characterizing temporal variability of PM2.5/PM10 ratio and its relationship with meteorological parameters in Bahrain. Environmental Forensics, 19(4), 315–326. https://doi.org/10.1080/15275922.2018.1519738

    Article  CAS  Google Scholar 

  • Davila, J. E., Aguirre, V. T., Apestegui, V. V., Ibarguen, L. O., Vu, B. N., Steenland, K., & Gonzales, G. F. (2020). Association of PM2.5 concentration with health center outpatient visits for respiratory diseases of children under 5 years old in Lima Peru. Environmental Health, 19(1), 1–6. https://doi.org/10.1186/s12940-020-0564-5

    Article  Google Scholar 

  • Denjean, C. (2022). Aerosol Hygroscopicity. In F. Dulac, S. Sauvage, & E. Hamonou (Eds.), Atmospheric Chemistry in the Mediterranean Region. Cham: Springer. https://doi.org/10.1007/978-3-030-82385-6_15

    Chapter  Google Scholar 

  • Diener, A., & Mudu, P. (2021). How can vegetation protect us from air pollution? A critical review on green spaces’ mitigation abilities for air-borne particles from a public health perspective-with implications for urban planning. Science of the Total Environment, 796, 148605. https://doi.org/10.1016/j.scitotenv.2021.148605

    Article  CAS  Google Scholar 

  • DIGESA (Dirección General de Salud Ambiental e Inocuidad Alimentaria) (2005). Resolución Directoral que aprueba el Protocolo de Monitoreo de Calidad del Aire y Gestión de Datos. Resolución Directoral N° 1404–2005-DIGESA. Lima, Perú. Retrieved December 13, 2023, from https://bit.ly/3NR7cuL

  • Dimitriou, K., & Kassomenos, P. (2014). Local and regional sources of fine and coarse particulate matter based on traffic and background monitoring. Theoretical and Applied Climatology, 116(3), 413–433. https://doi.org/10.1007/s00704-013-0961-6

    Article  Google Scholar 

  • Encalada-Malca, A. A., Cochachi-Bustamante, J. D., Rodrigues, P. C., Salas, R., & López-Gonzales, J. L. (2021). A spatio-temporal visualization approach of PM10 concentration data in Metropolitan Lima. Atmosphere, 12, 609. https://doi.org/10.3390/atmos12050609

    Article  Google Scholar 

  • Espinoza, J. (2018). Evaluación espacial y temporal del material particulado PM10 y PM2,5 en Lima Metropolitana para el periodo 2015–2017. Tesis para optar el Título Profesional de Ingeniero Ambiental. Retrieved August 2, 2022, from https://bit.ly/3todvkg

  • Espinoza, J. (2021). Evaluación de patrones espaciales y pronóstico de la calidad del aire en Lima Metropolitana mediante técnicas estadísticas multivariadas. Tesis para optar el Grado de Magister Scientiae en Ciencias Ambientales. Retrieved August 2, 2022, from https://bit.ly/3PXrM0q

  • Espinoza-Guillen, J. A., Alderete-Malpartida, M. B., Cañari-Cancho, J. H., Pando-Huerta, D. L., Rosa, V. L., Fernando, D., & Bernabé-Meza, S. J. (2022). Immission levels and identification of sulfur dioxide sources in La Oroya city, Peruvian Andes. Environment, Development and Sustainability, 1–30. https://doi.org/10.1007/s10668-022-02592-0

  • Estevan, R., Martínez-Castro, D., Suarez-Salas, L., Moya, A., & Silva, Y. (2019). First two and a half years of aerosol measurements with an AERONET sunphotometer at the Huancayo Observatory Peru. Atmospheric Environment X, 3, 100037. https://doi.org/10.1016/j.aeaoa.2019.100037

    Article  CAS  Google Scholar 

  • Fan, H., Zhao, C., Yang, Y., & Yang, X. (2021). Spatio-temporal variations of the PM2.5/PM10 ratios and its application to air pollution type classification in China. Frontiers in Environmental Science, 9(692440) https://doi.org/10.3389/fenvs.2021.692440

  • Galindo, N., Varea, M., Gil-Moltó, J., Yubero, E., & Nicolás, J. (2011). The influence of meteorology on particulate matter concentrations at an urban Mediterranean location. Water Air & Soil Pollution, 215(1), 365–372. https://doi.org/10.1007/s11270-010-0484-z

    Article  CAS  Google Scholar 

  • Henao, J. J., Rendón, A. M., Hernández, K. S., Giraldo-Ramirez, P. A., Robledo, V., Posada-Marín, J. A., Bernal, N., Salazar, J. F., & Mejía, J. F. (2021). Differential effects of the COVID-19 lockdown and regional fire on the air quality of Medellín Colombia. Atmosphere, 12(9), 1137. https://doi.org/10.3390/atmos12091137

    Article  CAS  Google Scholar 

  • Ilizarbe-Gonzáles, G.M., Rojas-Quincho, J. P., Cabello-Torres, R. J., Ugarte-Alvan, C. A., Reynoso-Quispe, P., & Valdiviezo-Gonzales, L. G. (2020). Chemical characteristics and identification of PM10 sources in two districts of Lima, Peru. Dyna, 87(215). https://doi.org/10.15446/dyna.v87n215.83688

  • INEI (Instituto Nacional de Estadística e Informática) (2019). Compendio Estadístico Provincia de Lima 2019. Lima, Perú, 472 pp. Retrieved November 20, 2022, from https://bit.ly/3S8Tg0G

  • INEI (Instituto Nacional de Estadística e Informática) (2020c). Compendio Estadístico Perú 2020. Transporte, almacenamiento, correo y mensajería. Flujo vehicular en unidades de pago de peaje, según departamento, 2012–2019. Retrieved August 8, 2022, from https://bit.ly/3HzSOpp

  • INEI (Instituto Nacional de Estadística e Informática) (2020b). Compendio Estadístico Perú 2020. Transporte, almacenamiento, correo y mensajería. Lima Metropolitana: Tráfico vehicular mensual registrado, por tipo de vehículo y centro de recaudación- garitas, 2010–2019. Retrieved December 15, 2023, from https://bit.ly/3w2z4Is

  • INEI (Instituto Nacional de Estadística e Informática) (2020a). Compendio Estadístico Perú 2020. Transporte, almacenamiento, correo y mensajería. Parque automotor en circulación a nivel nacional, según departamento, 2011–2019. Retrieved August 8, 2022, from https://bit.ly/3OkCaOo

  • Jassim, M. S., Coskuner, G., & Munir, S. (2018). Temporal analysis of air pollution and its relationship with meteorological parameters in Bahrain, 2006–2012. Arabian Journal of Geosciences, 11(3), 1–15. https://doi.org/10.1007/s12517-018-3403-z

    Article  CAS  Google Scholar 

  • Kayes, I., Shahriar, S. A., Hasan, K., Akhter, M., Kabir, M. M., & Salam, M. A. (2019). The relationships between meteorological parameters and air pollutants in an urban environment. Global Journal of Environmental Science and Management, 5(3), 265–278. https://doi.org/10.22034/GJESM.2019.03.01

    Article  CAS  Google Scholar 

  • Konstantinos, M. (2008). Quantification and evaluation of dust resuspension PM10 emissions in two large urban centers in Greece. Quantifica, 543–547. Retrieved August 20, 2022, from https://hrcak.srce.hr/64317

  • Kumar, P., Druckman, A., Gallagher, J., Gatersleben, B., Allison, S., Eisenman, T. S., Hoang, U., Hama, S., Tiwari, A., Sharma, A., Abhijith, K. V., Adlakha, D., McNabola, A., Astell-Burt, T., Feng, X., Skeldon, A. C., de Lusignan, S., & Morawska, L. (2019). The nexus between air pollution, green infrastructure and human health. Environment International, 133, 105181. https://doi.org/10.1016/j.envint.2019.105181

    Article  Google Scholar 

  • Li, X., Ma, Y., Wang, Y., Liu, N., & Hong, Y. (2017). Temporal and spatial analyses of particulate matter (PM10 and PM2.5) and its relationship with meteorological parameters over an urban city in northeast China. Atmospheric Research, 198, 185–193. https://doi.org/10.1016/j.atmosres.2017.08.023

    Article  CAS  Google Scholar 

  • Li, X., Ma, Y., Wang, Y., Lu, S., Zhao, H., Liu, N., Hong, Y., & Wang, D. (2021). Characteristics of turbulence and aerosol optical and radiative properties during haze–fog episodes in Shenyang Northeast China. Atmosphere, 12(12), 1658. https://doi.org/10.3390/atmos12121658

    Article  Google Scholar 

  • Liao, H., Yuan, L., Wu, M., & Chen, H. (2023). Air quality prediction by integrating mechanism model and machine learning model. Science of The Total Environment, 899(165646). https://doi.org/10.1016/j.scitotenv.2023.165646

  • Luo, H., Zhang, Q., Niu, Y., Kan, H., & Chen, R. (2023). Fine particulate matter and cardiorespiratory health in China: A systematic review and meta-analysis of epidemiological studies. Journal of Environmental Sciences, 123, 306–316. https://doi.org/10.1016/j.jes.2022.04.026

    Article  Google Scholar 

  • Lv, D., Chen, Y., Zhu, T., Li, T., Shen, F., Li, X., & Mehmood, T. (2019). The pollution characteristics of PM10 and PM2.5 during summer and winter in Beijing Suning and Islamabad. Atmospheric Pollution Research, 10(4), 1159–1164. https://doi.org/10.1016/j.apr.2019.01.021

    Article  CAS  Google Scholar 

  • Masinaei, M., Yousefi, M., & Shamsollahi, H. R. (2017). Spatial and seasonal variation of PM2.5/PM10 ratio in Tehran, Iran, during 2016–2017. Journal of Air Pollution and Health, 2(4), 199–204. Retrieved August 18, 2022, from https://japh.tums.ac.ir/index.php/japh/article/view/123

  • Masiol, M., Squizzato, S., Formenton, G., Harrison, R. M., & Agostinelli, C. (2017). Air quality across a European hotspot: Spatial gradients, seasonality, diurnal cycles and trends in the Veneto region, NE Italy. Science of The Total Environment, 576, 210–224. https://doi.org/10.1016/j.scitotenv.2016.10.042

    Article  CAS  Google Scholar 

  • Mataveli, G. A., de Oliveira, G., Seixas, H. T., Pereira, G., Stark, S. C., Gatti, L. V., Basso, L. S., Tejada, G., Cassol, H. L., Anderson, L. O., & Aragao, L. E. (2021). Relationship between biomass burning emissions and deforestation in Amazonia over the last two decades. Forests, 12(9), 1217. https://doi.org/10.3390/f12091217

    Article  Google Scholar 

  • MINAM (Ministerio del Ambiente) (2019b). Decreto Supremo que aprueba el Protocolo Nacional de Monitoreo de la Calidad Ambiental del Aire. Decreto Supremo N° 010–2019-MINAM. Lima, Perú. Retrieved December 20, 2023, from https://bit.ly/3x9JqU2

  • MINAM (Ministerio del Ambiente) (2019a). Diagnóstico de la Gestión de la Calidad del Aire de Lima y Callao. Informe N°00283–2019-MINAM/VMGA/DGCA/DCAE. Lima, Perú. Retrieved August 6, 2022. from https://bit.ly/48zqz6A

  • MINSA (Ministerio Nacional de Salud) (2018). Análisis de causas de Mortalidad en el Perú desde 1986 – 2015. Centro Nacional de Epidemiología, prevención y control de enfermedades. Retrieved August 18, 2022, from https://bit.ly/46akLPj

  • Mollinedo, E. M., Krecl, P., & Targino, A. C. (2023). From lowland plains to the Altiplano: The impacts of regional transport of wildfire smoke on the air quality of Bolivian cities. Atmospheric Environment, 315, 120137. https://doi.org/10.1016/j.atmosenv.2023.120137

    Article  CAS  Google Scholar 

  • Morales-Ancajima, V. C., Tapia, V., Vu, B. N., Liu, Y., Alarcon-Yaquetto, D. E., & Gonzales, G. F. (2019). Increased outdoor PM2.5 concentration is associated with moderate/severe anemia in children aged 6–59 months in Lima, Peru. Journal of environmental and public health, 2019. https://doi.org/10.1155/2019/6127845

  • Munir, S. (2017). Analysing temporal trends in the ratios of PM2.5/PM10 in the UK. Aerosol and Air Quality Research, 17(1), 34–48. https://doi.org/10.4209/aaqr.2016.02.0081

    Article  CAS  Google Scholar 

  • Munir, S., Habeebullah, T. M., Mohammed, A. M., Morsy, E. A., Rehan, M., & Ali, K. (2017). Analysing PM2.5 and its association with PM10 and meteorology in the arid climate of Makkah, Saudi Arabia. Aerosol and Air Quality Research, 17(2), 453–464. https://doi.org/10.4209/aaqr.2016.03.0117

    Article  CAS  Google Scholar 

  • Navarro-Barboza, H., Moya-Álvarez, A., Luna, A., & Fashé-Raymundo, O. (2020). Influence evaluation of PM10 produced by the burning of biomass in Peru on AOD, using the WRF-Chem. Atmósfera, 33(1), 71–86. https://doi.org/10.20937/ATM.52711

    Article  CAS  Google Scholar 

  • Olaya-Ochoa, J., Ovalle Munoz, D. P., & Urbano León, C. L. (2017). Acerca de la estimación de la fracción PM2.5/PM10. Dyna, 84(203), 343–348. https://doi.org/10.15446/dyna.v84n203.65228

    Article  Google Scholar 

  • Ordóñez-Aquino, C., & Sánchez-Ccoyllo, O. (2018). Caracterización química-morfológica del PM2.5 en Lima metropolitana mediante microscopía electrónica de barrido (MEB). Acta Nova, 8(3), 397–420. Retrieved August 15, 2022, from http://www.scielo.org.bo/pdf/ran/v8n3/v8n3_a08.pdf

  • Pacsi, S. (2016). Análisis temporal y espacial de la calidad del aire determinado por material particulado PM10 y PM2,5 en Lima Metropolitana. Anales Científicos, 77(2), 273–283. https://doi.org/10.21704/ac.v77i2.699

    Article  Google Scholar 

  • R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved January 16, 2023, from https://www.r-project.org/

  • Reátegui-Romero, W., Zaldivar-Alvarez, W. F., Pacsi–Valdivia, S., Sánchez-Ccoyllo, O. R., García-Rivero, A. E., & Moya–Alvarez, A. (2021). Behavior of the average concentrations as well as their PM10 and PM2.5 variability in the Metropolitan Area of Lima, Peru: Case study February and July 2016. International Journal of Environmental Science and Development, 12(7). https://doi.org/10.18178/ijesd.2021.12.7.1341

  • Reddington, C. L., Butt, E. W., Ridley, D. A., Artaxo, P., Morgan, W. T., Coe, H., & Spracklen, D. V. (2015). Air quality and human health improvements from reductions in deforestation-related fire in Brazil. Nature Geoscience, 8(10), 768–771. https://doi.org/10.1038/ngeo2535

    Article  CAS  Google Scholar 

  • RStudio Team. (2023). RStudio: Integrated development for R. RStudio, PBC, Boston, MA. Retrieved January 16, 2023, from http://www.rstudio.com/

  • Sánchez-Ccoyllo, O. R., Ordoñez-Aquino, C. G., Muñoz, Á. G., Llacza, A., Andrade, M. F., Liu, Y., ... & Brasseur, G. (2018). Modeling study of the particulate matter in lima with the WRF-Chem model: Case study of April 2016. International journal of applied engineering research: IJAER, 13(11), 10129. Retrieved August 18, 2022, from https://europepmc.org/article/pmc/6615757

  • Sangkham, S., Thongtip, S., & Vongruang, P. (2021). Influence of air pollution and meteorological factors on the spread of COVID-19 in the Bangkok Metropolitan Region and air quality during the outbreak. Environmental Research, 197, 111104. https://doi.org/10.1016/j.envres.2021.111104

    Article  CAS  Google Scholar 

  • Selmi, W., Weber, C., Rivière, E., Blond, N., Mehdi, L., & Nowak, D. (2016). Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban Forestry & Urban Greening, 17, 192–201. https://doi.org/10.1016/j.ufug.2016.04.010

    Article  Google Scholar 

  • SENAMHI (Servicio Nacional de Meteorología e Hidrología) (2018a). Celebraciones de Año Nuevo 2018 incrementaron contaminación del aire de Lima. Retrieved December 29, 2023, from https://www.gob.pe/institucion/senamhi/noticias/126480-celebraciones-de-ano-nuevo-2018-incrementaron-contaminacion-del-aire-de-lima

  • SENAMHI (Servicio Nacional de Meteorología e Hidrología) (2018b). Brillo solar en Lima propició aumento de la concentración de contaminante en el aire. Retrieved February 20, 2023, from https://www.senamhi.gob.pe/main.php?dp=lima&p=prensa&n=853

  • SENAMHI (Servicio Nacional de Meteorología e Hidrología) (2021). Climas del Perú—Mapa de Clasificación Climática Nacional. Retrieved December 4, 2022, from https://www.senamhi.gob.pe/load/file/01404SENA-4.pdf

  • SENAMHI (Servicio Nacional de Meteorología e Hidrología) (2022). Control de Calidad Automático de Datos de Estaciones de Monitoreo Automático de la Calidad del Aire en el Centro de Procesamiento de Datos del SENAMHI. Manual Técnico: MT-DRD-005. Retrieved December 20, 2023, from https://www.senamhi.gob.pe/load/file/00711SENA-91.pdf

  • Shinohara, N., & Yoshida-Ohuchi, H. (2021). Resuspension and deposition of PM2.5 and PM10 containing radiocesium during and after indoor cleaning of uninhabited houses in Fukushima Japan. Chemosphere, 272, 129934. https://doi.org/10.1016/j.chemosphere.2021.129934

    Article  CAS  Google Scholar 

  • Silva, J., Rojas, J., Norabuena, M., Molina, C., Toro, R. A., & Leiva-Guzmán, M. A. (2017). Particulate matter levels in a South American megacity: the metropolitan area of Lima-Callao, Peru. Environmental Monitoring and Assessment, 189(12). https://doi.org/10.1007/s10661-017-6327-2

  • Silva, C., Mogollon, R., Diaz, S., & Chumpitaz, V. (2021). Costo de la contaminación del aire por material particulado generado por el transporte vehicular en Lima Metropolitana. Natura@economía, 6(2), 146–166. https://doi.org/10.21704/ne.v6i2.1944

    Article  Google Scholar 

  • Silva, J. S., Rojas, J. P., Norabuena, M., & Seguel, R. J. (2018). Ozone and volatile organic compounds in the metropolitan area of Lima-Callao, Peru. Air Quality Atmosphere & Health, 11(8), 993–1008. https://doi.org/10.1007/s11869-018-0604-2

    Article  CAS  Google Scholar 

  • Sirithian, D., & Thanatrakolsri, P. (2022). Relationships between meteorological and particulate matter concentrations (PM2.5 and PM10) during the haze period in urban and rural areas, northern Thailand. Air Soil and Water Research, 15, 1–15. https://doi.org/10.1177/11786221221117264

    Article  Google Scholar 

  • Sisterson, D. L., Johnson, S. A., & Kumar, R. (1985). The influence of humidity on fine-particle aerosol dynamics and precipitation scavenging. Aerosol Science and Technology, 4(3), 287–300. https://doi.org/10.1080/02786828508959056

    Article  CAS  Google Scholar 

  • Soleimanian, E., Taghvaee, S., Mousavi, A., Sowlat, M. H., Hassanvand, M. S., Yunesian, M., Naddafi, K., & Sioutas, C. (2019). Sources and temporal variations of coarse particulate matter (PM) in Central Tehran Iran. Atmosphere, 10(5), 291. https://doi.org/10.3390/atmos10050291

    Article  CAS  Google Scholar 

  • Solís, R., Toro, R., Gomez, L., Vélez-Pereira, A. M., López, M., Fleming, Z. L., Fierro, N., & Leiva, M. (2022). Long-term airborne particle pollution assessment in the city of Coyhaique, Patagonia Chile. Urban Climate, 43, 101144. https://doi.org/10.1016/j.uclim.2022.101144

    Article  Google Scholar 

  • Spandana, B., Rao, S. S., Upadhya, A. R., Kulkarni, P., & Sreekanth, V. (2021). PM2.5/PM10 ratio characteristics over urban sites of India. Advances in Space Research, 67(10), 3134–3146. https://doi.org/10.1016/j.asr.2021.02.008

    Article  CAS  Google Scholar 

  • Tapia, V., Carbajal, L., Vásquez, V., Espinoza, R., Vásquez-Velásquez, C., Steenland, K., & Gonzales, G. F. (2018). Reordenamiento vehicular y contaminación ambiental por material particulado (2,5 y 10), dióxido de azufre y dióxido de nitrógeno en Lima Metropolitana, Perú. Revista Peruana de Medicina Experimental y Salud Pública, 35, 190–197. https://doi.org/10.17843/rpmesp.2018.352.3250

    Article  Google Scholar 

  • UN (United Nations, Department of Economic and Social Affairs, Population Division) (2019). World urbanization prospects: The 2018 revision (ST/ESA/SER.A/420). New York: United Nations. Retrieved December 13, 2023, from https://population.un.org/wup/publications/Files/WUP2018-Report.pdf

  • Vu, B. N., Sánchez, O., Bi, J., Xiao, Q., Hansel, N. N., Checkley, W., Gonzales, G. F., Steenland, K., & Liu, Y. (2019). Developing an advanced PM2.5 exposure model in Lima Peru. Remote Sensing, 11(6), 641. https://doi.org/10.3390/rs11060641

    Article  Google Scholar 

  • WHO (World Health Organization) (2022). Air pollution. Retrieved January 4, 2023, from https://www.who.int/health-topics/air-pollution#tab=tab_1

  • Xu, G., Jiao, L., Zhang, B., Zhao, S., Yuan, M., Gu, Y., Liu, J., & Tang, X. (2017). Spatial and temporal variability of the PM2.5/PM10 ratio in Wuhan, Central China. Aerosol and Air Quality Research, 17, 741–751. https://doi.org/10.4209/aaqr.2016.09.0406

    Article  CAS  Google Scholar 

  • Yousefian, F., Faridi, S., Azimi, F., Aghaei, M., Shamsipour, M., Yaghmaeian, K., & Hassanvand, M. S. (2020). Temporal variations of ambient air pollutants and meteorological influences on their concentrations in Tehran during 2012–2017. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-019-56578-6

    Article  CAS  Google Scholar 

  • Zha, H., Wang, R., Feng, X., An, C., & Qian, J. (2021). Spatial characteristics of the PM2.5/PM10 ratio and its indicative significance regarding air pollution in Hebei Province China. Environmental Monitoring and Assessment, 193(8), 1–12. https://doi.org/10.1007/s10661-021-09258-w

    Article  CAS  Google Scholar 

  • Zhao, D., Chen, H., Yu, E., & Luo, T. (2019). PM2.5/PM10 ratios in eight economic regions and their relationship with meteorology in China. Advances in Meteorology, 2019. https://doi.org/10.1155/2019/5295726

  • Zhong, Y., Chen, J., Zhao, Q., Zhang, N., Feng, J., & Fu, Q. (2021). Temporal trends of the concentration and sources of secondary organic aerosols in PM25 in Shanghai during 2012 and 2018. Atmospheric Environment, 261, 118596. https://doi.org/10.1016/j.atmosenv.2021.118596

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Service of Meteorology and Hydrology of Peru, for providing the environmental and meteorological quality data for the development of this research work.

Author information

Authors and Affiliations

Authors

Contributions

José Abel Espinoza-Guillen: conceptualization, methodology, formal analysis, investigation, writing—original draft, writing—review and editing, supervision, visualization, resources. Marleni Beatriz Alderete-Malpartida: methodology, investigation, writing—original draft, writing—review and editing, supervision, resources. Ursula Fiorela Navarro-Abarca: investigation, writing—original draft, writing—review and editing, resources. Hanns Kevin Gómez-Muñoz: investigation, writing—original draft, writing—review and editing, visualization, resources. All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Corresponding author

Correspondence to José Abel Espinoza-Guillen.

Ethics declarations

Ethics approval

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2204 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinoza-Guillen, J.A., Alderete-Malpartida, M.B., Navarro-Abarca, U.F. et al. Temporal variation of the PM2.5/PM10 ratio and its association with meteorological factors in a South American megacity: Metropolitan Area of Lima-Callao, Peru. Environ Monit Assess 196, 452 (2024). https://doi.org/10.1007/s10661-024-12611-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12611-4

Keywords

Navigation