Skip to main content

Aerosol Hygroscopicity

  • Chapter
  • First Online:
Atmospheric Chemistry in the Mediterranean Region

Abstract

The hygroscopic and ice nucleation properties play a vital role for the direct and indirect effects of aerosols on climate by determining the interactions of aerosol particles with atmospheric water vapour, ice and cloud microphysical processes. This chapter reviews the existing published results on the aerosol hygroscopic properties at subsaturated (relative humidity below 100%) and supersaturated (relative humidity above 100%) conditions, and on the ice nucleation properties of aerosols from measurements at multiple sites in the Mediterranean. Rapid progress has been made in the last 20 years in understanding how different chemical and physical properties affect the aerosol hygroscopic growth. Some early investigations have yielded comprehensive information regarding the main sources and chemical composition of the atmospheric cloud condensation nuclei (CCN) and ice-nucleating particles (INP) in the Mediterranean region. Despite these advances, process-level understanding of aerosol hygroscopic properties and related ice nucleation remains insufficient, causing unacceptably large uncertainties when simulating aerosol radiative effects in future climate projections.

Chapter reviewed by Heike Wex (Leibniz Institute for Tropospheric Research, Leipzig, Germany) and Claudia Di Biagio (Laboratoire Interuniversitaire des Systèmes Atmosphériques, Créteil, France), as part of the book Part VII Mediterranean Aerosol Properties also reviewed by Jorge Pey Betrán (ARAID-Instituto Pirenaico de Ecología, CSIC, Zaragoza, Spain)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam, M., Putaud, J. P., Martins dos Santos, S., Dell’Acqua, A., & Gruening, C. (2012). Aerosol hygroscopicity at a regional background site (Ispra) in Northern Italy. Atmospheric Chemistry and Physics, 12, 5703–5717. https://doi.org/10.5194/acp-12-5703-2012

    Article  CAS  Google Scholar 

  • Andreae, M. O., & Rosenfeld, D. (2008). Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews, 89, 13–41. https://doi.org/10.1016/j.earscirev.2008.03.001

    Article  Google Scholar 

  • Ardon-Dryer, K., & Levin, Z. (2014). Ground-based measurements of immersion freezing in the eastern Mediterranean. Atmospheric Chemistry and Physics, 14, 5217–5231. https://doi.org/10.5194/acp-14-5217-2014

    Article  CAS  Google Scholar 

  • Atkinson, J., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw, K. S., Dobbie, S., O’Sullivan, D., & Malkin, T. L. (2013). The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature, 498, 355–358. https://doi.org/10.1038/nature12278

    Article  CAS  Google Scholar 

  • Belosi, F., Rinaldi, M., Decesari, S., Tarozzi, L., Nicosia, A., & Santachiara, G. (2017). Ground level ice nuclei particle measurements including Saharan dust events at a Po Valley rural site (San Pietro Capofiume, Italy). Atmospheric Research, 186, 116–126. https://doi.org/10.1016/j.atmosres.2016.11.012

    Article  CAS  Google Scholar 

  • Bezantakos, S., Barmpounis, K., Giamarelou, M., Bossioli, E., Tombrou, M., Mihalopoulos, N., Eleftheriadis, K., Kalogiros, J., Allan, J. D., Bacak, A., Percival, C. J., Coe, H., & Biskos, G. (2013). Chemical composition and hygroscopic properties of aerosol particles over the Aegean Sea. Atmospheric Chemistry and Physics, 13, 11595–11608. https://doi.org/10.5194/acp-13-11595-2013

    Article  CAS  Google Scholar 

  • Bialek, J., Dall Osto, M., Vaattovaara, P., Decesari, S., Ovadnevaite, J., Laaksonen, A., & O’Dowd, C. (2014). Hygroscopic and chemical characterisation of Po Valley aerosol. Atmospheric Chemistry and Physics, 14, 1557–1570. https://doi.org/10.5194/acp-14-1557-2014

    Article  CAS  Google Scholar 

  • Bougiatioti, A., Fountoukis, C., Kalivitis, N., Pandis, S. N., Nenes, A., & Mihalopoulos, N. (2009). Cloud condensation nuclei measurements in the marine boundary layer of the Eastern Mediterranean: CCN closure and droplet growth kinetics. Atmospheric Chemistry and Physics, 9, 7053–7066. https://doi.org/10.5194/acp-9-7053-2009

    Article  CAS  Google Scholar 

  • Bougiatioti, A., Nenes, A., Fountoukis, C., Kalivitis, N., Pandis, S. N., & Mihalopoulos, N. (2011). Size-resolved CCN distributions and activation kinetics of aged continental and marine aerosol. Atmospheric Chemistry and Physics, 11, 8791–8808. https://doi.org/10.5194/acp-11-8791-2011

    Article  CAS  Google Scholar 

  • Bougiatioti, A., Bezantakos, S., Stavroulas, I., Kalivitis, N., Kokkalis, P., Biskos, G., Mihalopoulos, N., Papayannis, A., & Nenes, A. (2016). Biomass-burning impact on CCN number, hygroscopicity and cloud formation during summertime in the eastern Mediterranean. Atmospheric Chemistry and Physics, 16, 7389–7409. https://doi.org/10.5194/acp-16-7389-2016

    Article  CAS  Google Scholar 

  • Denjean, C., Cassola, F., Mazzino, A., Triquet, S., Chevaillier, S., Grand, N., Bourrianne, T., Momboisse, G., Sellegri, K., Schwarzenbock, A., Freney, E., Mallet, M., & Formenti, P. (2016). Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean. Atmospheric Chemistry and Physics, 16, 1081–1104. https://doi.org/10.5194/acp-16-1081-2016

    Article  CAS  Google Scholar 

  • Di Biagio, C., Doppler, L., Gaimoz, C., Grand, N., Ancellet, G., Raut, J.-C., Beekmann, M., Borbon, A., Sartelet, K., Attié, J.-L., Ravetta, F., & Formenti, P. (2015). Continental pollution in the western Mediterranean basin: Vertical profiles of aerosol and trace gases measured over the sea during TRAQA 2012 and SAFMED 2013. Atmospheric Chemistry and Physics, 15, 9611–9630. https://doi.org/10.5194/acp-15-9611-2015

    Article  CAS  Google Scholar 

  • Dulac, F., & Chazette, P. (2003). Airborne study of a multi-layer aerosol structure in the eastern Mediterranean observed with the airborne polarized lidar ALEX during a STAAARTE campaign (7 June 1997). Atmospheric Chemistry and Physics, 3, 1817–1831. https://doi.org/10.5194/acp-3-1817-2003

    Article  CAS  Google Scholar 

  • Dunne, E. M., Gordon, H., Kürten, A., Almeida, J., Duplissy, J., Williamson, C., Ortega, I. K., Pringle, K. J., Adamov, A., Baltensperger, U., Barmet, P., Benduhn, F., Bianchi, F., Breitenlechner, M., Clarke, A., Curtius, J., Dommen, J., Donahue, N. M., Ehrhart, S., … Carslaw, K. S. (2016). Global atmospheric particle formation from CERN CLOUD measurements. Science, 354, 1119–1124. https://doi.org/10.1126/science.aaf2649

    Article  CAS  Google Scholar 

  • Dusek, U., Reischl, G. P., & Hitzenberg, R. (2006). CCN activation of pure and coated carbon black particles. Environmental Science & Technology, 40, 1223–1230. https://doi.org/10.1021/es0503478

    Article  CAS  Google Scholar 

  • Formenti, P., Reiner, T., Sprung, D., Andreae, M. O., Wendisch, M., Wex, H., Kindred, D., Dewey, K., Kent, J., Tzortziou, M., Vasaras, A., & Zerefos, C. (2002). STAAARTE-MED 1998 summer airborne measurements over the Aegean Sea 1. Aerosol particles and trace gases. Journal of Geophysical Research, 107, 4450. https://doi.org/10.1029/2001JD001337

    Article  CAS  Google Scholar 

  • Gong, X., Wex, H., Müller, T., Wiedensohler, A., Höhler, K., Kandler, K., Ma, N., Dietel, B., Schiebel, T., Möhler, O., & Stratmann, F. (2019). Characterization of aerosol properties at Cyprus, focusing on cloud condensation nuclei and ice-nucleating particles. Atmospheric Chemistry and Physics, 19, 10883–10900. https://doi.org/10.5194/acp-19-10883-2019

    Article  CAS  Google Scholar 

  • Gordon, H., Kirkby, J., Baltensperger, U., Bianchi, F., Breitenlechner, M., Curtius, J., Dias, A., Dommen, J., Donahue, N. M., Dunne, E. M., Duplissy, J., Ehrhart, S., Flagan, R. C., Frege, C., Fuchs, C., Hansel, A., Hoyle, C. R., Kulmala, M., Kürten, A., … Carslaw, K. S. (2017). Causes and importance of new particle formation in the present-day and preindustrial atmospheres. Journal of Geophysical Research – Atmospheres, 122, 8739–8760. https://doi.org/10.1002/2017JD026844

    Article  Google Scholar 

  • Granados-Muñoz, M. J., Navas-Guzmán, F., Bravo-Aranda, J. A., Guerrero-Rascado, J. L., Lyamani, H., Valenzuela, A., Titos, G., Fernández-Gálvez, J., & Alados-Arboledas, L. (2015). Hygroscopic growth of atmospheric aerosol particles based on active remote sensing and radiosounding measurements: Selected cases in southeastern Spain. Atmospheric Measurement Techniques, 8, 705–718. https://doi.org/10.5194/amt-8-705-2015

    Article  Google Scholar 

  • Hartmann, S., Wex, H., Clauss, T., Augustin-Bauditz, S., Niedermeier, D., Rösch, M., & Stratmann, F. (2016). Immersion freezing of kaolinite - scaling with particle surface area. Journal of the Atmospheric Sciences, 73, 263–278. https://doi.org/10.1175/JAS-D-15-0057.1

    Article  Google Scholar 

  • Heintzenberg, J. (1989). Fine particles in the global troposphere a review. Tellus B: Chemical and Physical Meteorology, 41, 149–160. https://doi.org/10.3402/tellusb.v41i2.15064

    Article  Google Scholar 

  • Holmgren, H., Sellegri, K., Hervo, M., Rose, C., Freney, E., Villani, P., & Laj, P. (2014). Hygroscopic properties and mixing state of aerosol measured at the high-altitude site Puy de Dôme (1465 m a.s.l.), France. Atmospheric Chemistry and Physics, 14, 9537–9554. https://doi.org/10.5194/acp-14-9537-2014

    Article  CAS  Google Scholar 

  • Hoose, C., & Möhler, O. (2012). Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmospheric Chemistry and Physics, 12, 9817–9854. https://doi.org/10.5194/acp-12-9817-2012

    Article  CAS  Google Scholar 

  • Jurányi, Z., Gysel, M., Weingartner, E., Bukowiecki, N., Kammermann, L., & Baltensperger, U. (2011). A 17 month climatology of the cloud condensation nuclei number concentration at the high alpine site Jungfraujoch. Journal of Geophysical Research, 116, D10204. https://doi.org/10.1029/2010JD015199

    Article  CAS  Google Scholar 

  • Kalivitis, N., Kerminen, V.-M., Kouvarakis, G., Stavroulas, I., Bougiatioti, A., Nenes, A., Manninen, H. E., Petäjä, T., Kulmala, M., & Mihalopoulos, N. (2015). Atmospheric new particle formation as a source of CCN in the eastern Mediterranean marine boundary layer. Atmospheric Chemistry and Physics, 15, 9203–9215. https://doi.org/10.5194/acp-15-9203-2015

    Article  CAS  Google Scholar 

  • Kalkavouras, P., Bossioli, E., Bezantakos, S., Bougiatioti, A., Kalivitis, N., Stavroulas, I., Kouvarakis, G., Protonotariou, A. P., Dandou, A., Biskos, G., Mihalopoulos, N., Nenes, A., & Tombrou, M. (2017). New particle formation in the southern Aegean Sea during the Etesians: Importance for CCN production and cloud droplet number. Atmospheric Chemistry and Physics, 17, 175–192. https://doi.org/10.5194/acp-17-175-2017

    Article  CAS  Google Scholar 

  • Kalkavouras, P., Bougiatioti, A., Kalivitis, N., Stavroulas, I., Tombrou, M., Nenes, A., & Mihalopoulos, N. (2019). Regional new particle formation as modulators of cloud condensation nuclei and cloud droplet number in the eastern Mediterranean. Atmospheric Chemistry and Physics, 19, 6185–6203. https://doi.org/10.5194/acp-19-6185-2019

    Article  CAS  Google Scholar 

  • Kammermann, L., Gysel, M., Weingartner, E., & Baltensperger, U. (2010). 13-month climatology of the aerosol hygroscopicity at the free tropospheric site Jungfraujoch (3580 m a.s.l.). Atmospheric Chemistry and Physics, 10, 10717–10732. https://doi.org/10.5194/acp-10-10717-2010

    Article  CAS  Google Scholar 

  • Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., … Wilson, J. (2005). Organic aerosol and global climate modelling: A review. Atmospheric Chemistry and Physics, 5, 1053–1123. https://doi.org/10.5194/acp-5-1053-2005

    Article  CAS  Google Scholar 

  • Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo, D. J., & Krämer, M. (2017). Overview of ice nucleating particles. Meteorological Monographs, 58, 1.1–1.33. https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1

    Article  Google Scholar 

  • Kerminen, V.-M., Paramonov, M., Anttila, T., Riipinen, I., Fountoukis, C., Korhonen, H., Asmi, E., Laakso, L., Lihavainen, H., Swietlicki, E., Svenningsson, B., Asmi, A., Pandis, S. N., Kulmala, M., & Petäjä, T. (2012). Cloud condensation nuclei production associated with atmospheric nucleation: A synthesis based on existing literature and new results. Atmospheric Chemistry and Physics, 12, 12037–12059. https://doi.org/10.5194/acp-12-12037-2012

    Article  CAS  Google Scholar 

  • Kulmala, M., Petäjä, T., Ehn, M., Thornton, J., Sipilä, M., Worsnop, D. R., & Kerminen, V.-M. (2014). Chemistry of atmospheric nucleation: On the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation. Annual Review of Physical Chemistry, 65, 21–37. https://doi.org/10.1146/annurev-physchem-040412-110014

    Article  CAS  Google Scholar 

  • Laskina, O., Morris, H. S., Grandquist, J. R., Qin, Z., Stone, E. A., Tivanski, A. V., & Grassian, V. H. (2015). Size matters in the water uptake and hygroscopic growth of atmospherically relevant multicomponent aerosol particles. The Journal of Physical Chemistry. A, 119, 4489–4497. https://doi.org/10.1021/jp510268p

    Article  CAS  Google Scholar 

  • Levi, Y., & Rosenfeld, D. (1996). Ice nuclei, rainwater chemical composition, and static cloud seeding effects in Israel. Journal of Applied Meteorology, 35, 1494–1501. https://doi.org/10.1175/1520-0450(1996)035<1494:INRCCA>2.0.CO;2

    Article  Google Scholar 

  • Lohmann, U., & Feichter, J. (2005). Global indirect aerosol effects: A review. Atmospheric Chemistry and Physics, 5, 715–737. https://doi.org/10.5194/acp-5-715-2005

    Article  CAS  Google Scholar 

  • Mahowald, N., Albani, S., Kok, J., Engelstaeder, S., Scanza, R., Ward, G., & Flanner, M. (2014). The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Research, 15, 53–71. https://doi.org/10.1016/j.aeolia.2013.09.002

    Article  Google Scholar 

  • Makkonen, R., Asmi, A., Kerminen, V.-M., Boy, M., Arneth, A., Guenther, A., & Kulmala, M. (2012). BVOC-aerosol-climate interactions in the global aerosol-climate model ECHAM5.5-HAM2. Atmospheric Chemistry and Physics, 12, 10077–10096. https://doi.org/10.5194/acp-12-10077-2012

    Article  Google Scholar 

  • Nabat, P., Kanji, Z. A., Mallet, M., Denjean, C., & Solmon, F. (2022). Aerosol-cloud interactions and impact on regional climate. In F. Dulac, S. Sauvage, & E. Hamonou (Eds.), Atmospheric chemistry in the Mediterranean Region (Vol. 2, From air pollutant sources to impacts). Springer, this volume. https://doi.org/10.1007/978-3-030-82385-6_20

    Google Scholar 

  • Nenes, A., Ghan, S., Abdul-Razzak, H., Chuang, P. Y., & Seinfeld, J. H. (2001). Kinetic limitations on cloud droplet formation and impact on cloud albedo. Tellus B: Chemical and Physical Meteorology, 53, 133–149. https://doi.org/10.1034/j.1600-0889.2001.d01-12.x

    Article  Google Scholar 

  • Niedermeier, D., Augustin-Bauditz, S., Hartmann, S., Wex, H., Ignatius, K., & Stratmann, F. (2015). Can we define an asymptotic value for the ice active surface site density for heterogeneous ice nucleation? Journal of Geophysical Research, 120, 5036–5046. https://doi.org/10.1002/2014JD022814

    Article  Google Scholar 

  • Niemand, M., Möhler, O., Vogel, B., Vogel, H., Hoose, C., Connolly, P., Klein, H., Bingemer, H., DeMott, P., Skrotzki, J., & Leisner, T. (2012). A particle-surface-area-based parameterization of immersion freezing on desert dust particles. Journal of the Atmospheric Sciences, 69, 3077–3092. https://doi.org/10.1175/JAS-D-11-0249.1

    Article  Google Scholar 

  • Petäjä, T., Kerminen, V.-M., Dal Maso, M., Junninen, H., Koponen, I. K., Hussein, T., Aalto, P. P., Andronopoulos, S., Robin, D., Hämeri, K., Bartzis, J. G., & Kulmala, M. (2007). Sub-micron atmospheric aerosols in the surroundings of Marseille and Athens: Physical characterization and new particle formation. Atmospheric Chemistry and Physics, 7, 2705–2720. https://doi.org/10.5194/acp-7-2705-2007

    Article  Google Scholar 

  • Petters, M. D., & Kreidenweis, S. M. (2007). A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmospheric Chemistry and Physics, 7, 1961–1971. https://doi.org/10.5194/acp-7-1961-2007

    Article  CAS  Google Scholar 

  • Pilinis, C., Pandis, S. N., & Seinfeld, J. H. (1995). Sensitivity of a direct climate forcing by atmospheric aerosols to aerosol size and composition. Journal of Geophysical Research, 100, 18739–18754. https://doi.org/10.1029/95JD02119

    Article  Google Scholar 

  • Pruppacher, H. R., & Klett, J. D. (2010). Microphysics of Clouds and Precipitation. Springer, Dordrecht, XXII+954 pp. https://doi.org/10.1007/978-0-306-48100-0

    Google Scholar 

  • Ramanathan, V., Crutzen, P. J., Kiehl, J. T., & Rosenfeld, D. (2001). Aerosols, climate and the hydrological cycle. Science, 294, 2119–2124. https://doi.org/10.1126/science.1064034

    Article  CAS  Google Scholar 

  • Reicher, N., Budke, C., Eickhoff, L., Raveh-Rubin, S., Kaplan-Ashiri, I., Koop, T., & Rudich, Y. (2019). Size-dependent ice nucleation by airborne particles during dust events in the eastern Mediterranean. Atmospheric Chemistry and Physics, 19, 11143–11158. https://doi.org/10.5194/acp-19-11143-2019

    Article  CAS  Google Scholar 

  • Rinaldi, M., Santachiara, G., Nicosia, A., Piazza, M., Decesari, S., Gilardoni, S., Paglione, M., Cristofanelli, P., Marinoni, A., Bonasoni, P., & Belosi, F. (2017). Atmospheric Ice Nucleating Particle measurements at the high mountain observatory Mt. Cimone (2165 m a.s.l., Italy). Atmospheric Environment, 171, 173–180. https://doi.org/10.1016/j.atmosenv.2017.10.027

    Article  CAS  Google Scholar 

  • Rosati, B., Gysel, M., Rubach, F., Mentel, T. F., Goger, B., Poulain, L., Schlag, P., Miettinen, P., Pajunoja, A., Virtanen, A., Klein Baltink, H., Henzing, J. S. B., Größ, J., Gobbi, G. P., Wiedensohler, A., Kiendler-Scharr, A., Decesari, S., Facchini, M. C., Weingartner, E., & Baltensperger, U. (2016). Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns. Atmospheric Chemistry and Physics, 16, 7295–7315. https://doi.org/10.5194/acp-16-7295-2016

    Article  CAS  Google Scholar 

  • Santachiara, G., Di Matteo, L., Prodi, F., & Belosi, F. (2010). Atmospheric particles acting as Ice Forming Nuclei in different size ranges. Atmospheric Research, 96, 266–272. https://doi.org/10.1016/j.atmosres.2009.08.004

    Article  CAS  Google Scholar 

  • Saxena, P., & Hildemann, L. (1996). Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds. Journal of Atmospheric Chemistry, 24, 57–109. https://doi.org/10.1007/BF00053823

    Article  CAS  Google Scholar 

  • Schmale, J., Henning, S., Decesari, S., Henzing, B., Keskinen, H., Sellegri, K., Ovadnevaite, J., Pöhlker, M. L., Brito, J., Bougiatioti, A., Kristensson, A., Kalivitis, N., Stavroulas, I., Carbone, S., Jefferson, A., Park, M., Schlag, P., Iwamoto, Y., Aalto, P., … Gysel, M. (2018). Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories. Atmospheric Chemistry and Physics, 18, 2853–2881. https://doi.org/10.5194/acp-18-2853-2018

    Article  CAS  Google Scholar 

  • Schrod, J., Weber, D., Drücke, J., Keleshis, C., Pikridas, M., Ebert, M., Cvetković, B., Nickovic, S., Marinou, E., Baars, H., Ansmann, A., Vrekoussis, M., Mihalopoulos, N., Sciare, J., Curtius, J., & Bingemer, H. G. (2017). Ice nucleating particles over the Eastern Mediterranean measured by unmanned aircraft systems. Atmospheric Chemistry and Physics, 17, 4817–4835. https://doi.org/10.5194/acp-17-4817-2017

    Article  CAS  Google Scholar 

  • Sjogren, S., Gysel, M., Weingartner, E., Alfarra, M. R., Duplissy, J., Cozic, J., Crosier, J., Coe, H., & Baltensperger, U. (2008). Hygroscopicity of the submicrometer aerosol at the high-alpine site Jungfraujoch, 3580 m a.s.l., Switzerland. Atmospheric Chemistry and Physics, 8, 5715–5729. https://doi.org/10.5194/acp-8-5715-2008

    Article  CAS  Google Scholar 

  • Spracklen, D. V., Carslaw, K. S., Kulmala, M., Kerminen, V.-M., Mann, G. W., & Sihto, S.-L. (2006). The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales. Atmospheric Chemistry and Physics, 6, 5631–5648. https://doi.org/10.5194/acp-6-5631-2006

    Article  CAS  Google Scholar 

  • Stock, M., Cheng, Y. F., Birmili, W., Massling, A., Wehner, B., Müller, T., Leinert, S., Kalivitis, N., Mihalopoulos, N., & Wiedensohler, A. (2011). Hygroscopic properties of atmospheric aerosol particles over the Eastern Mediterranean: Implications for regional direct radiative forcing under clean and polluted conditions. Atmospheric Chemistry and Physics, 11, 4251–4271. https://doi.org/10.5194/acp-11-4251-2011

    Article  CAS  Google Scholar 

  • Swietlicki, E., Hansson, H.-C., Hämeri, K., Svenningsson, B., Massling, A., McFiggans, G., McMurry, P. H., Petӓjӓ, T., Tunved, P., Gysel, M., Topping, D., Weingartner, E., Baltensperger, U., Rissler, J., Wiedensohler, A., & Kulmala, M. (2008). Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments – A review. Tellus B: Chemical and Physical Meteorology, 60, 432–469. https://doi.org/10.1111/j.1600-0889.2008.00350.x

    Article  Google Scholar 

  • Tang, I. N. (1996). Chemical and size effects of hygroscopic aerosols on light scattering coefficients. Journal of Geophysical Research, 101, 19245–19250. https://doi.org/10.1029/96JD03003

    Article  CAS  Google Scholar 

  • Tang, I. N., & Munkelwitz, H. R. (1994). Aerosol phase transformation and growth in the atmosphere. Journal of Applied Meteorology, 33, 791–796. https://doi.org/10.1175/1520-0450(1994)033<0791:APTAGI>2.0.CO;2

    Article  Google Scholar 

  • Tang, M., Cziczo, D. J., & Grassian, V. H. (2016). Interactions of water with mineral dust aerosol: Water adsorption, hygroscopicity, cloud condensation, and ice nucleation. Chemical Reviews, 116, 4205–4259. https://doi.org/10.1021/acs.chemrev.5b00529

    Article  CAS  Google Scholar 

  • Tutsak, E., & Koçak, M. (2019). Long-term measurements of aerosol optical and physical properties over the Eastern Mediterranean: Hygroscopic nature and source regions. Atmospheric Environment, 207, 1–15. https://doi.org/10.1016/j.atmosenv.2019.03.007

    Article  CAS  Google Scholar 

  • Vali, G., DeMott, P. J., Möhler, O., & Whale, T. F. (2015). Technical note: A proposal for ice nucleation terminology. Atmospheric Chemistry and Physics, 15, 10263–10270. https://doi.org/10.5194/acp-15-10263-2015

    Article  CAS  Google Scholar 

  • Van Dingenen, R., Putaud, J.-P., Martins-Dos Santos, S., & Raes, F. (2005). Physical aerosol properties and their relation to air mass origin at Monte Cimone (Italy) during the first MINATROC campaign. Atmospheric Chemistry and Physics, 5, 2203–2226. https://doi.org/10.5194/acp-5-2203-2005

    Article  Google Scholar 

  • Weingartner, E., Gysel, M., & Baltensperger, U. (2002). Hygroscopicity of aerosol particles at low temperatures. 1. New low-temperature H-TDMA instrument: Setup and first applications. Environmental Science & Technology, 36, 55–62. https://doi.org/10.1021/es010054o

    Article  CAS  Google Scholar 

  • Zieger, P., Väisänen, O., Corbin, J. C., Partridge, D. G., Bastelberger, S., Mousavi-Fard, M., Rosati, B., Gysel, M., Krieger, U. K., Leck, C., Nenes, A., Riipinen, I., Virtanen, A., & Salter, M. E. (2017). Revising the hygroscopicity of inorganic sea salt particles. Nature Communications, 8, 15883. https://doi.org/10.1038/ncomms15883

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrielle Denjean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Denjean, C. (2022). Aerosol Hygroscopicity. In: Dulac, F., Sauvage, S., Hamonou, E. (eds) Atmospheric Chemistry in the Mediterranean Region. Springer, Cham. https://doi.org/10.1007/978-3-030-82385-6_15

Download citation

Publish with us

Policies and ethics