Skip to main content

Advertisement

Log in

Modern pollen dispersal in relation to present vegetation distribution and land use in the Baspa valley, Kinnaur, western Himalayas

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Interpretation of a fossil pollen data for the vegetation and climate reconstruction of any region needs a modern pollen-vegetation analogue for its calibration. We analyzed the surface sediments and moss polsters for the pollen and microcharcoal records to understand the modern pollen-vegetation relationship and human activities in the Baspa Valley, Kinnaur, Himachal Pradesh. Presently, valley is occupied by the arboreal and non-arboreal vegetation of temperate to subalpine habitats and land use activities. The recovered pollen assemblages showed variability in the dispersal behavior of pollen of taxa growing along the valley transect and also captured the signals of human activities over land use. The overall dominance of arboreal pollen in the recovered pollen assemblage corresponds with the dominant growth of conifers and broadleaf tree taxa and represents the valley vegetation at a regional scale. However, the profuse pollen production of a few arboreal taxa and long distance pollen transport from one vegetation zone to other by the strong upthermic valley winds could bias the pollen representation of in-situ vegetation. The high pollen frequency of non-arboreal taxa in the open meadows represents the near vicinity to their plant source. Human activities like fire burning and cultivation by the local population are evident by the recovery of microcharcoal particles and pollen of plants belonging to Cerealia Poaceae, Asteraceae, Amaranthaceae, Polygonaceae, Rosaceae, Juglandaceae, etc. The dataset taken as modern pollen-vegetation analogue is useful to assess past changes in the vegetation and land cover in relation to climate and human factors for future sustenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are provided within the paper. The primary data will be available from the corresponding author on reasonable request.

References

  • Ali, S. N., Quamar, M. F., Dubey, J., Morthekai, P., Bisht, P., Pandey, P., Shekhar, M., & Ghosh, R. (2020). Surface pollen distribution in alpine zone of the higher Himalaya: A case study from the Kalla glacier valley, India. Botany Letters, 167(3), 340–352. https://doi.org/10.1080/23818107.2020.1753567

    Article  CAS  Google Scholar 

  • Bajpai, R., & Kar, R. (2018). Modern pollen deposition in glacial settings in the Himalaya (India): Abundance of Pinus pollen and its significance. Palynology, 42(4), 475–482.

    Article  Google Scholar 

  • Bhattacharyya, A. (1989a). Modern pollen spectra from Rohtang range, Himachal Pradesh. Journal of Palynology, 25, 121–131.

    Google Scholar 

  • Bhattacharyya, A. (1989b). Modern pollen spectra of Bada Shigri Glacier, Greater Himalayan Range, Lahaul-Spiti District, Himachal Pradesh. Science Culture, 55, 246–248.

    Google Scholar 

  • Bhattacharyya, A., Dhyani, R., Joshi, R., Shekhar, M., Kuniyal, J. C., Ranhotra, P. S., & Singh, S. P. (2023). Is survival of Himalayan Cedar (Cedrus deodara) threatened? An evaluation based on predicted scenarios of its growth trend under future climate change. Science of the Total Environment, 882, 163630.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bond, W. J., & van Wilgen, B. W. (1996). Fire and plants. Chapman & Hall.

    Book  Google Scholar 

  • Bowman, D. M., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A., D’antonio, C. M., & Swetnam, T. W. (2011). The human dimension of fire regimes on Earth. Journal of Biogeography, 38(12), 2223–2236.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bunting, M. J., Schofield, J. E., & Edwards, K. J. (2013). Estimates of relative pollen productivity (RPP) for selected taxa from southern Greenland: A pragmatic solution. Review of Palaeobotany and Palynology, 190, 66–74.

    Article  Google Scholar 

  • Cañellas-Boltà, N., Rull, V., Vigo, J., & Mercadé, A. (2009). Modern pollen— Vegetation relationships along an altitudinal transect in the central Pyrenees (southwestern Europe). The Holocene, 19(8), 1185–1200.

    Article  ADS  Google Scholar 

  • Champion, S. H., & Seth, S. K. (1968). A revised survey of the forest types of India. Manager of Publications.

    Google Scholar 

  • Chauhan, M. S., Sharma, A., Phartiyal, B., & Kumar, K. (2013). Holocene vegetation and climatic variations in Central India: A study based on multiproxy evidences. Journal of Asian Earth Sciences, 77, 45–58.

    Article  ADS  Google Scholar 

  • Clark, R. L. (1982). Point count estimation of charcoal in pollen preparations and thin sections of sediments. Pollen et spores, 24, 523–535.

    Google Scholar 

  • Conedera, M., Tinner, W., Neff, C., Meurer, M., Dickens, A. F., & Krebs, P. (2009). Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quaternary Science Reviews, 28, 555–576.

    Article  ADS  Google Scholar 

  • Court-Picon, M., Buttler, A., & de Beaulieu, J. L. (2005). Modern pollen– Vegetation relationships in the Champsaur valley (French Alps) and their potential in the interpretation of fossil pollen records of past cultural landscapes. Review of Palaeobotany and Palynology, 135, 13–39. https://doi.org/10.1016/j.revpalbo.2005.02.003

    Article  Google Scholar 

  • Demske, D., Tarasov, P. E., Leipe, C., Kotlia, B. S., Joshi, L. M., & Long, T. (2016). Record of vegetation, climate change, human impact and retting of hemp in Garhwal Himalaya (India) during the past 4600 years. The Holocene, 26(10), 1661–1675.

    Article  ADS  Google Scholar 

  • Devi, U., Sharma, P., Rana, J. C., & Sharma, A. (2014). Phytodiversity assessment in Sangla valley, Northwest Himalaya, India. Check List, 10(4), 740–760.

    Article  Google Scholar 

  • Dimri, A. P., Yasunari, T., Kotlia, B. S., Mohanty, U. C., & Sikka, D. R. (2016). Indian winter monsoon: Present and past. Earth Science Reviews, 163, 297–322. https://doi.org/10.1016/j.earscirev.2016.10.008

    Article  ADS  Google Scholar 

  • DOA, (2009). District agricultural plan: Kinnaur, H.P., Volume–V.

  • Draganits, E., Gier, S., Hofmann, C. C., Janda, C., Bookhagen, B., & Grasemann, B. (2014). Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (India, NW Himalaya). Journal of Asian Earth Sciences, 90, 157–172.

    Article  ADS  Google Scholar 

  • Duan, R. L., Hou, G. L., Wei, H. C., Xu, Q. H., & Gao, J. Y. (2021). The characteristics and environmental implications of dung pollen assemblages of grazing livestock in alpine meadow in the eastern Qinghai-Tibetan Plateau. Frontiers of Ecology and Evolution, 9, 685942. https://doi.org/10.3389/fevo.2021.685942

    Article  Google Scholar 

  • Enache, M. D., & Cumming, B. F. (2006). Tracking recorded fires using charcoal morphology from the sedimentary sequence of Prosser Lake, British Columbia (Canada). Quaternary Research, 65(02), 282–292.

    Article  ADS  Google Scholar 

  • Erdtman, G. (1943). An introduction to pollen analysis. Waltham.

    Google Scholar 

  • Faegri, K., & Iverson, J. (1989). Text book of pollen analysis. John Wiley & Sons Ltd..

    Google Scholar 

  • Gairola, S., Rawal, R. S., & Todaria, N. P. (2008). Forest vegetation patterns along an altitudinal gradient in sub-alpine zone of west Himalaya, India. African Journal of Plant Science, 2(6), 42–48.

    Google Scholar 

  • Gerasimidis, A., Panajiotidis, S., Hicks, S., & Athanasiadis, N. (2006). An eight-year record of pollen deposition in the Pieria mountains (N. Greece) and its significance for interpreting fossil pollen assemblages. Review of Palaeobotany and Palynology, 141(3-4), 231–243.

    Article  Google Scholar 

  • Ghosh, R., Bruch, A. A., Portmann, F., Bera, S., Paruya, D. K., Morthekai, P., & Ali, S. N. (2017). A modern pollen–climate dataset from the Darjeeling area, eastern Himalaya: Assessing its potential for past climate reconstruction. Quaternary Science Reviews, 174, 63–79. https://doi.org/10.1016/j.quascirev.2017.09.002

    Article  ADS  Google Scholar 

  • Githumbi, E., Fyfe, R., Gaillard, M. J., Trondman, A. K., Mazier, F., Nielsen, A. B., Poska, A., Sugita, S., Woodbridge, J., Azuara, J., & Feurdean, A. (2022). European pollen-based REVEALS land-cover reconstructions for the Holocene: Methodology, mapping and potentials. Earth System Science Data, 14, 1581–1619. https://doi.org/10.5194/essd-14-1581-2022

    Article  ADS  Google Scholar 

  • Grimm, E. C. (1987). CONISS A FORTRAN 77 program for stratigraphically constraint cluster analysis by the method of incremental sum of squares. Computers and Geosciences, 13, 13–35.

    Article  ADS  Google Scholar 

  • Grimm, E.C. (2011). TILIA 1.7.16. Illinois State Museum. Research and Collection Center. Springfield USA.

  • Gupta, H. P., & Sharma, C. (1986). Pollen flora of Northwest Himalaya. Indian Association of Palynostratigraphers.

    Google Scholar 

  • Hirao, A. S., Kameyama, Y., Ohara, M., Isagi, Y., & Kudo, G. (2006). Seasonal changes in pollinator activity influence pollen dispersal and seed production of the alpine shrub Rhododendron aureum (Ericaceae). Molecular Ecology, 15, 1165–1173.

    Article  CAS  PubMed  Google Scholar 

  • Huang, K., Zheng, Z., Liao, W., Cao, L., Zheng, Y., Zhang, H., & Cheddadi, R. (2014). Reconstructing late Holocene vegetation and fire histories in monsoonal region of southeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 393, 102–110.

    Article  ADS  Google Scholar 

  • Iglesias, V., Yospin, G. I., & Whitlock, C. (2015). Reconstruction of fire regimes through integrated paleoecological proxy data and ecological modeling. Frontiers in plant science, 5, 785.

    Article  PubMed  PubMed Central  Google Scholar 

  • IPCC, Pörtner, H. O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., & Rama, B. (2022). Climate change 2022: Impacts, adaptation and vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056. https://doi.org/10.1017/9781009325844

    Chapter  Google Scholar 

  • Jackson, S. T. (1990). Pollen source area and representation in small lakes of the northeastern United States. Review of Palaeobotany and Palynology, 63(1-2), 53–76.

    Article  Google Scholar 

  • Joshi, R., Sambhav, K., & Singh, S. P. (2018). Near surface temperature lapse rate for treeline environment in western Himalaya and possible impacts on ecotone vegetation. Tropical Ecology, 59(2), 197–209.

    Google Scholar 

  • Kakkar, R. K. (1988). Geology and tectonic setting of Central Crystalline rocks of southern part of Higher Himachal Himalaya. Journal of the Geological Society of India, 31(2), 243–250.

    Google Scholar 

  • Kar, R., Bajpai, R., & Mishra, K. (2016). Modern pollen rain in Kedarnath: implications for past vegetation and climate. Current Science, 110, 296–298.

    Google Scholar 

  • Kar, R., Bajpai, R., & Singh, A. D. (2015). Modern pollen assemblages from Hamtah and Chhatru glaciers, Lahaul-Spiti, India: Implications for pollen-vegetation relationship in an alpine arid region of western Himalaya. Quaternary International, 371, 102–110.

    Article  ADS  Google Scholar 

  • Kar, R., Mishra, K., Quamar, M. F., Mohanty, R. B., Agrawal, S., Tripathi, S., & Mishra, A. K. (2022). A high-altitude calibration set of modern biotic proxies from the Western Himalaya, India: Pollen–vegetation relation, anthropogenic and palaeoclimatic implications. Catena, 211, 106011.

    Article  CAS  Google Scholar 

  • Kobe, F., Bezrukova, E. V., Leipe, C., Shchetnikov, A. A., Goslar, T., Wagner, M., & Tarasov, P. E. (2020). Holocene vegetation and climate history in Baikal Siberia reconstructed from pollen records and its implications for archaeology. Archaeological Research in Asia, 23, 100209.

    Article  Google Scholar 

  • Lal, C., & Prasher, R. S. (2016). Traditional knowledge systems and conservation practices in tribal society of Western Himalayas: A case study of district Kinnaur of Himachal Pradesh. International Journal of Farm Sciences, 6(3), 159–171.

    Google Scholar 

  • Li, F., Gaillard, M. J., Xu, Q., Bunting, M. J., Li, Y., Li, J., Mu, H., Lu, J., Zhang, P., Zhang, S., Cui, Q., Zhang, Y., & Shen, W. (2018). A review of relative pollen productivity estimates from temperate China for pollen-based quantitative reconstruction of past plant cover. Frontiers in Plant Science, 9, 1214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, S. P., Hu, Y. Q., Ferguson, D. K., Yao, J. X., & Li, C. S. (2013). Pollen dispersal in a mountainous area based on pollen analysis of four natural trap types from Lugu Lake, southwest China. Journal of Systematics and Evolution, 51(4), 413–425.

    Article  Google Scholar 

  • Liu, H. Y., Wei, F. L., Kan, L., Zhu, J. L., & Wang, H. Y. (2008). Determinants of pollen dispersal in the east Asian steppe at different spatial scales. Review of Palaeobotany and Palynology, 149, 219–228. https://doi.org/10.1016/j.revpalbo.2007.12.008

    Article  Google Scholar 

  • MacDonald, G. M., Velichko, A. A., Kremenetski, C. V., Borisova, O. K., Goleva, A. A., Andreev, A. A., Cwynar, L. C., Riding, R. T., Forman, S. L., Edwards, T. W., & Aravena, R. (2000). Holocene treeline history and climate change across northern Eurasia. Quaternary Research, 53(3), 302–311.

    Article  ADS  Google Scholar 

  • Magny, M., Bégeot, C., Guiot, J., Marguet, A., & Billaud, Y. (2003). Reconstruction and palaeoclimatic interpretation of mid-Holocene vegetation and lake-level changes at Saint-Jorioz, Lake Annecy, French Pre-Alps. The Holocene, 13(2), 265–275.

    Article  ADS  Google Scholar 

  • Maikhuri, R. K., Rao, K. S., & Semwal, R. L. (2001). Changing scenario of Himalayan agroecosystems: loss of agrobiodiversity, an indicator of environmental change in Central Himalaya, India. Environmentalist, 21(1), 23–39.

    Article  Google Scholar 

  • Malik, Z. A., Pandey, R., & Bhatt, A. B. (2016). Anthropogenic disturbances and their impact on vegetation in Western Himalaya, India. Journal of Mountain Science, 13(1), 69–82.

    Article  Google Scholar 

  • Markgraf, V. (1980). Pollen dispersal in a mountain area. Grana, 19(2), 127–146.

    Article  Google Scholar 

  • Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., & Connors, S. (2018). An IPCC Special Report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Sustainable Development and Efforts to Eradicate Poverty. pp.630.

  • Mazier, F., Broström, A., Gaillard, M. J., Sugita, S., Vittoz, P., & Buttler, A. (2008). Pollen productivity estimates and relevant source area of pollen for selected plant taxa in a pasture woodland landscape of the Jura Mountains (Switzerland). Vegetation History and Archaeobotany, 17, 479–495.

    Article  Google Scholar 

  • Mazier, F., Galop, D., Brun, C., & Buttler, A. (2006). Modern pollen assemblage from grazed vegetation in western Pyrenees, France: A numerical tool for more precise reconstruction of past cultural landscapes. The Holocene, 16(1), 91–103.

    Article  ADS  Google Scholar 

  • Mishra, A. K., Mohanty, R. B., Ghosh, R., Mishra, K., Shukla, U. K., & Kar, R. (2022). Modern pollen–vegetation relationships along an altitudinal transect in the Western Higher Himalaya, India: Palaeoclimatic and anthropogenic implications. The Holocene, 32(8), 835–852.

    Article  ADS  Google Scholar 

  • Mondal, P. P., & Zhang, Y. (2018). Research progress on changes in land use and land cover in the western Himalayas (India) and effects on ecosystem services. Sustainability, 10(12), 4504.

    Article  Google Scholar 

  • Moore, P. D., Webb, J. A., & Collison, M. E. (1991). Pollen analysis. Blackwell scientific publications.

    Google Scholar 

  • Novenko, E. Y., Eremeeva, A. P., & Chepurnaya, A. A. (2014). Reconstruction of Holocene vegetation, tree cover dynamics and human disturbances in central European Russia, using pollen and satellite data sets. Vegetation History and Archaeobotany, 23, 109–119.

    Article  Google Scholar 

  • Oliver, J. E., & Fairbridge, R. W. (2005). Mountain and Valley winds. In J. E. Oliver (Ed.), Encyclopedia of World Climatology. Springer.

    Chapter  Google Scholar 

  • Pai, D. S., Bandgar, A., Devi, S., Musale, M., Badwaik, M. R., Kundale, A. P., Gadgil, S., Mohapatra, M., & Rajeevan, M. (2020). New normal dates of onset/progress and withdrawal of southwest monsoon over India; CRS Research Report, RR No 3/2020. Indian Meteorological Department.

    Google Scholar 

  • Pandit, M. K., Manish, K., & Koh, L. P. (2014). Dancing on the roof of the world: Ecological transformation of the Himalayan landscape. Bio Science, 64(11), 980–992.

    Google Scholar 

  • Patterson, H. I. I. W. A., Edwards, K. J., & Maguire, D. J. (1987). Microscopic charcoal as a fossil indicator of fire. Quaternary Science Reviews, 6, 3–23.

    Article  ADS  Google Scholar 

  • Prentice, I. C., Guiot, J., Huntley, B., Jolly, D., & Cheddadi, R. (1996). Reconstructing biomes from palaeoecological data: A general method and its application European pollen data at 0 and 6 ka. Climate Dynamics, 12(3), 185–181.

    Article  ADS  Google Scholar 

  • Quamar, M. F. (2020). Surface pollen distribution from Akhnoor of Jammu District (Jammu and Kashmir), India: Implications for the interpretation of fossil pollen records. Palynology, 44(2), 270–279.

    Article  Google Scholar 

  • Rahman, A., Shah, R. A., Rathi, A., Yadava, M. G., & Kumar, S. (2023). Transport pathways of black carbon to a high mountain Himalayan lake during late Holocene: Inferences from nitrogen isotopes of black carbon. Palaeogeography, Palaeoclimatology, Palaeoecology, 633, 111865. https://doi.org/10.1016/j.palaeo.2023.111865

    Article  Google Scholar 

  • Ranhotra, P. S., & Bhattacharyya, A. (2010). Holocene palaeoclimate and glacier fluctuations within Baspa valley, Kinnaur, Himachal Pradesh. Journal of Geological Society of India, 75(3), 527–532.

    Article  Google Scholar 

  • Ranhotra, P. S., & Bhattacharyya, A. (2013). Modern vegetational distribution and pollen dispersal study within Gangotri glacier valley, Garhwal Himalaya. Journal of Geological Society of India, 82, 133–142.

    Article  Google Scholar 

  • Ranhotra, P. S., Sharma, J., Bhattacharyya, A., Basavaiah, N., & Dutta, K. (2018). Late Pleistocene-Holocene vegetation and climate from the palaeolake sediments, Rukti valley, Kinnaur, Himachal Himalaya. Quaternary International, 479, 79–89.

    Article  ADS  Google Scholar 

  • Rau, M. A. (1973). Flora and vegetation of the Himalaya. In: Mani, ecology and biogeography in India (Vol. 23, pp. 247–280). Dr. W Junk BV Publishers.

    Google Scholar 

  • Roy, I., Ranhotra, P. S., Shekhar, M., Bhattacharyya, A., Ghosh, R., & Sharma, Y. K. (2021). Modern pollen-vegetation relationships along the vegetation gradient in the Bhagirathi Valley, Western Himalaya, India. Journal of Geological Society of India, 97(6), 571–578.

    Article  Google Scholar 

  • Roy, I., Ranhotra, P. S., Shekhar, M., Bhattacharyya, A., Pal, A., Sharma, Y., & Singh, U. (2018). Over-representation of some taxa in surface pollen analysis misleads the interpretation of fossil pollen spectra in terms of extant vegetation. Tropical Ecology, 59, 339–350.

    Google Scholar 

  • Roy, I., Ranhotra, P. S., Tomar, N., Shekhar, M., Agrawal, S., Bhattacharyya, A., Kumar, P., Patil, S. K., & Sharma, R. (2022). Reconstruction of the late Holocene climate variability from the summer monsoon dominated Bhagirathi valley, western Himalaya. Journal of Asian Earth Sciences, 227, 105080. https://doi.org/10.1016/j.jseaes.2022.105080

    Article  Google Scholar 

  • Roy, I., Tomar, N., Singh, A., Shekhar, M., Ranhotra, P. S., Bhattacharyya, A., & Sharma, Y. K. (2022). Hydroclimatic and glacial variabilities in the Himalayan and Tibetan regions since last glacial maxima: A synthesis. In Climate change: Impacts, responses and sustainability in the Indian Himalaya (pp. 73–102). Springer International Publishing.

    Chapter  Google Scholar 

  • Schickhoff, U., Singh, R. B., & Mal, S. (2016). Climate change and dynamics of glaciers and vegetation in the Himalaya: An overview. In Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya: Contributions toward Future Earth Initiatives (pp. 1–26). Springer, Cham.

    Google Scholar 

  • Schwark, L., Zink, K., & Lechterbeck, J. (2002). Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments. Geology, 30(5), 463–466.

    Article  ADS  CAS  Google Scholar 

  • Scott, A. C., & Damblon, F. (2010). Charcoal: Taphonomy and significance in geology, botany and archaeology. Palaeogeography, Palaeoclimatology, Palaeoecology, 291(1-2), 1–10.

    Article  ADS  Google Scholar 

  • Sharma, S., Sati, S. P., Basaviaha, N., Pandey, S., Sundriyal, Y. P., Rana, N., & Juyal, N. (2022). Mid to late Holocene climate variability, forest fires and floods entwined with human occupation in the upper Ganga catchment, India. Quaternary Science Reviews, 293, 107725.

    Article  Google Scholar 

  • Singh, S. P., Sharma, S., & Dhyani, P. P. (2019). Himalayan arc and treeline: Distribution, climate change responses and ecosystem properties. Biodiversity and Conservation, 28(8-9), 1997–2016.

    Article  Google Scholar 

  • Srivastava, J., & Farooqui, A. (2013). Late Holocene mangrove dynamics and coastal environmental changes in the Northern Cauvery River Delta. Quaternary International, 298, 45–56.

    Article  ADS  Google Scholar 

  • Sugita, S. (1993). A model of pollen source area for an entire lake surface. Quaternary Research, 39, 239–244.

    Article  ADS  Google Scholar 

  • Thayyen, R. J., & Dimri, A. P. (2014). Factors controlling Slope Environmental Lapse Rate (SELR) of temperature in the monsoon and cold-arid glacio-hydrological regimes of the Himalaya. The Cryosphere Discussions, 08(6), 5645–5686.

    ADS  Google Scholar 

  • Tweddle, J. C., Edwards, K. J., & Fieller, N. R. (2005). Multivariate statistical and other approaches for the separation of cereal from wild Poaceae pollen using a large Holocene dataset. Vegetation History and Archaeobotany, 14(1), 15–30.

    Article  Google Scholar 

  • Valsecchi, V., Chase, B. M., Slingsby, J. A., Carr, A. S., Quick, L. J., Meadows, M. E., & Reimer, P. J. (2013). A high resolution 15,600-year pollen and microcharcoal record from the Cederberg Mountains, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 387, 6–16.

    Article  ADS  Google Scholar 

  • Veena, M. P., Achyuthan, H., Eastoe, C., & Farooqui, A. (2014). A multi-proxy reconstruction of monsoon variability in the late Holocene, South India. Quaternary International, 325, 63–73.

    Article  ADS  Google Scholar 

  • Verma, S., Rahman, A., Shah, R. A., Agrawal, R. K., Yadava, M. G., & Kumar, S. (2023). Late Holocene fire and precipitation history of the Kashmir Himalaya: Inferences from black carbon in lake sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 613, 111401. https://doi.org/10.1016/j.palaeo.2023.111401

    Article  Google Scholar 

  • Vishnu-Mittre, R. D. (1971). Studies of pollen content of moss cushions in relation to forest composition in the Kashmir valley. Geophytology, 1, 84–96.

    Google Scholar 

  • Wei, H. C., Yuan, Q., Xu, Q. H., Qin, Z. J., Wang, L. Q., Fan, Q. S., & Shan, F. (2018). Assessing the impact of human activities on surface pollen assemblages in Qinghai Lake Basin, China. Journal of Quaternary Science, 33, 702–712. https://doi.org/10.1002/jqs.3046

    Article  ADS  Google Scholar 

  • Wright, R. P. (2010). The ancient Indus: Urbanism, economy, and society. Cambridge University Press.

    Google Scholar 

  • Wu, D., Zhao, X., Liang, S., Zhou, T., Huang, K., Tang, B., & Zhao, W. (2015). Time-lag effects of global vegetation responses to climate change. Global Change Biology, 21(9), 3520–3531.

    Article  ADS  PubMed  Google Scholar 

  • Wu, H., Guiot, J., Brewer, S., Guo, Z., & Peng, C. (2007). Dominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa. Proceedings of the National Academy of Sciences, 104(23), 9720–9724.

    Article  ADS  CAS  Google Scholar 

  • Yang, S., Zheng, Z., Huang, K., Zong, Y., Wang, J., Xu, Q., & Li, J. (2012). Modern pollen assemblages from cultivated rice fields and rice pollen morphology: Application to a study of ancient land use and agriculture in the Pearl River Delta, China. The Holocene, 22(12), 1393–1404.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, Birbal Sahni Institute of Palaeosciences, Lucknow for institute facilities to carry out the work to get published. Our kind gratitude is extended to the Principal Chief Conservator of Forest (PCCF) and other Officials and staff of Forest Department, Himachal Pradesh for giving kind permission and help in sample collection from the study area. We sincerely acknowledge Dr. Surendra Paul, Director, India Meteorological Department (IMD), Shimla HP, and the officials for their kind help in providing the Kalpa Meteorological Station data that helped to relate the vegetation of the region with climate. The author BDC highly acknowledges the German Academic Exchange Service (DAAD) for the fellowship.

Author contributions

PSR, NT, and IR conceptualized the study objectives and design. Sample collection and material preparation was done by PSR, NT, AS, and MS. Data generation, sample identification, data interpretation and analysis, and preparation of maps and figures were performed jointly by NT, IR, PSR, SS, AS, MS, and BDC. The first draft of the manuscript was written by NT and IR. All other authors PSR, MS, AB, CPS, BDC, and AS commented on previous versions of the manuscript and modified it. All authors read and approved the final manuscript.

Funding

We are thankful to Birbal Sahni Institute of Palaeosciences, Lucknow under the Quaternary Himalayan project, and Space Applications Centre (SAC-ISRO), Ahmedabad (SHRESTI programme SAC/EPSA/BPSG/ALPINE/SHRESTI/09/2019) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parminder Singh Ranhotra.

Ethics declarations

Conflict of interest

All the authors hereby declare that they have no financial interest or any other conflict of interest.

Ethics approval and consent to participate

The authors declare that the ethical approval and consent to participate are not applicable here.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

Supplementary Figure S1 Pollen Plates -Arboreal taxa: 1. Abies (Pinaceae), 2. Picea (Pinaceae), 3. Pinus (Pinaceae), 4. Cedrus (Pinaceae), 5. Juniperus (Cupressaceae), 6. Betula (Betulaceae), 7. Alnus (Betulaceae), 8. Carpinus (Carpinaceae), 9. Corylus (Corylaceae), 10. Quercus (Fagaceae), 11. Juglans (Juglandaceae), 12. Salix (Salicaceae),13. Rosaceae, 14. Hippophae (Eleagnaceae). Non-Arboreal taxa: 15. Ephedra (Ephedraceae), 16. Artemisia (Asteraceae), 17. Liguliflorae (Asteraceae), 18. Tubuliflorae (Asteraceae), 19. Brassicaceae, 20. Amaranthaceae, 21. Potentilla (Rosaceae), 22. Ranunculaceae, 23. Thalictrum (Ranunculaceae), 24. Apiaceae. 25. Polygonaceae, 26. Polygonum (Polygonaceae), 27. Rumex (Polygonaceae),28. Fagopyrum (Polygonaceae), 29. Caryophyllaceae, 30. Galium (Rubiaceae), 31. Lamiaceae, 32. Saxifragaceae, 33. Gentianaceae, 34. Sedum (Crassulaceae), 35. Rutaceae, 36. Fabaceae, 37. Solanaceae, 38. Primula (Primulaceae), 39. Urtica (Urticaceae), 40. Viburnum (Caprifoliaceae), 41. Impatiens (Balsaminaceae), 42. Potamogeton (Potamogetonaceae), 43. Typha (Typhaceae), 44. Poaceae (< 35μm), 45. Cerealia Poaceae (> 35 μm), 46. Cyperaceae, 47. Monolete spore, 48. Trilete spore. (JPG 25063 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomar, N., Roy, I., Shri, S. et al. Modern pollen dispersal in relation to present vegetation distribution and land use in the Baspa valley, Kinnaur, western Himalayas. Environ Monit Assess 196, 194 (2024). https://doi.org/10.1007/s10661-024-12340-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12340-8

Keywords

Navigation