Skip to main content
Log in

Pollen productivity estimates and relevant source area of pollen for selected plant taxa in a pasture woodland landscape of the Jura Mountains (Switzerland)

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

Relevant source area of pollen (RSAP) and pollen productivity for 11 key taxa characteristic of the pasture woodland landscape of the Jura Mountains, Switzerland, were estimated using pollen assemblages from moss polsters at 20 sites. To obtain robust pollen productivity estimates (PPEs), we used vegetation survey data at a fine spatial-resolution (1 × 1 m2) and randomized locations for sampling sites, techniques rarely used in palynology. Three Extended R value (ERV) submodels and three distance-weighting methods for plant abundance calculation were applied. Different combinations of the submodels and distance-weighting methods provide slightly different estimates of RSAP and PPEs. Although ERV submodel 1 using 1/d (d = distance in meters) best fits the dataset, PPE values for heavy pollen types (e.g. Abies) were sensitive to the method used for distance-weighting. Taxon-specific distance-weighting methods, such as Prentice’s model, emphasize the intertaxonomic differences in pollen dispersal and deposition, and are thus theoretically sound. For the dataset obtained in this project, Prentice’s model was more appropriate than other distance-weighting methods to estimate PPEs. Most of the taxa have PPEs equal to (Fagus, Plantago media and Potentilla-type), or higher (Abies, Picea, Rubiaceae and Trollius europaeus) than Poaceae (PPE = 1). Acer, Cyperaceae, and Plantago montana-type are low pollen producers. This set of PPEs will be useful for reconstructing heterogeneous, mountainous pasture woodland landscapes from fossil pollen records. The RSAP for moss polsters in this semi-open landscape region is ca. 300 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen ST (1970) The relative pollen productivity and pollen representation of north European trees, and correction factors for tree pollen spectra. Determined by surface pollen analyses from forests. C. A. Reitzels, Kovenhavn

  • Anderson J, Bugmann H, Dearing JA, Gaillard M-J (2006) Linking palaeoenvironmental data and models to understand the past and to predict the future. Trends Ecol Evol 21:696–704

    Article  Google Scholar 

  • Beug H-J (2004). Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiet. Pfeil, München

  • Bloesch B, Calame F (1994) L’air du temps. In: Capt G, Jean-Petit-Matile O, Reymond J (eds) Le Parc jurassien vaudois. 24 heures, Lausanne, pp 35–45

  • Boyd WE (1986) The role of mosses in modern pollen analysis: the influence of moss morphology on pollen entrapment. Pollen et spores 28:243–256

    Google Scholar 

  • Bradshaw RHW (1981) Modern pollen representation factors for woods in South-West England. J Ecol 69:45–70

    Article  Google Scholar 

  • Broström A, Gaillard M-J, Ihse M, Odgaard B (1998) Pollen-landscape relationships in modern analogues of ancient cultural landscapes in southern Sweden—a first step towards quantification of vegetation openess in the past. Veget Hist Archaeobot 7:189–201

    Article  Google Scholar 

  • Broström A, Sugita S, Gaillard M-J (2004) Pollen productivity estimates for the reconstruction of past vegetation cover in the cultural landscape of southern Sweden. Holocene 14:368–381

    Article  Google Scholar 

  • Broström A, Sugita S, Gaillard M-J, Pilesjo P (2005) Estimating the spatial scale of pollen dispersal in the cultural landscape of southern Sweden. Holocene 15:252–262

    Article  Google Scholar 

  • Broström A, Binney H, Bunting MJ, Duffin K, Fyfe R, Gaillard M-J, Hicks S, Hjelle KL, Mazier F, Meltsov V, Nielsen AB, Poska A, Räsänen S, Soepboer W, von Stedingk H, Sugita S, Suutari H (2008) Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation—a review. Veget Hist Archaeobot (in press)

  • Bunting MJ, Middleton D (2005) Modelling pollen dispersal and deposition using HUMPOL software, including simulating windroses and irregular lakes. Rev Palaeobot Palynol 134:185

    Article  Google Scholar 

  • Bunting MJ, Gaillard M-J, Sugita S, Middleton R, Broström A (2004) Vegetation structure and pollen source area. Holocene 14:651–660

    Article  Google Scholar 

  • Bunting MJ, Armitage R, Binney HA, Waller M (2005) Estimates of ‘relative pollen productivity’ and ‘relevant source area of pollen’ for major tree taxa in two Norfolk (UK) woodlands. Holocene 15:459–465

    Article  Google Scholar 

  • Calcote R (1995) Pollen source area and pollen productivity: evidence from forest hollows. J Ecol 83:591–602

    Article  Google Scholar 

  • Caseldine C (1981) Surface pollen studies accross Bankhead Moss, Fife, Scotland. J Biogeogr 8:7–25

    Article  Google Scholar 

  • Chamberlain AC (1975) The movement of particules in plant communities. In: Monteith JL (ed) Vegetation and atmosphere, vol 1. Principles. Academic Press, London, pp 155–203

  • Crowder AA, Cuddy DG (1973) Pollen in a small river basin: wilton Creek, Ontario. In: Birks HJ, West RG (eds) Quaternary Plant Ecology. Blackwell, Oxford, pp 61–77

    Google Scholar 

  • Cundill PR (1991) Comparisons of moss polster and pollen trap data: a pilot study. Grana 30:301–308

    Article  Google Scholar 

  • Eisenhut G (1961) Untersuchungen über die Morphologie und Ökologie der Pollenkörner heimischer und fremdländischer Waldbäume (translated into English by Jackson ST, Jaumann P, 1989). Paul Parey, Hamburg

  • Faegri K, Iversen J (1989) Textbook of pollen analysis. Wiley, Chichester

    Google Scholar 

  • Fagerlind F (1952) The real significance of pollen diagrams. Botaniska notiser 105:185–224

    Google Scholar 

  • Gaillard M-J (2007) Detecting Human impact in the pollen record. In: Elias SA (ed) Encyclopedia of Quaternary Science. Elsevier, Amsterdam, pp 2570–2595

    Google Scholar 

  • Gallandat J-D, Gillet F, Havlicek E, Perrenoud A (1995) Typologie et systématique phyto-écologique des pâturages boisés du Jura suisse. Institut de botanique, Université de Neuchâtel

  • Gillet F, Gallandat J-D (1996) Integrated synusial phytosociology: some notes on a new, multiscalar approach to vegetation analysis. J Veget Sci 7:13–18

    Article  Google Scholar 

  • Gobat J-M, Duckert O, Gallandat J-D (1989) Quelques relations “microtopographie-sols-végétation” dans les pelouses pseudo-alpines du Jura suisse: expemples d’un système naturel et d’un système anthropisé. Bulletin de la société Neuchâteloise des Sciences naturelles 112:5–17

    Google Scholar 

  • Gregory PH (1973) The microbiology of the atmosphere. Leornard Hill, London, S. l

  • Heim J (1970) Les relations entre les spectres polliniques récents et la végétation actuelle en europe occidentale. Dissertation, Université de Louvain, Louvain

  • Hicks S (2001) The use of annual arboreal pollen deposition values for delimiting tree-lines in the landscape and exploring models of pollen dispersal. Rev Palaeobot Palynol 117:1–29

    Article  Google Scholar 

  • Hicks S, Tinsley H, Huusko A, Jensen C, Hattestrand M, Gerasimides A, Kvavadze E (2001) Some comments on spatial variation in arboreal pollen deposition: first records from the Pollen Monitoring Programme (PMP). Rev Palaeobot Palynol 117:183–194

    Article  Google Scholar 

  • Jackson ST (1990) Pollen source area and representation in small lakes of Northeastern United States. Rev Palaeobot Palynol 63:53–76

    Article  Google Scholar 

  • Jackson ST, Kearsey JB (1998) Quantitative representation of local forest composition in forest-floor pollen assemblages. J Ecol 86:474–490

    Article  Google Scholar 

  • Mazier F (2006) Modélisation de la relation entre pluie pollinique actuelle, végétation et pratiques pastorales en moyenne montagne (Pyrenees et Jura). Application pour l’interprétation des données polliniques fossiles, Thesis Université de Franche-Comté/Université de Neuchâtel, Besançon

  • Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell, Oxford

    Google Scholar 

  • Mulder C, Janssen CR (1998) Application of Chernobyl Caesium-137 fallout and naturally occurring lead-210 for standardization of time in moss samples: recent pollen-flora relationships in the Allgäuer Alpen, Germany. Rev Palaeobot Palynol 103:23–40

    Article  Google Scholar 

  • Mulder C, Janssen CR (1999) Occurence of pollen and spore in relation to present-day vegetation in a Dutch heathland area. J Veget Sci 10:87–100

    Article  Google Scholar 

  • Nielsen AB (2004) Modelling pollen sedimentation in Danish lakes at c. AD 1800: an attempt to validate the POLLSCAPE model. J Biogeogr 31:1693–1709

    Article  Google Scholar 

  • Nielsen AB, Odgaard BV (2005) Reconstructing land cover from pollen assemblages from small lakes in Denmark. Rev Palaeobot Palynol 133:1–21

    Article  Google Scholar 

  • Nielsen AB, Sugita S (2005) Estimating relevant source area of pollen for small Danish lakes around AD 1800. Holocene 15:1006–1020

    Article  Google Scholar 

  • Parsons RW, Prentice CI (1981) Statistical approaches to R-values and the pollen—vegetation relationship. Rev Palaeobot Palynol 32:127–152

    Article  Google Scholar 

  • Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quat Res 23:76–86

    Article  Google Scholar 

  • Prentice IC (1988) Records of vegetation in time and space: the principles of pollen analysis. In: Huntley B, Webb T III (eds) Vegetation history. Kluwer, Dordrecht, pp 17–42

    Google Scholar 

  • Prentice CI, Parsons RW (1983) Maximum likelihood linear calibration of pollen spectra in terms of forest composition. Biometrics 39:1051–1057

    Article  Google Scholar 

  • Prentice CI, Webb T III (1986) Pollen percentages, tree abundances and the Fagerlind effect. J Quat Sci 1:35–43

    Article  Google Scholar 

  • Prentice CI, Berglund BE, Olsson T (1987) Quantitative forest-composition sensing characteristics of pollen samples from Swedish lakes. Boreas 16:43–54

    Article  Google Scholar 

  • Punt W, Blackmoire S, Clarke GSC, Hoen PP (1976–1995) The northwest European pollen flora. Elsevier, Amsterdam

  • Räsänen S, Hicks S, Odgaard BV (2004) Pollen deposition in mosses and in a modified ‘Tauber trap’ from Hailuoto, Finland: what exactly do the mosses record? Rev Palaeobot Palynol 129:103–116

    Article  Google Scholar 

  • Reille M (1992–1998) Pollen et spores d’Europe et d’Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, Marseille

  • Sjögren P (2005) Palaeoecological investigatons of pasture woodland in Combe des Amburnex, Swiss Jura Mountains. Thesis, Institut für Planzenwissenschaften, Bern, p 85

  • Sjögren P (2006) The development of pasture woodland in the southwest Swiss Jura Mountains over 2000 years, based on three adjacent peat profiles. Holocene 16:210–223

    Article  Google Scholar 

  • Sjögren P, Lamentowicz M (2007) Human and climatic impact on mires—a case study of Les Amburnex mire, Swiss Jura Mountains. Veget Hist Archaeobot doi:10.1007/s00334-007-0095-9

  • Sjögren P, van Leeuwen JFN, van der Knaap WO, van der Borg K (2006) The effect of climate variability on pollen productivity, AD 1975–2000, recorded in a Sphagnum peat hummock. Holocene 16:277–286

    Article  Google Scholar 

  • Soepboer W, Sugita S, Lotter AF, van Leeuwen JFN, van der Knaap WO (2007a) Pollen productivity estimates for quantitative reconstruction of vegetation cover on the Swiss Plateau. Holocene 1:65–77

    Article  Google Scholar 

  • Soepboer W, Vervoort JM, Sugita S, LotterAF (2007b) Evaluating Swiss pollen productivity estimates using a simulation approach. Veget Hist Archaeobot doi:10.1007/s00334-007-0128-4

  • Sugita S (1993) A model of pollen source area for an entire lake surface. Quat Res 39:239–244

    Article  Google Scholar 

  • Sugita S (1994) Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. J Ecol 82:881–897

    Article  Google Scholar 

  • Sugita S (1998) Modelling pollen representation of vegetation. In: Gaillard M-J, Berglund BE (eds) Quantification of land surfaces cleared of forest during the Holocene—modern pollen/vegetation/landscape relationship as an aid to the interpretation of fossil pollen data. Fischer, Stuttgart, pp 1–16

    Google Scholar 

  • Sugita S (2007a) Theory of quantitative reconstruction of vegetation. I: pollen from large lakes REVEALS regional vegetation composition. Holocene 17:229–241

    Article  Google Scholar 

  • Sugita S (2007b) Theory of quantitative reconstruction of vegetation II: all you need is LOVE. Holocene 17:243–257

    Article  Google Scholar 

  • Sugita S, Gaillard M-J, Broström A (1999) Landscape openness and pollen records: a simulation approach. Holocene 9:409–421

    Article  Google Scholar 

  • Sutton OG (1953) Micrometeorology. McGraw-Hill, New York

    Google Scholar 

  • Van der Knaap WO, van Leeuwen JFN, Fankhauser A, Ammann B (2000) Palynostratigraphy of the last centuries in Switzerland based on 23 lake and mire deposits: chronostratigraphic pollen markers, regional patterns, and local histories. Rev Palaeobot Palynol 108:85–142

    Article  Google Scholar 

  • Van der Knaap WO, van Leeuwen JFN, Ammann B (2001) Seven years of annual pollen influx at the forest limit in the Swiss Alps studied by pollen traps: relations to vegetation and climate. Rev Palaeobot Palynol 117:31–52

    Article  Google Scholar 

  • Van der Knaap WO, van Leeuwen JFN (2003) Climate-pollen relationships AD 1901–1996 in two small mires near the forest limit in the northern and central Swiss Alps. Holocene 13:809–828

    Article  Google Scholar 

  • Vittoz P (1998) Flore et végétation du Parc jurassien vaudois: Typologie, écologie et dynamique des milieux, Université de Lausanne, Lausanne

    Google Scholar 

  • Webb T III, Howe SE, Bradshaw R, Heide KM (1981) Estimating plant abundances from pollen percentages: the use of regression analysis. Rev Palaeobot Palynol 34:269–300

    Article  Google Scholar 

Download references

Acknowledgments

The study has been made possible with the help of a number of people to whom we are profoundly grateful: Zuzu Gadallah for supervision in the interpretation of vegetation from CIR aerial photos and for organizing the agreement between WSL and Swisstopo for the use of aerial photographs; Jesse Kalwij for sending CIR aerial photos; Sylvain Meier and Patrick Fouvy (Service des Forêts, de la Faune et de la Nature, canton de Vaud) for providing forest inventories; François Gillet for his continuous advice and help in the use of Phytobase software; Anne Vignot for her guidance in the use of GIS software; Florencia Oberli for preparing the pollen samples; Jacqueline van Leuwen for pollen analysis; Thomas Hickler and Jean-Daniel Tissot for spending long hours on computer programming. Thanks to François and his students team, Sylvie, Mireille, Olivier and Cécile for their precious and encouraging assistance during the fieldwork. The manuscript was improved thanks to the helpful comments and suggestions from the two referees, Sheila Hicks and André F. Lotter. This paper is a contribution to the POLLANDCAL (POLlen-LANDscape CALibration) network (http://www.geog.ucl.ac.uk/ecrc/pollandcal/) sponsored by Nordforsk and co-ordinated by M.-J. Gaillard (University of Kalmar, Sweden). We are very thankful to all POLLANDCAL members for useful and inspiring discussions during the numerous network workshops (2001–2005). Specific thanks are addressed to Anne-Brigitte Nielsen and Per Sjögren for all the discussions we had on the subject of PPEs. This research was funded by the National Centre of Competence in Research (NCCR) Plant survival of the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Mazier.

Additional information

Communicated by M.J. Bunting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazier, F., Broström, A., Gaillard, MJ. et al. Pollen productivity estimates and relevant source area of pollen for selected plant taxa in a pasture woodland landscape of the Jura Mountains (Switzerland). Veget Hist Archaeobot 17, 479–495 (2008). https://doi.org/10.1007/s00334-008-0143-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-008-0143-0

Keywords

Navigation