Skip to main content

Advertisement

Log in

Evaluating the effects of DEM and soil data resolution on streamflow and sediment yield simulations in the Upper Blue Nile basin

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

While the availability of “big data” on biophysical parameters through citizen science and/or from public/private sources is expected to help in addressing data scarcity issues, there is little understanding of whether and/or how such data will improve watershed simulations. This research aimed to evaluate whether improvements in resolutions of Digital Elevation Model (DEM) and soil data will enhance streamflow and sediment yield simulations and thereby improve soil and water management decisions. The study was conducted in two different-sized watersheds (Anjeni and Gilgel Abay with ~ 1 km2 and ~ 1655 km2 area, respectively) in the Upper Blue Nile basin in Ethiopia. Effects of DEM and soil data resolutions on streamflow and sediment yield were evaluated using the Soil and Water Assessment Tool (SWAT). The results showed that the effect of DEM and soil data resolution on streamflow and sediment yield simulation was scale dependent finer resolution DEM and soil datasets improved streamflow and sediment yield simulations in the smaller Anjeni watershed, whereas DEM resolution had no effect in the bigger Gilgel Abay watershed. Small watersheds are often used to understand watershed processes, and thus the use of finer-resolution spatial data for watershed simulations could result in better results. Findings from the smaller Anjeni watershed suggested that the combined use of finer resolution DEM and soil data could potentially improve sediment yield simulations although the lack of observed sediment yield data did not allow verification of this at the larger Gilgel Abay watershed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be supplied upon request.

References

  • Abbaspour, K. C., Johnson, C. A., & van Genuchten, MTh. (2004). Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone Journal, 3, 1340–1352.

    Article  Google Scholar 

  • Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., & Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333, 413–430.

    Article  Google Scholar 

  • Abdo, K. S., Fiseha, B. M., Rientjes, T. H. M., Gieske, A. S. M., & Haile, A. T. (2009). Assessment of climate change impacts on the hydrology of Gilgel Abay catchment in Lake Tana basin, Ethiopia. Journal of Hydrology, 23, 3661–3669.

    Google Scholar 

  • Adem, A. A., Dile, Y. T., Worqlul, A. W., Ayana, E. K., Tilahun, S. A., & Steenhuis, T. S. (2020). Assessing digital soil inventories for predicting streamflow in the headwaters of the Blue Nile. Hydrology, 7(8), 8.

    Article  Google Scholar 

  • Arabi, M., Govindaraju, R. S., Hantush, M. M., & Engel, B. A. (2006). Role of watershed subdivision on evaluation of long-term impact of best management practices on water quality. Journal of the American Water Resources Association, 42, 513–528.

    Article  CAS  Google Scholar 

  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: Model development. Journal of the American Water Resources Association, 34, 73–89.

    Article  CAS  Google Scholar 

  • ASF-engineering (2015). ASF radiometric terrain corrected products: algorithm theoretical basis document. Alaska Satellite Facility, Alaska.

  • Bayabil, H. K., Stoof, C. R., Lehmann, J. C., Yitaferu, B., & Steenhuis, T. S. (2015). Assessing the potential of biochar and charcoal to improve soil hydraulic properties in the humid Ethiopian Highlands: The Anjeni watershed. Geoderma, 243–244, 115–123. https://doi.org/10.1016/j.geoderma.2014.12.015

    Article  CAS  Google Scholar 

  • Bayabil, H. K., Tilahun, S. A., Collick, A. S., Yitaferu, B., & Steenhuis, T. S. (2010). Are runoff processes ecologically or topographically driven in the (sub) humid Ethiopian highlands? The case of the Maybar watershed. Ecohydrology, 3, 457–466. https://doi.org/10.1002/eco.170

    Article  Google Scholar 

  • Bayabil, H. K., Yitaferu, B., & Steenhuis, T. S. (2017). Shift from transport limited to supply limited sediment concentrations with the progression of monsoon rains in the Upper Blue Nile Basin. Earth Surface Processes and Landforms. https://doi.org/10.1002/esp.4103

    Article  Google Scholar 

  • Bayabil, H. K., Dile, Y. T., Tebebu, T. Y., Engda, T. A., & Steenhuis, T. S. (2019). Evaluating infiltration models and pedotransfer functions: Implications for hydrologic modeling. Geoderma, 338, 159–169. https://doi.org/10.1016/j.geoderma.2018.11.028

    Article  Google Scholar 

  • Berihun, M. L., Tsunekawa, A., Haregeweyn, N., Meshesha, D. T., Adgo, E., Tsubo, M., Masunaga, T., Fenta, A. A., Sultan, D., Yibeltal, M., & Ebabu, K. (2019a). Hydrological responses to land use/land cover change and climate variability in contrasting agro-ecological environments of the Upper Blue Nile basin, Ethiopia. Science of the Total Environment, 689, 347–365.

    Article  CAS  Google Scholar 

  • Berihun, M. L., Tsunekawa, A., Haregeweyn, N., Meshesha, D. T., Adgo, E., Tsubo, M., Masunaga, T., Fenta, A. A., Sultan, D., & Yibeltal, M. (2019b). Exploring land use/land cover changes, drivers and their implications in contrasting agro-ecological environments of Ethiopia. Land Use Policy, 87, 104052.

    Article  Google Scholar 

  • Berihun, M. L., Tsunekawa, A., Haregeweyn, N., Dile, Y. T., Tsubo, M., Fenta, A. A., Meshesha, D. T., Ebabu, K., Sultan, D., & Srinivasan, R. (2020). Evaluating runoff and sediment responses to soil and water conservation practices by employing alternative modeling approaches. Science of the Total Environment, 747, 141118.

    Article  CAS  Google Scholar 

  • Berihun, M. L., Tsunekawa, A., Haregeweyn, N., Tsubo, M., Fenta, A. A., Ebabu, K., Sultan, D., & Dile, Y. T. (2022). Reduced runoff and sediment loss under alternative land capability-based land use and management options in a sub-humid watershed of Ethiopia. Journal of Hydrology: Regional Studies, 40, 100998.

    Google Scholar 

  • Betrie, G. D., Mohamed, Y. A., van Griensven, A., & Srinivasan, R. (2011). Sediment management modelling in the Blue Nile Basin using SWAT model. Hydrology and Earth System Sciences, 15, 807–818.

    Article  Google Scholar 

  • Bloschl, G., & Sivapalan, M. (1996). Scale issues in hydrological modeling. Hydrological Processes, 77, 190. https://doi.org/10.1029/96EO00131

    Article  Google Scholar 

  • Boluwade, A., Madramootoo, C., (2013). Modeling the impacts of spatial heterogeneity in the castor watershed on runoff, sediment, and phosphorus loss using SWAT: I. Impacts of spatial variability of soil properties. Water, Air, & Soil Pollution 224. https://doi.org/10.1007/s11270-013-1692-0

  • Bossio, D., Geheb, K., & Critchley, W. (2010). Managing water by managing land: Addressing land degradation to improve water productivity and rural livelihoods §. Agricultural Water Management, 97, 536–542. https://doi.org/10.1016/j.agwat.2008.12.001

    Article  Google Scholar 

  • Bunch, M. J., Morrison, K. E., Parkes, M. W., & Venema, H. D. (2011). Promoting health and well-being by managing for social–ecological resilience: the potential of integrating ecohealth and water resources management approaches. Ecology and society, 16(1).

  • Caminiti, J. E. (2004). Catchment modelling—A resource manager’s perspective. Environmental Modelling and Software, 19, 991–997. https://doi.org/10.1016/j.envsoft.2003.11.002

    Article  Google Scholar 

  • Chaubey, I., Cotter, A. S., Costello, T. A., & Soerens, T. S. (2005). Effect of DEM data resolution on SWAT output uncertainty. Hydrological Processes, 19(3), 621–628. https://doi.org/10.1002/hyp.5607

    Article  CAS  Google Scholar 

  • Chowdhuri, I., Pal, S. C., Saha, A., Chakrabortty, R., & Roy, P. (2021). Evaluation of different DEMs for gully erosion susceptibility mapping using in-situ field measurement and validation. Ecological Informatics, 65, 101425.

    Article  Google Scholar 

  • Clarke, N., Bizimana, J. C., Dile, Y., Worqlul, A., Osorio, J., Herbst, B., Richardson, J. W., Srinivasan, R., Gerik, T. J., Williams, J., Jones, C. A., & Jeong, J. (2017). Evaluation of new farming technologies in Ethiopia using the Integrated Decision Support System (IDSS). Agricultural Water Management, 180, 267–279. https://doi.org/10.1016/j.agwat.2016.07.023

    Article  Google Scholar 

  • Conway, D., & Mike, H. (1996). The impacts of climate variability and future climate change in the Nile Basin on water resources in Egypt. International Journal of Water Resources Development, 12, 277–296.

    Article  Google Scholar 

  • Daggupati, P., Pai, N., Ale, S., Douglas-Mankin, K. R., Zeckoski, R. W., Jeong, J., Parajuli, P. B., Saraswat, D., & Youssef, M. A. (2015). A recommended calibration and validation strategy for hydrologic and water quality models. Transactions of the ASABE, 58(6), 1705–1719.

    Article  Google Scholar 

  • Dile, Y. T., & Srinivasan, R. (2014). Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: An application in the Blue Nile River Basin (in-press, DOI: 10.1111/jawr.12182). Journal of the American Water Resources Association, 50, 1226–1241. https://doi.org/10.1111/jawr.12182

    Article  Google Scholar 

  • Dile, Y. T., Berndtsson, R., & Setegn, S. G. (2013). Hydrological response to climate change for Gilgel Abay River, in the Lake Tana Basin - Upper Blue Nile Basin of Ethiopia. PLoS ONE, 8, e79296. https://doi.org/10.1371/journal.pone.0079296

    Article  CAS  Google Scholar 

  • Dile, Y. T., Daggupati, P., George, C., Srinivasan, R., & Arnold, J. (2016a). Introducing a new open source GIS user interface for the SWAT model. Environmental Modelling and Software, 85, 129–138. https://doi.org/10.1016/j.envsoft.2016.08.004

    Article  Google Scholar 

  • Dile, Y. T., Karlberg, L., Daggupati, P., Srinivasan, R., Wiberg, D., & Rockström, J. (2016b). Assessing the implications of water harvesting intensification on upstream–downstream ecosystem services: A case study in the Lake Tana basin. Science of the Total Environment, 542, 22–35. https://doi.org/10.1016/j.scitotenv.2015.10.065

    Article  CAS  Google Scholar 

  • Dile, Y. T., Karlberg, L., Srinivasan, R., & Rockström, J. (2016c). Investigation of the curve number method for surface runoff estimation in tropical regions. JAWRA Journal of the American Water Resources Association, 52, 1155–1169. https://doi.org/10.1111/1752-1688.12446

    Article  Google Scholar 

  • Dile, Y. T., Tekleab, S., Kaba, E. A., Gebrehiwot, S. G., Worqlul, A. W., Bayabil, H. K., Yimam, Y. T., Tilahun, S. A., Daggupati, P., Karlberg, L., & Srinivasan, R. (2018). Advances in water resources research in the Upper Blue Nile basin and the way forward: A review. Journal of Hydrology, 560, 407–423. https://doi.org/10.1016/j.jhydrol.2018.03.042

    Article  CAS  Google Scholar 

  • Dowling, T. I., Brooks, M., & Read, A. M. (2011). Continental hydrologic assessment using the 1 second (30m) resolution Shuttle Radar Topographic Mission DEM of Australia. 19th International Congress on Modelling and Simulation Modsim, 2011, 2395–2401.

    Google Scholar 

  • Easton, Z. M., Fuka, D., White, E., Collick, A. S., Ashagre, B. B., McCartney, M., & Awulachew, S. (2010). A multi basin SWAT model analysis of runoff and sedimentation in the Blue Nile, Ethiopia. Hydrology and Earth System Sciences, 14, 1827–1841.

    Article  Google Scholar 

  • ENMSA. (2016). The Ethiopian national metreological services agency metreological data report. Addis Ababa, Ethiopia.

  • ESA, (2018). Climate Change Initiative Land Cover products [WWW Document]. https://www.esa-landcover-cci.org/ (accessed 8.1.18).

  • Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorf, D. (2007). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45, 1–33. https://doi.org/10.1029/2005RG000183.1.INTRODUCTION

    Article  Google Scholar 

  • Fenta, A. A., Tsunekawa, A., Haregeweyn, N., Tsubo, M., Yasuda, H., Kawai, T., Ebabu, K., Berihun, M. L., Belay, A. S., & Sultan, D. (2021). Agroecology-based soil erosion assessment for better conservation planning in Ethiopian river basins. Environmental Research, 195, 110786.

    Article  CAS  Google Scholar 

  • Geza, M., & McCray, J. E. (2008). Effects of soil data resolution on SWAT model stream flow and water quality predictions. Journal of Environmental Management, 88(3), 393–406.

    Article  CAS  Google Scholar 

  • Ghaffari, G. (2011). The impact of DEM resolution on runoff and sediment modelling results. Research Journal of Environmental Sciences, 5(8), 691.

    Article  Google Scholar 

  • Guth, P. L. (2006). Geomorphometry from SRTM: Comparison to NED. Photogrammetric Engineering and Remote Sensing, 72, 269–277.

    Article  Google Scholar 

  • Guzman, C. D., Zimale, F. A., Tebebu, T. Y., Bayabil, H. K., Tilahun, S. A., Yitaferu, B., Rientjes, T. H. M., & Steenhuis, T. S. (2017). Modeling discharge and sediment concentrations after landscape interventions in a humid monsoon climate: The Anjeni watershed in the highlands of Ethiopia. Hydrological Processes, 31, 1239–1257. https://doi.org/10.1002/hyp.11092

    Article  Google Scholar 

  • Hampton, S. E., Strasser, C. A., Tewksbury, J. J., Gram, W. K., Budden, A. E., Batcheller, A. L., Duke, C. S., & Porter, J. H. (2013). Big data and the future of ecology. Frontiers in Ecology and the Environment, 11, 156–162. https://doi.org/10.1890/120103

    Article  Google Scholar 

  • Hengl, T., Heuvelink, G. B. M., Kempen, B., Leenaars, J. G. B., Walsh, M. G., Shepherd, K. D., Sila, A., MacMillan, R. A., De Jesus, J. M., Tamene, L., & Tondoh, J. E. (2015). Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PLoS ONE, 10, 1–26. https://doi.org/10.1371/journal.pone.0125814

    Article  CAS  Google Scholar 

  • Herweg, K., & Ludi, E. (1999). The performance of selected soil and water conservation measures—case studies from Ethiopia and Eritrea. Catena, 36(1–2), 99–114.

    Article  CAS  Google Scholar 

  • Hollander, M., & Wolfe, D. (1999). Nonparametric statistical methods. John Wiley & Sons.

    Google Scholar 

  • Hundecha, Y., & Bárdossy, A. (2004). Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. Journal of Hydrology, 292, 281–295. https://doi.org/10.1016/j.jhydrol.2004.01.002

    Article  Google Scholar 

  • Hurni, H., Tato, K., & Zeleke, G. (2005). The implications of changes in population, land use, and land management for surface runoff in the Upper Nile Basin area of Ethiopia. Mountain Research and Development, 25, 147–154.

    Article  Google Scholar 

  • Hurni, H., (1988). Degradation and conservation of the resources in the Ethiopian highlands.

  • Institut, G., Hurni, H., (1982). Soil conservation research project.

  • Ireson, A., Makropoulos, C., & Maksimovic, C. (2006). Water resources modelling under data scarcity: Coupling MIKE BASIN and ASM groundwater model. Water Resources Management, 20, 567–590. https://doi.org/10.1007/s11269-006-3085-2

    Article  Google Scholar 

  • JPL, (2014). Jet Propulsion Laboratory. California Institute of Technology. U.S. releases enhanced Shuttle Land Elevation Data [WWW Document]. https://www.jpl.nasa.gov/news/news.php?release=2014-321 (accessed 11.5.18).

  • Kaba, E. A., Worqlul, A. W., & Steenhuis, T. S. (2015). Evaluation of stream water quality data generated from MODIS images in modeling total suspended solid emission to a freshwater lake. Science of the Total Environment, 523, 170–177. https://doi.org/10.1016/j.scitotenv.2015.03.132

    Article  CAS  Google Scholar 

  • Kim, U., & Kaluarachchi, J. J. (2009). Climate change impacts on water resources in the Upper Blue Nile River Basin, Ethiopia. JAWRA Journal of the American Water Resources Association, 45, 1361–1378.

    Article  Google Scholar 

  • Lee, M., Park, G., Park, M., Park, J., Lee, J., & Kim, S. (2010). Evaluation of non-point source pollution reduction by applying Best Management Practices using a SWAT model and QuickBird high resolution satellite imagery. Journal of Environmental Sciences, 22, 826–833. https://doi.org/10.1016/S1001-0742(09)60184-4

    Article  Google Scholar 

  • Lee, J. G., Selvakumar, A., Alvi, K., Riverson, J., Zhen, J. X., Shoemaker, L., & Lai, F. H. (2012). A watershed-scale design optimization model for stormwater best management practices. Environmental Modelling & Software, 37, 6–18. https://doi.org/10.1016/j.envsoft.2012.04.011

    Article  Google Scholar 

  • Li, R., Zhu, A. X., Song, X., Li, B., Pei, T., & Qin, C. (2012). Effects of spatial aggregation of soil spatial information on watershed hydrological modelling. Hydrological Processes, 26, 1390–1404. https://doi.org/10.1002/hyp.8277

    Article  Google Scholar 

  • Lin, S., Jing, C., Chaplot, V., Yu, X., Zhang, Z., Moore, N., & Wu, J. (2010). Effect of DEM resolution on SWAT outputs of runoff, sediment and nutrients. Hydrology and Earth System Sciences Discussions, 7(4), 4411–4435.

    Google Scholar 

  • MacMillan, R. A., Martin, T. C., Earle, T. J., & Mc Nabb, D. H. (2003). Automated analysis and classification of landforms using high-resolution digital elevation data: Applications and issues. Canadian Journal of Remote Sensing, 29, 592–606. https://doi.org/10.5589/m03-031

    Article  Google Scholar 

  • Moriasi, D. N., Arnold, J. G., Liew, M. W. V., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50, 885–900.

    Article  Google Scholar 

  • MoWIE. (2016). The Ethiopian ministry of water, irrigation and energy (MoWIE) hydrological data rport. Addis Ababa, Ethiopia.

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptualmodels: Part 1. — A discussion of principles. Journal of Hydrology, 10, 282–290.

    Article  Google Scholar 

  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R. & Williams, J. R. (2012). Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute.

  • NGA. (2014). National geo-spatial intelligence agency—NGA releases high-resolution elevation data to public [WWW Document]. https://www.nga.mil/MediaRoom/News/Pages/NGAreleaseshigh-resolutionelevationdatatopublic.aspx. Accessed 23 Nov 2022

  • Petrucci, G., & Bonhomme, C. (2014). The dilemma of spatial representation for urban hydrology semi-distributed modelling : Trade-offs among complexity, calibration and geographical data. Journal of Hydrology, 517, 997–1007.

    Article  Google Scholar 

  • Reddy, A. S., & Reddy, M. J. (2015). Evaluating the influence of spatial resolutions of DEM on watershed runoff and sediment yield using SWAT. Journal of Earth System Science, 124(7), 1517–1529.

    Article  Google Scholar 

  • Rockstrom, J., Karlberg, L., Wani, S. P., Barron, J., Hatibu, N., Oweis, T., Bruggeman, A., Farahani, J., & Qiang, Z. (2010). Managing water in rainfed agriculture—The need for a paradigm shift. Agricultural Water Management, 97, 543–550.

    Article  Google Scholar 

  • Saxton, K., & Rawls, W. (2006). Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal, 70, 1569–1578. https://doi.org/10.2136/sssaj2005.0117

    Article  CAS  Google Scholar 

  • Setargie, T. A., Tsunekawa, A., Haregeweyn, N., Tsubo, M., Fenta, A. A., Berihun, M. L., Sultan, D., Yibeltal, M., Ebabu, K., Nzioki, B., & Meshesha, T. M. (2023). Random forest–based gully erosion susceptibility assessment across different agro-ecologies of the Upper Blue Nile basin, Ethiopia. Geomorphology, 431, 108671.

    Article  Google Scholar 

  • Setegn, S. G., Srinivasan, R., Dargahi, B., & Melesse, A. M. (2009). Spatial delineation of soil erosion vulnerability in the Lake Tana Basin, Ethiopia. Hydrological Processes, 23, 3738–3750.

    Article  Google Scholar 

  • Setegn, S. G., Dargahi, B., Srinivasan, R., & Melesse, A. M. (2010a). Modeling of sediment yield from anjeni-gauged watershed, Ethiopia using swat model. Journal of the American Water Resources Association, 46, 514–526.

    Article  CAS  Google Scholar 

  • Setegn, S. G., Srinivasan, R., Melesse, A. M., & Dargahi, B. (2010b). SWAT model application and prediction uncertainty analysis in the Lake Tana Basin, Ethiopia. Hydrological Processes, 367, 357–367.

    Article  Google Scholar 

  • Setegn, S. G., Rayner, D., Melesse, A. M., Dargahi, B., & Srinivasan, R. (2011). Impact of climate change on the hydroclimatology of Lake Tana Basin, Ethiopia. Water Resources Research, 47, W04511.

    Article  Google Scholar 

  • Sheshukov, A., Daggupati, P., & Douglas-mankin, K. R. (2011). High spatial resolution soil data for watershed modeling: 2. Assessing impacts on watershed hydrologic response. Journal of Natural and Environmental Sciences, 2, 32–41.

    Google Scholar 

  • Slater, J. A., Garvey, G., Johnston, C., Haase, J., Heady, B., Kroenung, G., & Little, J. (2006). The SRTM data “finishing” process and products. Photogrammetric Engineering and Remote Sensing, 72, 237–247. https://doi.org/10.1109/ICC.2004.1312874

    Article  Google Scholar 

  • Srivastava, P., Hamlett, J. M., Robillard, P. D., & Day, R. L. (2002). Watershed optimization of best management practices using AnnAGNPS and a genetic algorithm. Water Resources Research, 38, 3-1–3-14. https://doi.org/10.1029/2001WR000365

    Article  Google Scholar 

  • Steenhuis, T. S., Collick, A. S., Easton, Z. M., Leggesse, E. S., Bayabil, H. K., White, E. D., Awulachew, S. B., Adgo, E., & Ahmed, A. A. (2009). Predicting discharge and sediment for the Abay (Blue Nile) with a simple model. Hydrological Processes, 23, 3728–3737. https://doi.org/10.1002/hyp.7513

    Article  Google Scholar 

  • Tilahun, S. A., Guzman, C. D., Zegeye, A. D., Engda, T. A., Collick, A. S., Rimmer, A., & Steenhuis, T. S. (2013a). An efficient semi-distributed hillslope erosion model for the subhumid Ethiopian Highlands. Hydrology and Earth System Sciences, 17, 1051–1063. https://doi.org/10.5194/hess-17-1051-2013

    Article  Google Scholar 

  • Tilahun, S. A., Mukundan, R., Demisse, B. A., Engda, T. A., Guzman, C. D., Tarakegn, B. C., Easton, Z. M., Collick, A. S., Zegeye, A. D., Schneiderman, E. M., Parlange, J.-Y., & Steenhuis, T. S. (2013b). A saturation excess erosion model. Transactions of the ASABE, 56, 681–695. https://doi.org/10.13031/2013.42675

    Article  Google Scholar 

  • Townsend, M., Thrush, S. F., Lohrer, A. M., Hewitt, J. E., Lundquist, C. J., Carbines, M., & Felsing, M. (2014). Overcoming the challenges of data scarcity in mapping marine ecosystem service potential. Ecosystem Services, 8, 44–55. https://doi.org/10.1016/j.ecoser.2014.02.002

    Article  Google Scholar 

  • Uhlenbrook, S., Mohamed, Y., & Gragne, A. S. (2010). Analyzing catchment behavior through catchment modeling in the Gilgel Abay, Upper Blue Nile River Basin, Ethiopia. Hydrology and Earth System Sciences, 14, 2153–2165.

    Article  Google Scholar 

  • Vågen, T., Shepherd, K. D., Walsh, M. G., Winowiecki, L., Desta, L. T., Tondoh, J. E. (2010). AfSIS technical specifications: soil health surveillance. Africa Soil Information Service (AfSIS). Nairobi, Kenya: World Agroforestry Centre.

  • Wale, A., Rientjes, T. H. M., Gieske, A. S. M., & Getachew, H. A. (2009). Ungauged catchment contributions to Lake Tana’s water. Hydrological Processes, 3693, 3682–3693.

    Article  Google Scholar 

  • Watson, F. G. R., Grayson, R. B., Vertessy, R. A., & McMahon, T. A. (1998). Large-scale distribution modelling and the utility of detailed ground data. Hydrological Processes, 12, 873–888. https://doi.org/10.1002/(SICI)1099-1085(199805)12:6%3c873::AID-HYP660%3e3.0.CO;2-A

    Article  Google Scholar 

  • Worqlul, A. W., Ayana, E. K., Yen, H., Jeong, J., MacAlister, C., Taylor, R., Gerik, T. J., & Steenhuis, T. S. (2018a). Evaluating hydrologic responses to soil characteristics using SWAT model in a paired-watersheds in the Upper Blue Nile Basin. CATENA. https://doi.org/10.1016/j.catena.2017.12.040

    Article  Google Scholar 

  • Worqlul, A.W., Dile, Y.T., Bizimana, J.C., Jeong, J., Gerik, T.J., Srinivasan, R., Richardson, J.W. and Clarke, N. (2018b). Multi-dimensional evaluation of simulated small-scale irrigation intervention: A case study in Dimbasinia watershed, Ghana. Sustainability (Switzerland), 10, 1–23. https://doi.org/10.3390/su10051531

    Article  Google Scholar 

  • Ye, X., Zhang, Q., & Viney, N. R. (2011). The effect of soil data resolution on hydrological processes modelling in a large humid watershed. Hydrological Processes, 25, 130–140. https://doi.org/10.1002/hyp.7823

    Article  Google Scholar 

  • Zhang, J. X., Chang, K. T., & Wu, J. Q. (2008). Effects of DEM resolution and source on soil erosion modelling: A case study using the WEPP model. International Journal of Geographical Information Science, 22, 925–942. https://doi.org/10.1080/13658810701776817

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Ethiopian National Meteorological Services Agency and the Ethiopian Ministry of Water, Energy, and Irrigation for providing us with observed weather and streamflow data, respectively.

Funding

This publication was partly made possible through support provided by the Feed the Future Innovation Lab for Small Scale Irrigation through the US Agency for International Development, under the terms of Contract No. USAID AID-OAA-A-13–00055. The opinions expressed herein are those of the authors and do not necessarily reflect the views of the US Agency for International Development.

Author information

Authors and Affiliations

Authors

Contributions

Data collection, statistical analysis, data interpretation, and manuscript writing were all done by the first author, YTD. The statistical analysis, data interpretation, literature review, development process, and writing of certain manuscript portions were all the responsibility of YTD and HKB. EKA, AWW, RS, NL, and MLB made contributions to this study through the compilation of the paper, the drafting of the literature review, editing, and comments on the overall research work.

Corresponding author

Correspondence to Haimanote K. Bayabil.

Ethics declarations

Ethical approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Competing interests

The authors declare the following financial interests/personal relationships which may be considered potential competing interests: Yihun T. Dile reports financial support was provided by the US Agency for International Development.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 46 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dile, Y.T., Bayabil, H.K., Ayana, E.K. et al. Evaluating the effects of DEM and soil data resolution on streamflow and sediment yield simulations in the Upper Blue Nile basin. Environ Monit Assess 196, 71 (2024). https://doi.org/10.1007/s10661-023-12189-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12189-3

Keywords

Navigation