Skip to main content
Log in

Potential applications of green-synthesized iron oxide NPs for environmental remediation

  • Review
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Water pollution is a significant issue worldwide due to an increase in anthropogenic activities. Heavy metals and dyes are among the most problematic contaminants that threaten the environment and negatively impact human health. Iron oxide nanoparticles (IONPs) synthesized using green methods have shown potential in these areas due to their significant adsorption capacity and photocatalytic potential. The size and morphology of biogenic IONPs can be tailored depending upon the concentration of the reducing medium and metal salt precursor. Green-synthesized IONPs have been found to be effective, economical, and environmentally friendly with their large surface area, making them suitable for removing toxic matter from contaminated water. Furthermore, they exhibit antibacterial potential against harmful microorganisms. The study emphasizes the importance of using such environmentally friendly tools to remove heavy metal ions and organic compounds from contaminated water. The underlying mechanism for the adsorption of heavy metal ions, photocatalytic degradation of organic compounds, and antimicrobial action has been explored in detail. The future prospective for the beneficial utilization of biogenic IONPs has also been signified to provide a detailed overview.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

UV-Vis:

UV-visible

FTIR:

Fourier transform infra-red

XRD:

X-ray diffraction

SEM:

Scanning electron microscopy

FESEM:

Field emission scanning electron microscopy

EDX:

Energy-dispersive X-ray

TEM:

Tunneling electron microscopy

BET:

Brunauer–Emmett–Teller

References

  • Adhikari, A. A., Chhetri, K., Acharya, D., Pant, B., & Adhikari, A. A. (2022). Green synthesis of iron oxide nanoparticles using Psidium guajava L. leaves extract for degradation of organic dyes and anti-microbial applications. Catalysts, 12(10), 1188. https://doi.org/10.3390/catal12101188

    Article  CAS  Google Scholar 

  • Ahmed, A., Usman, M., Yu, B., Shen, Y., & Cong, H. (2021). Sustainable fabrication of hematite (α-Fe2O3) nanoparticles using biomolecules of Punica granatum seed extract for unconventional solar-light-driven photocatalytic remediation of organic dyes. Journal of Molecular Liquids, 339, 116729. https://doi.org/10.1016/j.molliq.2021.116729

    Article  CAS  Google Scholar 

  • Ali, A., Zafar, H., Zia, M., ul Haq, I., Phull, A. R., Ali, J. S., & Hussain, A. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications, 9, 49–67. https://doi.org/10.2147/NSA.S99986

    Article  CAS  Google Scholar 

  • Al-Karagoly, H., Rhyaf, A., Naji, H., Albukhaty, S., Almalki, F. A., Alyamani, A. A., et al. (2022). Green synthesis, characterization, cytotoxicity, and antimicrobial activity of iron oxide nanoparticles using Nigella sativa seed extract. Green Processing and Synthesis, 11(1), 254–265. https://doi.org/10.1515/gps-2022-0026

    Article  CAS  Google Scholar 

  • Amutha, S., & Sridhar, S. (2015). Green synthesis of magnetic iron oxide nanoparticle using leaves of Glycosmis mauritiana and their antibacterial activity against human pathogens. Journal of Innovations in Pharmaceutical and Biological Sciences (JIPBS), 5(2), 22–26.

    Google Scholar 

  • Andrade-Zavaleta, K., Chacon-Laiza, Y., Asmat-Campos, D., & Raquel-Checca, N. (2022). Green synthesis of superparamagnetic iron oxide nanoparticles with Eucalyptus globulus extract and their application in the removal of heavy metals from agricultural soil. Molecules, 27(4), 1367. https://doi.org/10.3390/molecules27041367

    Article  CAS  Google Scholar 

  • Annan, E., Nyankson, E., Agyei-Tuffour, B., Armah, S. K., Nkrumah-Buandoh, G., Hodasi, J. A. M., & Oteng-Peprah, M. (2021). Synthesis and characterization of modified kaolin-bentonite composites for enhanced fluoride removal from drinking water. Advances in Materials Science and Engineering, 2021. https://doi.org/10.1155/2021/6679422

  • Arsalani, S., Guidelli, E. J., Araujo, J. F. D. F., Bruno, A. C., & Baffa, O. (2018). Green synthesis and surface modification of iron oxide nanoparticles with enhanced magnetization using natural rubber latex. ACS Sustainable Chemistry and Engineering, 6(11), 13756–13765. https://doi.org/10.1021/acssuschemeng.8b01689

    Article  CAS  Google Scholar 

  • Baig, N., Kammakakam, I., Falath, W., & Kammakakam, I. (2021). Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2(6), 1821–1871. https://doi.org/10.1039/d0ma00807a

    Article  Google Scholar 

  • Beheshtkhoo, N., Kouhbanani, M. A. J., Savardashtaki, A., Amani, A. M., & Taghizadeh, S. (2018). Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material. Applied Physics A: Materials Science and Processing, 124(5). https://doi.org/10.1007/s00339-018-1782-3

  • Bhardwaj, S., Lata, S., & Garg, R. (2022). Phyto-mediated green synthesis of silver nanoparticles using Acmella oleracea leaf extract: Antioxidant and catalytic activity. Pharmacognosy Magazine, 18(77), 22. https://doi.org/10.4103/pm.pm_586_20

    Article  CAS  Google Scholar 

  • Bhuiyan, M. S. H., Miah, M. Y., Paul, S. C., Aka, T. D., Saha, O., Rahaman, M. M., et al. (2020). Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: Application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon, 6(8), e04603. https://doi.org/10.1016/j.heliyon.2020.e04603

    Article  Google Scholar 

  • Bishnoi, S., Kumar, A., & Selvaraj, R. (2018). Facile synthesis of magnetic iron oxide nanoparticles using inedible Cynometra ramiflora fruit extract waste and their photocatalytic degradation of methylene blue dye. Materials Research Bulletin, 97, 121–127. https://doi.org/10.1016/j.materresbull.2017.08.040

    Article  CAS  Google Scholar 

  • Bombin, S., LeFebvre, M., Sherwood, J., Xu, Y., Bao, Y., & Ramonell, K. M. (2015). Developmental and reproductive effects of iron oxide nanoparticles in arabidopsis thaliana. International Journal of Molecular Sciences, 16(10), 24174–24193. https://doi.org/10.3390/ijms161024174

    Article  CAS  Google Scholar 

  • Bouafia, A., Laouini, S. E., Tedjani, M. L., Ali, G. A. M., & Barhoum, A. (2022). Green biosynthesis and physicochemical characterization of Fe3O4 nanoparticles using Punica granatum L. fruit peel extract for optoelectronic applications. Textile Research Journal, 92(15–16), 2685–2696. https://doi.org/10.1177/00405175211006671

    Article  CAS  Google Scholar 

  • Cai, Y., Shen, Y., Xie, A., Li, S., & Wang, X. (2010). Green synthesis of soya bean sprouts-mediated superparamagnetic Fe 3O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 322(19), 2938–2943. https://doi.org/10.1016/j.jmmm.2010.05.009

    Article  CAS  Google Scholar 

  • Chauhan, N., Narang, J., & Jain, U. (2016). Amperometric acetylcholinesterase biosensor for pesticides monitoring utilising iron oxide nanoparticles and poly(indole-5-carboxylic acid). Journal of Experimental Nanoscience, 11(2), 111–122. https://doi.org/10.1080/17458080.2015.1030712

    Article  CAS  Google Scholar 

  • de Jesús Ruíz-Baltazar, Á., Reyes-López, S. Y., de Lourdes Mondragón-Sánchez, M., Robles-Cortés, A. I., & Pérez, R. (2019). Eco-friendly synthesis of Fe3O4 nanoparticles: Evaluation of their catalytic activity in methylene blue degradation by kinetic adsorption models. Results in Physics, 12, 989–995. https://doi.org/10.1016/j.rinp.2018.12.037

    Article  Google Scholar 

  • Demirezen, D. A., Yılmaz, Ş., Yılmaz, D. D., & Yıldız, Y. Ş. (2022). Green synthesis of iron oxide nanoparticles using Ceratonia siliqua L. aqueous extract: Improvement of colloidal stability by optimizing synthesis parameters, and evaluation of antibacterial activity against Gram-positive and Gram-negative bacteria. International Journal of Materials Research, 113(10), 849–861. https://doi.org/10.1515/ijmr-2022-0037

    Article  CAS  Google Scholar 

  • Eddy, N. O., Ukpe, R. A., Ameh, P., Ogbodo, R., Garg, R. R., & Garg, R. R. (2022). Theoretical and experimental studies on photocatalytic removal of methylene blue (MetB) from aqueous solution using oyster shell synthesized CaO nanoparticles (CaONP-O). Environmental Science and Pollution Research, 30(34), 81417–81432. https://doi.org/10.1007/s11356-022-22747-w

    Article  CAS  Google Scholar 

  • Ehrampoush, M. H., Miria, M., Salmani, M. H., & Mahvi, A. H. (2015). Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. Journal of Environmental Health Science and Engineering, 13(1), 1–7. https://doi.org/10.1186/s40201-015-0237-4

    Article  CAS  Google Scholar 

  • Gabal, R. A., Shokeir, D., & Orabi, A. (2022). Cytotoxicity and hemostatic one step green synthesis of iron nanoparticles coated with green tea for biomedical application. Trends in Sciences, 19(3). https://doi.org/10.48048/tis.2022.2062

  • Garg, R. R., Rani, P., Garg, R. R., & Eddy, N. O. (2021). Study on potential applications and toxicity analysis of green synthesized nanoparticles. Turkish Journal of Chemistry, 45(6), 1690–1706. https://doi.org/10.3906/kim-2106-59

    Article  CAS  Google Scholar 

  • Garg, R., Garg, R., Khan, M. A., Bansal, M., & Garg, V. K. (2022a). Utilization of biosynthesized silica-supported iron oxide nanocomposites for the adsorptive removal of heavy metal ions from aqueous solutions. Environmental Science and Pollution Research, 0123456789, 1–10. https://doi.org/10.21203/rs.3.rs-1394501/v1

    Article  Google Scholar 

  • Garg, R., Rani, P., Garg, R., Khan, M. A., Khan, N. A., Khan, A. H., & Américo-Pinheiro, J. H. P. (2022). Biomedical and catalytic applications of agri-based biosynthesized silver nanoparticles. Environmental Pollution, 310(June), 119830. https://doi.org/10.1016/j.envpol.2022.119830

    Article  CAS  Google Scholar 

  • Garg, R., Garg, R., Khan, A., Bansal, M., & Kumar, V. (2023). Utilization of biosynthesized silica - supported iron oxide nanocomposites for the adsorptive removal of heavy metal ions from aqueous solutions. Environmental Science and Pollution Research, 30(34), 81319–81332.

    Article  CAS  Google Scholar 

  • Garg, R., Garg, R., Okon Eddy, N., Ibrahim Almohana, A., Fahad Almojil, S., Amir Khan, M., & Ho Hong, S. (2022). Biosynthesized silica-based zinc oxide nanocomposites for the sequestration of heavy metal ions from aqueous solutions. Journal of King Saud University - Science, 34(4), 101996. https://doi.org/10.1016/j.jksus.2022.101996

    Article  Google Scholar 

  • Gautam, A., Rawat, S., Verma, L., Singh, J., Sikarwar, S., Yadav, B. C., & Kalamdhad, A. S. (2018). Green synthesis of iron nanoparticle from extract of waste tea: An application for phenol red removal from aqueous solution. Environmental Nanotechnology, Monitoring and Management, 10, 377–387. https://doi.org/10.1016/j.enmm.2018.08.003

    Article  Google Scholar 

  • Geneti, S. T., Mekonnen, G. A., Murthy, H. C. A., Mohammed, E. T., Ravikumar, C. R., Gonfa, B. A., & Sabir, F. K. (2022). Biogenic synthesis of magnetite nanoparticles using leaf extract of Thymus schimperi and their application for monocomponent removal of chromium and mercury ions from aqueous solution. Journal of Nanomaterials, 2022. https://doi.org/10.1155/2022/5798824

  • Gour, A., & Jain, N. K. (2019). Advances in green synthesis of nanoparticles. Artificial Cells, Nanomedicine and Biotechnology, 47(1), 844–851. https://doi.org/10.1080/21691401.2019.1577878

    Article  CAS  Google Scholar 

  • Gupta, R., & Padmanabhan, P. (2018). Biogenic synthesis and characterization of gold nanoparticles by a novel marine bacteria Marinobacter algicola: Progression from nanospheres to various geometrical shapes. Journal of Microbiology, Biotechnology and Food Sciences, 8(1), 732–737. https://doi.org/10.15414/jmbfs.2018.8.1.732-737

    Article  CAS  Google Scholar 

  • Gupta, V. K., Shrivastava, A. K., & Jain, N. (2001). Biosorption of chromium(VI) from aqueous solutions by green algae Spirogyra species. Water Research, 35(17), 4079–4085. https://doi.org/10.1016/S0043-1354(01)00138-5

    Article  CAS  Google Scholar 

  • Hamad, M. T. M. H., & El-Sesy, M. E. (2023). Adsorptive removal of levofloxacin and antibiotic resistance genes from hospital wastewater by nano-zero-valent iron and nano-copper using kinetic studies and response surface methodology. Bioresources and Bioprocessing, 10(1), 1–29. https://doi.org/10.1186/s40643-022-00616-1

    Article  Google Scholar 

  • Haris, M., Fatima, N., Iqbal, J., Chalgham, W., Mumtaz, A. S., El-Sheikh, M. A., & Tavafoghi, M. (2023). Oscillatoria limnetica mediated green synthesis of iron oxide (Fe2O3) nanoparticles and their diverse in vitro bioactivities. Molecules, 28(5). https://doi.org/10.3390/molecules28052091

  • Hassan, D., Khalil, A. T., Saleem, J., Diallo, A., Khamlich, S., Shinwari, Z. K., & Maaza, M. (2018). Biosynthesis of pure hematite phase magnetic iron oxide nanoparticles using floral extracts of Callistemon viminalis (bottlebrush): Their physical properties and novel biological applications. Artificial Cells, Nanomedicine and Biotechnology, 46(sup1), 693–707. https://doi.org/10.1080/21691401.2018.1434534

    Article  CAS  Google Scholar 

  • Hazel, D. (2022). One-pot facile green synthesis of iron oxide nanoparticles using aqueous stem extract of Amaranthus campestris and comparison of its characteristics with chemically synthesized iron oxide nanoparticles, 1–20.

  • Herlekar, M., Barve, S., & Kumar, R. (2014). Plant-mediated green synthesis of iron nanoparticles. Journal of Nanoparticles, 2014, 1–9. https://doi.org/10.1155/2014/140614

    Article  CAS  Google Scholar 

  • Igwe, O. U., & Nwamezie, F. (2018). Green synthesis of iron nanoparticles using flower extracts of Piliostigma thonningii and their antibacterial activity evaluation. Chemistry international, 4(1), 60–66.

    CAS  Google Scholar 

  • Izadiyan, Z., Shameli, K., Miyake, M., Hara, H., Mohamad, S. E. B., Kalantari, K., et al. (2020). Cytotoxicity assay of plant-mediated synthesized iron oxide nanoparticles using Juglans regia green husk extract. Arabian Journal of Chemistry, 13(1), 2011–2023. https://doi.org/10.1016/j.arabjc.2018.02.019

    Article  CAS  Google Scholar 

  • Jabasingh, S. A., Belachew, H., & Yimam, A. (2018). Iron oxide induced bagasse nanoparticles for the sequestration of Cr6+ ions from tannery effluent using a modified batch reactor. Journal of Applied Polymer Science, 135(36), 46683. https://doi.org/10.1002/app.46683

    Article  CAS  Google Scholar 

  • Jamzad, M., & Kamari Bidkorpeh, M. (2020). Green synthesis of iron oxide nanoparticles by the aqueous extract of Laurus nobilis L. leaves and evaluation of the antimicrobial activity. Journal of Nanostructure in Chemistry, 10(3), 193–201. https://doi.org/10.1007/s40097-020-00341-1

    Article  CAS  Google Scholar 

  • Jegadeesan, G. B., Srimathi, K., Santosh Srinivas, N., Manishkanna, S., & Vignesh, D. (2019). Green synthesis of iron oxide nanoparticles using Terminalia bellirica and Moringa oleifera fruit and leaf extracts: Antioxidant, antibacterial and thermoacoustic properties. Biocatalysis and Agricultural Biotechnology, 21, 101354. https://doi.org/10.1016/j.bcab.2019.101354

    Article  Google Scholar 

  • Kamath, V., Chandra, P., & Jeppu, G. P. (2020). Comparative study of using five different leaf extracts in the green synthesis of iron oxide nanoparticles for removal of arsenic from water. International Journal of Phytoremediation, 22(12), 1278–1294. https://doi.org/10.1080/15226514.2020.1765139

    Article  CAS  Google Scholar 

  • Kanagasubbulakshmi, S., & Kadirvelu, K. (2017). Green synthesis of iron oxide nanoparticles using Lagenaria siceraria and evaluation of its antimicrobial activity. Defence Life Science Journal, 2(4), 422. https://doi.org/10.14429/dlsj.2.12277

    Article  Google Scholar 

  • Karpagavinayagam, P., & Vedhi, C. (2019). Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vacuum, 160, 286–292. https://doi.org/10.1016/j.vacuum.2018.11.043

    Article  CAS  Google Scholar 

  • Katata-Seru, L., Moremedi, T., Aremu, O. S., & Bahadur, I. (2018). Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: Removal of nitrate from water and antibacterial activity against Escherichia coli. Journal of Molecular Liquids, 256, 296–304. https://doi.org/10.1016/j.molliq.2017.11.093

    Article  CAS  Google Scholar 

  • Kheshtzar, R., Berenjian, A., Taghizadeh, S.-M. M., Ghasemi, Y., Asad, A. G., & Ebrahiminezhad, A. (2019). Optimization of reaction parameters for the green synthesis of zero valent iron nanoparticles using pine tree needles. Green Processing and Synthesis, 8(1), 846–855. https://doi.org/10.1515/gps-2019-0055

    Article  CAS  Google Scholar 

  • Krishnaswamy, K., Vali, H., & Orsat, V. (2014). Value-adding to grape waste: Green synthesis of gold nanoparticles. Journal of Food Engineering, 142(June), 210–220. https://doi.org/10.1016/j.jfoodeng.2014.06.014

    Article  CAS  Google Scholar 

  • Kumar, V. G., & Prem, A. A. (2018). Green synthesis and characterization of iron oxide nanoparticles using Phyllanthus niruri extract. Oriental Journal of Chemistry, 34(5), 2583–2589. https://doi.org/10.13005/ojc/340547

    Article  CAS  Google Scholar 

  • Lata, S., Bhardwaj, S., & Garg, R. (2022). Nanomaterials for sensing and biosensing: Applications in agri-food diagnostics. International Journal of Environmental Analytical Chemistry, 00(00), 1–18. https://doi.org/10.1080/03067319.2022.2115895

    Article  CAS  Google Scholar 

  • Lei, C., Zhang, L., Yang, K., Zhu, L., & Lin, D. (2016). Toxicity of iron-based nanoparticles to green algae: Effects of particle size, crystal phase, oxidation state and environmental aging. Environmental pollution (Barking, Essex : 1987), 218, 505–512. https://doi.org/10.1016/j.envpol.2016.07.030

    Article  CAS  Google Scholar 

  • Lohrasbi, S., Kouhbanani, M. A. J., Beheshtkhoo, N., Ghasemi, Y., Amani, A. M., & Taghizadeh, S. (2019). Green synthesis of iron nanoparticles using plantago major leaf extract and their application as a catalyst for the decolorization of azo dye. BioNanoScience, 9(2), 317–322. https://doi.org/10.1007/s12668-019-0596-x

    Article  Google Scholar 

  • Ma, Z., Garrido-Maestu, A., & Jeong, K. C. (2017). Application, mode of action, and in vivo activity of chitosan and its micro- and nanoparticles as antimicrobial agents: A review. Carbohydrate Polymers, 176, 257–265. https://doi.org/10.1016/j.carbpol.2017.08.082

    Article  CAS  Google Scholar 

  • Madhavi, V., Prasad, T. N. V. K. V., Reddy, A. V. B., Ravindra Reddy, B., & Madhavi, G. (2013). Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 116, 17–25. https://doi.org/10.1016/j.saa.2013.06.045

    Article  CAS  Google Scholar 

  • Madubuonu, N., Aisida, S. O., Ali, A., Ahmad, I., Zhao, T. K., Botha, S., et al. (2019). Biosynthesis of iron oxide nanoparticles via a composite of Psidium guavaja-Moringa oleifera and their antibacterial and photocatalytic study. Journal of Photochemistry and Photobiology B: Biology, 199(July), 111601. https://doi.org/10.1016/j.jphotobiol.2019.111601

    Article  CAS  Google Scholar 

  • Makarov, V. V., Makarova, S. S., Love, A. J., Sinitsyna, O. V., Dudnik, A. O., Yaminsky, I. V., et al. (2014). Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of hordeum vulgare and rumex acetosa plants. Langmuir, 30(20), 5982–5988. https://doi.org/10.1021/la5011924

    Article  CAS  Google Scholar 

  • Mirza, A. U., Kareem, A., Nami, S. A. A., Khan, M. S., Rehman, S., Bhat, S. A., et al. (2018). Biogenic synthesis of iron oxide nanoparticles using Agrewia optiva and Prunus persica phyto species: Characterization, antibacterial and antioxidant activity. Journal of Photochemistry and Photobiology B: Biology, 185(June), 262–274. https://doi.org/10.1016/j.jphotobiol.2018.06.009

    Article  CAS  Google Scholar 

  • Moacă, E. A., Watz, C. G., Flondor, D., Păcurariu, C., Tudoran, L. B., Ianoș, R., et al. (2022). Biosynthesis of iron oxide nanoparticles: Physico-chemical characterization and their in vitro cytotoxicity on healthy and tumorigenic cell lines. Nanomaterials, 12(12). https://doi.org/10.3390/nano12122012

  • Mohamad Sukri, S. N. A., Shameli, K., Mei-Theng Wong, M., Teow, S. Y., Chew, J., & Ismail, N. A. (2019). Cytotoxicity and antibacterial activities of plant-mediated synthesized zinc oxide (ZnO) nanoparticles using Punica granatum (pomegranate) fruit peels extract. Journal of Molecular Structure, 1189, 57–65. https://doi.org/10.1016/j.molstruc.2019.04.026

    Article  CAS  Google Scholar 

  • Mostafa, Y. S., Alamri, S. A., Alrumman, S. A., Hashem, M., & Baka, Z. A. (2021). Green synthesis of silver nanoparticles using pomegranate and orange peel extracts and their antifungal activity against alternaria solani, the causal agent of early blight disease of tomato. Plants, 10(11), 1–18. https://doi.org/10.3390/plants10112363

    Article  CAS  Google Scholar 

  • Moustafa, M. T. (2017). Removal of pathogenic bacteria from wastewater using silver nanoparticles synthesized by two fungal species. Water Science, 31(2), 164–176. https://doi.org/10.1016/j.wsj.2017.11.001

    Article  Google Scholar 

  • Mukherjee, D., Ghosh, S., Majumdar, S., & Annapurna, K. (2016). Green synthesis of α-Fe2O3 nanoparticles for arsenic(V) remediation with a novel aspect for sludge management. Journal of Environmental Chemical Engineering, 4(1), 639–650. https://doi.org/10.1016/j.jece.2015.12.010

    Article  CAS  Google Scholar 

  • Naseem, T., & Farrukh, M. A. (2015). Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. Journal of Chemistry, 2015. https://doi.org/10.1155/2015/912342

  • Nasrullah, M., Gul, F. Z., Hanif, S., Mannan, A., Naz, S., Ali, J. S., & Zia, M. (2020). Green and chemical syntheses of CdO NPs: A comparative study for yield attributes, biological characteristics, and toxicity concerns. ACS Omega, 5(11), 5739–5747. https://doi.org/10.1021/acsomega.9b03769

    Article  CAS  Google Scholar 

  • Nikalje, A. P. (2015). Nanotechnology and its applications in medicine. Medicinal Chemistry, 5(2), 81–89. https://doi.org/10.4172/2161-0444.1000247

    Article  CAS  Google Scholar 

  • Niraimathee, V. A., Subha, V., Ernest Ravindran, R. S., & Renganathan, S. (2016). Green synthesis of iron oxide nanoparticles from Mimosa pudica root extract. International Journal of Environment and Sustainable Development, 15(3), 227–240. https://doi.org/10.1504/IJESD.2016.077370

    Article  Google Scholar 

  • Odaudu, O. R., & Akinsiku, A. A. (2022). Toxicity and cytotoxicity effects of selected nanoparticles: A review. IOP Conference Series: Earth and Environmental Science, 1054(1). https://doi.org/10.1088/1755-1315/1054/1/012007

  • Odoemelam, S. A., Oji, E. O., Okon, N., & Rajni, E. (2023). Zinc oxide nanoparticles adsorb emerging pollutants ( glyphosate pesticide ) from aqueous solutions. Environmental Monitoring and Assessment, 78195. https://doi.org/10.1007/s10661-023-11255-0

  • Patil, Y. Y., Sutar, V. B., & Tiwari, A. P. (2020). Green synthesis of magnetic iron nanoparticles using medicinal plant Tridax procumbens leaf extracts and its application as an antimicrobial agent against E. coli. International Journal of Applied Pharmaceutics, 12, 34–39. https://doi.org/10.22159/ijap.2020.v12s4.40102

    Article  Google Scholar 

  • Pereira, A. C., Gonçalves, B. B., da Silva Brito, R., Vieira, L. G., de Oliveira Lima, E. C., & Rocha, T. L. (2020). Comparative developmental toxicity of iron oxide nanoparticles and ferric chloride to zebrafish (Danio rerio) after static and semi-static exposure. Chemosphere, 254, 126792. https://doi.org/10.1016/j.chemosphere.2020.126792

    Article  CAS  Google Scholar 

  • Phumying, S., Labuayai, S., Thomas, C., Amornkitbamrung, V., Swatsitang, E., & Maensiri, S. (2013). Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles. Applied Physics A: Materials Science and Processing, 111(4), 1187–1193. https://doi.org/10.1007/s00339-012-7340-5

    Article  CAS  Google Scholar 

  • Pollap, A., & Kochana, J. (2019). Electrochemical immunosensors for antibiotic detection. Biosensors, 9(2). https://doi.org/10.3390/bios9020061

  • Prasad, C., Yuvaraja, G., & Venkateswarlu, P. (2017). Biogenic synthesis of Fe3O4 magnetic nanoparticles using Pisum sativum peels extract and its effect on magnetic and Methyl orange dye degradation studies. Journal of Magnetism and Magnetic Materials, 424, 376–381. https://doi.org/10.1016/j.jmmm.2016.10.084

    Article  CAS  Google Scholar 

  • Pravallika, P. L., Krishna Mohan, G., Venkateswara Rao, K., & Shanker, K. (2019). Biosynthesis, characterization and acute oral toxicity studies of synthesized iron oxide nanoparticles using ethanolic extract of Centella asiatica plant. Materials Letters, 236, 256–259. https://doi.org/10.1016/j.matlet.2018.10.037

    Article  CAS  Google Scholar 

  • Priyadarshana, G., Kottegoda, N., Senaratne, A., De Alwis, A., & Karunaratne, V. (2015). Synthesis of magnetite nanoparticles by top-down approach from a high purity ore. Journal of Nanomaterials, 2015. https://doi.org/10.1155/2015/317312

  • Rani, S., Sharma, S., Bansal, M., Garg, R., & Garg, R. (2022). Enhanced Zn(II) adsorption by chemically modified sawdust based biosorbents. Environmental Science and Pollution Research, 1–16. https://doi.org/10.1007/s11356-022-22963-4

  • Razack, S. A., Suresh, A., Sriram, S., Ramakrishnan, G., Sadanandham, S., Veerasamy, M., et al. (2020). Green synthesis of iron oxide nanoparticles using Hibiscus rosa-sinensis for fortifying wheat biscuits. SN Applied Sciences, 2(5), 1–9. https://doi.org/10.1007/s42452-020-2477-x

    Article  CAS  Google Scholar 

  • Ren, B., Zhang, Q., Zhang, X., Zhao, L., & Li, H. (2018). Biosorption of Cr(vi) from aqueous solution using dormant spores of Aspergillus niger. RSC Advances, 8(67), 38157–38165. https://doi.org/10.1039/c8ra07084a

    Article  CAS  Google Scholar 

  • Rodrigues, G. R., López-Abarrategui, C., de la Serna Gómez, I., Dias, S. C., Otero-González, A. J., & Franco, O. L. (2019). Antimicrobial magnetic nanoparticles based-therapies for controlling infectious diseases. International Journal of Pharmaceutics, 555, 356–367. https://doi.org/10.1016/j.ijpharm.2018.11.043

    Article  CAS  Google Scholar 

  • Roy, A., Singh, V., Sharma, S., Ali, D., Azad, A. K., Kumar, G., & Emran, T. B. (2022). Antibacterial and dye degradation activity of green synthesized iron nanoparticles. Journal of Nanomaterials, 2022. https://doi.org/10.1155/2022/3636481

  • Rzig, B., Guesmi, F., Sillanpää, M., & Hamrouni, B. (2021). Modelling and optimization of hexavalent chromium removal from aqueous solution by adsorption on low-cost agricultural waste biomass using response surface methodological approach. Water Science and Technology, 84(3), 552–575. https://doi.org/10.2166/wst.2021.233

    Article  CAS  Google Scholar 

  • Sadati, H., & Ayati, B. (2023). Using a promising biomass-based biochar in photocatalytic degradation: Highly impressive performance of RHB/SnO2/Fe3O4 for elimination of AO7. Photochemical and Photobiological Sciences, 1–8. https://doi.org/10.1007/s43630-023-00389-2

  • Sahu, U. K., Mahapatra, S. S., & Patel, R. K. (2017). Synthesis and characterization of an eco-friendly composite of jute fiber and Fe2O3 nanoparticles and its application as an adsorbent for removal of As(V) from water. Journal of Molecular Liquids, 237, 313–321. https://doi.org/10.1016/j.molliq.2017.04.092

    Article  CAS  Google Scholar 

  • Saied, E., Salem, S. S., Al-Askar, A. A., Elkady, F. M., Arishi, A. A., & Hashem, A. H. (2022). Mycosynthesis of hematite (α-Fe2O3) nanoparticles using Aspergillus niger and their antimicrobial and photocatalytic activities. Bioengineering, 9(8). https://doi.org/10.3390/bioengineering9080397

  • Saruchi, Kumar, V., Bhatt, D., El-Serehy, H. A., & Pandey, S. (2023). Gum katira-silver nanoparticle-based bionanocomposite for the removal of methyl red dye. Frontiers in Chemistry, 10, 1–13. https://doi.org/10.3389/fchem.2022.959104

    Article  CAS  Google Scholar 

  • Sarwar, A., Wang, J., Khan, M. S., Farooq, U., Riaz, N., Nazir, A., et al. (2021). Iron oxide (Fe3o4)-supported SiO2 magnetic nanocomposites for efficient adsorption of fluoride from drinking water: Synthesis, characterization, and adsorption isotherm analysis. Water (Switzerland), 13(11), 1514. https://doi.org/10.3390/w13111514

    Article  CAS  Google Scholar 

  • Sebastian, A., Nangia, A., & Prasad, M. N. V. (2018). A green synthetic route to phenolics fabricated magnetite nanoparticles from coconut husk extract: Implications to treat metal contaminated water and heavy metal stress in Oryza sativa L. Journal of Cleaner Production, 174, 355–366. https://doi.org/10.1016/j.jclepro.2017.10.343

    Article  CAS  Google Scholar 

  • Senthil, M., & Ramesh, C. (2012). Biogenic synthesis of Fe3O4 NPs using Tridax procumbens leaf and its antibacterial activity on Pseudomonas auruginosa. Digest Journal of Nanomaterials and Biostructures, 7(3), 1655–1660 http://www.chalcogen.ro/1655_Senthil.pdf

    Google Scholar 

  • Sharma, A., Bachheti, A., Sharma, P., Bachheti, R. K., & Husen, A. (2020). Phytochemistry, pharmacological activities, nanoparticle fabrication, commercial products and waste utilization of Carica papaya L.: A comprehensive review. Current Research in Biotechnology, 2, 145–160. https://doi.org/10.1016/j.crbiot.2020.11.001

    Article  Google Scholar 

  • Simeonidis, K., Tziomaki, M., Angelakeris, M., Martinez-Boubeta, C., Balcells, L., Monty, C., et al. (2013). Development of iron-based nanoparticles for Cr(VI) removal from drinking water. EPJ Web of Conferences, 40, 2–5. https://doi.org/10.1051/epjconf/20134008007

    Article  CAS  Google Scholar 

  • Šoštarić, T. D., Petrović, M. S., Pastor, F. T., Lončarević, D. R., Petrović, J. T., Milojković, J. V., & Stojanović, M. D. (2018). Study of heavy metals biosorption on native and alkali-treated apricot shells and its application in wastewater treatment. Journal of Molecular Liquids, 259, 340–349. https://doi.org/10.1016/j.molliq.2018.03.055

    Article  CAS  Google Scholar 

  • Taqui, M., Das, S., Kamilya, T., Mondal, S., & Chaudhuri, S. (2022). Green synthesis of iron-oxide nanoparticles using scrap iron as precursor for the removal of Pb (Ii) from aqueous medium. Journal of Environmental Engineering and Landscape Management, 30(2), 308–320. https://doi.org/10.3846/jeelm.2022.16747

    Article  Google Scholar 

  • Thilakan, D., Patankar, J., Khadtare, S., Wagh, N. S., Lakkakula, J., El-Hady, K. M., et al. (2022). Plant-derived iron nanoparticles for removal of heavy metals. International Journal of Chemical Engineering, 2022. https://doi.org/10.1155/2022/1517849

  • Üstün, E., Önbaş, S. C., Çelik, S. K., Ayvaz, M. Ç., & Şahin, N. (2022). Green synthesis of iron oxide nanoparticles by using ficus carica leaf extract and its antioxidant activity. Biointerface Research in Applied Chemistry, 12(2), 2108–2116. https://doi.org/10.33263/BRIAC122.21082116

    Article  Google Scholar 

  • Vidu, R., Matei, E., Predescu, A. M., Alhalaili, B., Pantilimon, C., Tarcea, C., & Predescu, C. (2020). Removal of heavy metals from wastewaters: A challenge from current treatment methods to nanotechnology applications. Toxics, 8(4), 1–37. https://doi.org/10.3390/toxics8040101

    Article  CAS  Google Scholar 

  • Wang, H., Wang, Y., & Dionysiou, D. D. (2023). Advanced oxidation processes for removal of emerging contaminants in water. Water (Switzerland), 15(3), 2–5. https://doi.org/10.3390/w15030398

    Article  Google Scholar 

  • Wu, L., Wen, W., Wang, X., Huang, D., Cao, J., Qi, X., & Shen, S. (2022). Ultrasmall iron oxide nanoparticles cause significant toxicity by specifically inducing acute oxidative stress to multiple organs. Particle and Fibre Toxicology, 19(1), 1–14. https://doi.org/10.1186/s12989-022-00465-y

    Article  CAS  Google Scholar 

  • Yadav, V. K., Ali, D., Khan, S. H., Gnanamoorthy, G., Choudhary, N., Yadav, K. K., et al. (2020). Synthesis and characterization of amorphous iron oxide nanoparticles by the sonochemical method and their application for the remediation of heavy metals from wastewater. Nanomaterials, 10(8), 1–17. https://doi.org/10.3390/nano10081551

    Article  CAS  Google Scholar 

  • Yusefi, M., Shameli, K., Ali, R. R., Pang, S. W., & Teow, S. Y. (2020). Evaluating anticancer activity of plant-mediated synthesized iron oxide nanoparticles using Punica granatum fruit peel extract. Journal of Molecular Structure, 1204, 127539. https://doi.org/10.1016/j.molstruc.2019.127539

    Article  CAS  Google Scholar 

  • Zuorro, A., Iannone, A., Natali, S., & Lavecchia, R. (2019). Green synthesis of silver nanoparticles using bilberry and red currantwaste extracts. Processes, 7(4), 193. https://doi.org/10.3390/pr7040193

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Initial literature review and write-up were carried out by Rajat Sharma and Rajni Garg. Manoj Bali supervised the work. Nnabuk Okon Eddy performed the editing and final check. All authors approved the finalized version of the work.

Corresponding author

Correspondence to Rajni Garg.

Ethics declarations

Ethical approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Consent to publish

All authors have consented to publish this paper.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Garg, R., Bali, M. et al. Potential applications of green-synthesized iron oxide NPs for environmental remediation. Environ Monit Assess 195, 1397 (2023). https://doi.org/10.1007/s10661-023-12035-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12035-6

Keywords

Navigation