Skip to main content
Log in

Yeast-driven valorization of agro-industrial wastewater: an overview

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The intensive industrial and agricultural activities currently on-going worldwide to feed the growing human population have led to significant increase in the amount of wastewater produced. These effluents are high in phosphorus (P), nitrogen (N), chemical oxygen demand (COD), biochemical oxygen demand (BOD), and heavy metals. These compounds can provoke imbalance in the ecosystem with grievous consequences to both the environment and humans. Adequate treatment of these wastewaters is therefore of utmost importance to humanity. This can be achieved through valorization of these waste streams, which is based on biorefinery idea and concept of reduce, reuse, and recycle for sustainable circular economy. This concept uses innovative processes to produce value-added products from waste such as wastewater. Yeast-based wastewater treatment is currently on the rise given to the many characteristics of yeast cells. Yeasts are generally fast growing, and they are robust in terms of tolerance to stress and inhibitory compounds, in addition to their ability to metabolize a diverse range of substrates and create a diverse range of metabolites. Therefore, yeast cells possess the capacity to recover and transform agro-industrial wastewater nutrients into highly valuable metabolites. In addition to remediating the wastewater, numerous value-added products such as single cell oil (SCO), single cell proteins (SCPs), biofuels, organic acid, and aromatic compounds amongst others can be produced through fermentation of wastewater by yeast cells. This work thus brings to limelight the potential roles of yeast cells in reducing, reusing, and recycling of agro-industrial wastewaters while proffering solutions to some of the factors that limit yeast-mediated wastewater valorization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

All data stated in this review have been referenced.

References

  • Abioye, O. P., Mustapha, O. T. & Aransiola, S. A. (2014). Biological treatment of textile effluent using Candida zeylanoides and Saccharomyces cerevisiae isolated from soil. Advances in Biology. https://doi.org/10.1155/2014/670394

  • Abioye, O. P., Afolayan, E. O., & Aransiola, S. A. (2015). Treatment of pharmaceutical effluent by Saccharomyces cerevisiae and Torulaspora delbrueckii isolated from spoilt water melon. Research Journal of Environmental Toxicology, 9(4), 188. https://doi.org/10.3923/rjet.2015.188.195

    Article  CAS  Google Scholar 

  • Abdelhadi, B. S., Benlemlih, M., Koraichi, S. I., Ahansal, L., Hammoumi, A., & Boussaid, A. (2010). Suitability of yeasts for the treatment of olive mill wastewater. Terrestrial and Aquatic Environmental Toxicology, 2001, 1–5.

    Google Scholar 

  • Akbari, S., Abdurahman, N. H., Yunus, R. M., Fayaz, F., & Alara, O. R. (2018). Biosurfactants - a new frontier for social and environmental safety: A mini review. Biotechnology Research and Innovation, 2(1), 81–90. https://doi.org/10.1016/j.biori.2018.09.001

    Article  Google Scholar 

  • Akhtar N., & Mannan M. A. (2020). Mycoremediation: expunging environmental pollutants. Biotechnology Reports, 26, e00452. https://doi.org/10.1016/j.btre.2020.e00452

  • Ali, S. S., Al-Tohamy, R., Koutra, E., El-Naggar, A. H., Kornaros, M., & Sun, J. (2021). Valorizing lignin-like dyes and textile dyeing wastewater by a newly constructed lipid-producing and lignin modifying oleaginous yeast consortium valued for biodiesel and bioremediation. Journal of Hazardous Materials403, 123575. https://doi.org/10.1016/j.jhazmat.2020.123575

  • Al-Tohamy, R., Kenawy, E. R., Sun, J., & Ali, S. S. (2020). Performance of a newly isolated salt-tolerant yeast strain Sterigmatomyces halophilus SSA-1575 for azo dye decolorization and detoxification. Frontiers in Microbiology, 11, 1163. https://doi.org/10.3389/fmicb.2020.01163

    Article  Google Scholar 

  • Araujo, C., Aguedo, M., Gomes, N., Teixeira, J. A., & Belo, I. (2005). Valorization of olive mill wastewater by the yeast Yarrowia lipolytica. International chemical engineering conference: Chempor, 9.

  • Arous, F., Frikha, F., Triantaphyllidou, I.-E., Aggelis, G., Nasri, M., & Mechichi, T. (2016). Potential utilization of agro-industrial wastewaters for lipid production by the oleaginous yeast Debaryomyces etchellsii. Journal of Cleaner Production, 133(899), 909. https://doi.org/10.1016/j.jclepro.2016.06.040

    Article  CAS  Google Scholar 

  • Ahmed P. M., Fernández P. M., Figueroa L. I. C., & Pajot H. F. (2019). Exploitation alternatives of olive mill wastewater: Production of value added compounds useful for industry and agriculture. Biofuel Research Journal, 22, 980–994. https://doi.org/10.18331/BRJ2019.6.2.4

  • Baptista, M., & Domingues, L. (2022). Kluyveromyces marxianus as a microbial cell factory for lignocellulosic biomass valorisation, Biotechnology Advances, 60, 108027. https://doi.org/10.1016/j.biotechadv.2022.108027

  • Bleve, G., Lezzi, C., Chiriatti, M. A., D’Ostuni, I., Tristezza, M., Di Venere, D., Sergio, L., Mita, G., & Grieco, F. (2011). Selection of non-conventional yeasts and their use in immobilized form for the bioremediation of olive oil mill wastewaters. Bioresource Technology, 102(2), 982–989.

    Article  CAS  Google Scholar 

  • Bhardwaj, A., Dagar, V., Khan, M. O., Aggarwal, A., Alvarado, R., Kumar, M., et al. (2022). Smart IoT and machine learning-based framework for water quality assessment and device component monitoring. Environmental Science and Pollution Research, 29, 46018–46036. https://doi.org/10.1007/s11356-022-19014-3

    Article  Google Scholar 

  • Broos, W., Wittner, N., Geerts, J., Dries, J., Vlaeminck, S. E., Gunde-Cimerman, N., Richel, A., & Cornet, I. (2022). Evaluation of lignocellulosic wastewater valorization with the oleaginous yeasts R. kratochvilovae EXF7516 and C. oleaginosum ATCC 20509. Fermentation, 8, 204. https://doi.org/10.3390/fermentation8050204

  • Caporusso, A., Capece, A., & De Bari, I. (2021). Oleaginous yeasts as cell factories for the sustainable production of microbial lipids by the valorization of agri-foodwastes. Fermentation, 7, 50. https://doi.org/10.3390/fermentation7020050

    Article  CAS  Google Scholar 

  • Carrara, M. T., Kelly, M. T., Roso, F., Larroque, M., & Margout, D. (2021). Potential of olive oil mill wastewater as a source of polyphenols for the treatment of skin disorders: A review. Journal Agricultural and Food Chemistry, 69, 7268–7284.

    Article  CAS  Google Scholar 

  • Chakri, M., Haidani, E., & l., El Mzibri, A., Haggoud, A., Mohammed Iraqui, M., Houari, A., & Ibnsouda Koraichi, S. (2007). Yeast strains from the endogenous microflora of the olive flies Bactrocera oleae larvae which could degrade the olive oil mill wastewaters polyphenols. Annal of Microbiology, 57, 143. https://doi.org/10.1007/BF03175199

    Article  CAS  Google Scholar 

  • Chowdhary, P., Raj, A., & Bharagava, R. N. (2018). Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: A review. Chemosphere, 194, 229–246. https://doi.org/10.1016/j.chemosphere.2017.11.163

    Article  CAS  Google Scholar 

  • Chung, J., Lee, I., & Han, J. I. (2016). Biodiesel production from oleaginous yeasts using livestock wastewater as nutrient source after phosphate struvite recovery. Fuel, 186, 305–310.

    Article  CAS  Google Scholar 

  • Coimbra, J. M., Cristina dos Reis, K., Schwan, R. F., & Silva, C. F. (2021). Effect of the strategy of molasses supplementation in vinasse to high SCP production and rose flavor compound. Waste and Biomass Valorization., 12(1), 359–369.

    Article  CAS  Google Scholar 

  • Cooper, J., Antony, A., Luiz, A., Kavanagh, J., Razmjou, A., Chen, V., & Leslie, G. (2019). Characterization of dissolved organic matter in fermentation industry effluents and comparison with model compounds. Chemosphere, 234, 630–639. https://doi.org/10.1016/j.chemosphere.2019.05.272

    Article  CAS  Google Scholar 

  • Dagar, S., Singh, S. K., & Gupta, M. K. (2022). Economics of advanced technologies for wastewater treatment: Evidence from pulp and paper industry. Frontiers in Environmental Science, 10, 960639. https://doi.org/10.3389/fenvs.2022.960639

  • Danouche, M., El Arroussi, H., & El Ghachtouli, N. D. (2021). Mycoremediation of synthetic dyes by yeast cells: A sustainable biodegradation approach. Environmental Sustainability., 4, 5–22. https://doi.org/10.1007/s42398-020-00150-w

    Article  CAS  Google Scholar 

  • Dermeche, S., Nadour, M., Larroche, C., Moulti-Mati, F., & Michaud, P. (2013). Olive mill wastes: Biochemical characterizations and valorization strategies. Process Biochemistry, 48(10), 1532–1552.

    Article  CAS  Google Scholar 

  • Dias, C., Reis, A., Santos, J. A., & da Silva, T. L. (2020). Concomitant wastewater treatment with lipid and carotenoid production by the oleaginous yeast Rhodosporidium toruloides grown on brewery effluent enriched with sugarcane molasses and urea. Process Biochemistry, 94, 1–14.

    Article  CAS  Google Scholar 

  • Dominic, D., & Baidurah, S. (2022). Recent developments in biological processing technology for palm oil mill efflfluent treatment—A review. Biology, 11, 525. https://doi.org/10.3390/biology11040525

    Article  CAS  Google Scholar 

  • dos Santos, J. F., Canettieri, E. V., Souza, S. M. A., Rodrigues, R. C. L. B., & Martínez, E. A. (2019). Treatment of sugarcane vinasse from cachaça production for the obtainment of Candida utilis CCT 3469 biomass. Biochemical Engineering Journal, 148, 131–137.

    Article  CAS  Google Scholar 

  • Dunoyer, A. T., Cuello, R. E. G., & Salinas, R. P. (2020). Biodegradation of dairy wastes using crude enzymatic extract of Yarrowia lipolytica ATCC 9773. Revista Ambiente & Água15. https://doi.org/10.4136/ambi-agua.2448

  • Eliodório, K. P., de Cunha, G. C. G., & e., Müller C., Lucaroni, A. C., Giudici, R., Walker, G. M., Alves Jr, S. L. & Basso, T. O. (2019). Advances in yeast alcoholic fermentations for the production of bioethanol, beer and wine. Advances in Applied Microbiology, 109, 61–119. https://doi.org/10.1016/BS.AAMBS.2019.10.002

    Article  Google Scholar 

  • Fadel, M., Hassanein, N. M., Elshafei, M. M., Mostafa, A. H., Ahmed, M. A., & Khater, H. M. (2017). Biosorption of manganese from groundwater by biomass of Saccharomyces cerevisiae. Hbrc Journal, 13(1), 106–113.

    Article  Google Scholar 

  • Fernandes, N.d.A.T., Simões, L.A. & Dias, D.R. (2023). Biosurfactants produced by yeasts: Fermentation, screening, recovery, purification, characterization, and applications. Fermentation, 9, 207.

    Article  Google Scholar 

  • Fito, J., Tefera, N., Kloos, H., & Van Hulle, S. W. (2019). Physicochemical properties of the sugar industry and ethanol distillery wastewater and their impact on the environment. Sugar and Integraded Technologies, 21, 265–277. https://doi.org/10.1007/s12355-018-0633-z

    Article  CAS  Google Scholar 

  • Gao, Y., Li, D., & Liu, Y. (2012). Production of single cell protein from soy molasses using Candida tropicalis. Annals of Microbiology, 62(3), 1165–1172.

    Article  CAS  Google Scholar 

  • García-Béjar, B., Arévalo-Villena, M., Guisantes-Batan, E., Rodríguez-Flores, J., & Briones, A. (2020). Study of the bioremediatory capacity of wild yeasts. Scientific Reports, 10(1), 1–13.

    Article  Google Scholar 

  • Gargouri, B., Mhiri, N., Karray, F., Aloui, F., & Sayadi, S. (2015). Isolation and characterization of hydrocarbon-degrading yeast strains from petroleum contaminated industrial wastewater. BioMed Research International. https://doi.org/10.1155/2015/929424

  • Gebreeyessus, G. D., Mekonen, A., & Alemayehu, E. (2019). A review on progresses and performances in distillery stillage management. Journal of Cleaner Production, 230, 295–307. https://doi.org/10.1016/j.jclepro.2019.05.383

    Article  CAS  Google Scholar 

  • Gientka, I., Aleksandrzak-Piekarczyk, T., Bzducha-Wróbel, A., Synowiec, A., & Błażejak, S. (2019). Deproteinated potato wastewater as a sustainable nitrogen source in trichosporon domesticum yeast lipids biosynthesis—A concept of valorization of wastewater from starch industry. Potato Research, 62(3), 221–237.

    Article  CAS  Google Scholar 

  • Gonzalez-Garcia, Y., Hernandez, R., Zhang, G., Escalante, F. M. E., Holmes, W., & French, W. T. (2011). Lipids accumulation in Rhodotorula glutinis and Cryptococcus curvatus growing on distillery wastewater as culture medium. Environmental Progress & Sustainable Energy, 32(1), 69–74. https://doi.org/10.1002/ep.10604

    Article  CAS  Google Scholar 

  • Gudiukaite, R., Nadda, A. K., Gricajeva, A., Shanmugam, S., Nguyen, D. D., & Lam, S. S. (2021). Bioprocesses for the recovery of bioenergy and value-added products from wastewater: A review. Journal of Environmental Management300, 113831. https://doi.org/10.1016/j.jenvman.2021.113831

  • Hisamatsu, M., Furubayashi, T., Karita, S., Mishima, T., & Isono, N. (2006). Isolation and identification of a novel yeast fermenting ethanol under acidic conditions. Journal of Applied Glycoscience, 53, 111–113.

    Article  CAS  Google Scholar 

  • Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., & Pandit, A. B. (2016). A critical review on textile wastewater treatments: possible approaches. Journal of Environmental Management, 182, 351e366. https://doi.org/10.1016/j.jenvman.2016.07.090

  • Hu, H., Li, X., Wu, S., & Yang, C. (2020). Sustainable livestock wastewater treatment via phytoremediation: current status and future perspectives. Bioresource Technology, 315, 123809. https://doi.org/10.1016/J.BIORTECH.2020.123809

  • Huang, L., Zhang, B., Gao, B., & Sun, G. (2011). Application of fishmeal wastewater as a potential low-cost medium for lipid production by Lipomyces starkeyi HL. Environmental Technology, 32(16), 1975–1981. https://doi.org/10.1080/09593330.2011.562551

    Article  CAS  Google Scholar 

  • Islam, M. M., Ali, M. I., Ceh, B., Singh, S., Khan, M. K., & Dagar, V. (2022). Environmental Science and Pollution Research, 29(23), 34231–34247. https://doi.org/10.1007/s11356-021-18488-x

  • Islam, M. A., Yousuf, A., Karim, A., Pirozzi, D., Khan, M. R., & Ab Wahid, Z. (2018). Bioremediation of palm oil mill effluent and lipid production by Lipomyces starkeyi: A combined approach. Journal of Cleaner Production, 172, 1779–1787.

  • Iwuagwu, J. O., & Ugwuanyi, J. O. (2014). Treatment and valorization of palm oil mill effluent through production of food grade yeast biomass. Journal of Waste Management, 439071. https://doi.org/10.1155/2014/439071

  • Izah, S. C., & Ohimain, E. I. (2015). Bioethanol production from cassava mill effluents supplemented with solid agricultural residues using bakers’ yeast Saccharomyces cerevisiae. Journal of Environmental Treatment Techniques, 3, 47–54.

    Google Scholar 

  • Izah, S. C., Bassey, S. E., & Ohimain, E. I. (2017). Changes in the treatment of some physico-chemical properties of cassava mill effluents using Saccharomyces cerevisiae. Toxics, 5, 28. https://doi.org/10.3390/toxics5040028

    Article  CAS  Google Scholar 

  • Izah, S. C., Bassey, S. E., & Ohimain, E. I. (2018). Impacts of cassava mill effluents in Nigeria. Journal of Plant and Animal Ecology, 1(1), 14–42. https://doi.org/10.14302/issn.2637-6075.jpae-17-1890

  • Izah S. C. (2019). Cassava mill effluents recycling through bioenergy production: A review. Environmental Analyses and Ecological Studies, 5(4), EAES.000618.2019. https://doi.org/10.31031/EAES.2019.05.000618

  • Jain, K., Patel, A. S., Pardhi, V. P., & Flora, S. J. S. (2021). Nanotechnology in wastewater management: A new paradigm towards wastewater treatment. Molecules, 26, 1797. https://doi.org/10.3390/molecules26061797

    Article  CAS  Google Scholar 

  • Jarboui, R., Baati, H., Fetoui, F., Gargouri, A., Gharsallah, N., & Ammar, E. (2012). Yeast performance in wastewater treatment: Case study of Rhodotorula mucilaginosa. Environmental Technology, 33(8), 951–960.

    Article  CAS  Google Scholar 

  • John, U. S., & John, M. C. (2015). Production and application of microbial surfactant from cassava wastewater. American Journal of Engineering, Technology and Society, 2(4), 85–89.

    Google Scholar 

  • Kannan, S., Palanichamy, J., Sugitha, T., & Mayilsami C. (2022). Bioremediation of textile dyeing industry effluent from small scale industries using a microbial consortium of Bacillus sp., Escherichia coli, and Aspergillus niger. Journal of Applied Biology and Biotechnology, 10(2), 100–106. https://doi.org/10.7324/JABB.2022.10s211

  • Karim A, Islam M. A., Mishra, P., Muzahid, A. J. M., Yousuf, A., Khan, M. R., & Faizal, C. K. M. (2021a). Yeast and bacteria co-culture-based lipid production through bioremediation of palm oil mill effluent: a statistical optimization. Biomass Conversion and Biorefinery, 1–12.

  • Karim, A., Islam, M. A., Khalid, Z. B., Yousuf, A., Khan, M. M. R., & Faizal, C. K. M. (2021b). Microbial lipid accumulation through bioremediation of palm oil mill effluent using a yeast-bacteria co-culture. Renewable Energy, 176, 106–114.

    Article  CAS  Google Scholar 

  • Kurcz, A., Błażejak, S., Kot, A. M., Bzducha-Wróbel, A., & Kieliszek, M. (2018). Application of industrial wastes for the production of microbial single-cell protein by fodder yeast Candida utilis. Waste Biomass Valorization, 9, 57–64. https://doi.org/10.1007/s12649-016-9782-z

    Article  CAS  Google Scholar 

  • Lad, B. C., Coleman, S. M., & Alper, H. S. (2022). Microbial valorization of underutilized and nonconventional waste streams. Journal of Industrial Microbiology and Biotechnology, 49, kuab056. https://doi.org/10.1093/jimb/kuab056

  • Lanciotti, R., Gianotti, A., Baldi, D., Angrisani, R., Suzzi, G., Mastrocola, D., & Guerzoni, M. E. (2005). Use of Yarrowia lipolytica strains for the treatment of olive mill wastewater. Bioresource Technology, 96, 317–322.

    Article  CAS  Google Scholar 

  • Li, X., Yang, C. P., Zeng, G. M., Wu, S. H., Lin, Y., Zhou, Q., Lou, W., Du, C., Nie, L. J., & Zhong, Y. Y. (2020). Nutrient removal from swine wastewater with growing microalgae at various zinc concentrations. Algal Research, 46, 101804. https://doi.org/10.1016/j.algal.2020.101804

  • Ling, J., Nip, S., & Shim, H. (2013). Enhancement of lipid productivity of Rhodosporidium toruloides in distillery wastewater by increasing cell density. Bioresource Technology, 146, 301–309. https://doi.org/10.1016/j.biortech.2013.07.023

    Article  CAS  Google Scholar 

  • Ling, J., Nip, S., Cheok, W. L., de Toledo, R. A., & Shim, H. (2014). Lipid production by a mixed culture of oleaginous yeast and microalga from distillery and domestic mixed wastewater. Bioresource Technology, 173, 132–139.

    Article  CAS  Google Scholar 

  • Liu, M., Zhang, X., & Tan, T. (2016). The effect of amino acids on lipid production and nutrient removal by Rhodotorula glutinis cultivation in starch wastewater. Bioresource Technology, 218, 712–717.

    Article  CAS  Google Scholar 

  • L´opez-S´anchez, A., Silva-G´alvez, L., Aguilar-Ju´arez, O., Sen´es-Guerrero, C., Orozco-Nunnelly, D. A., Carrillo-Nieves, D., & Gradilla-Hern´andez, M. S. (2022). Microalgae-based livestock wastewater treatment (MbWT) as a circular bioeconomy approach: Enhancement of biomass productivity, pollutant removal and high-value compound production. Journal of Environmental Management, 308, 114612. https://doi.org/10.1016/j.jenvman.2022.114612

  • Louhasakul, Y., Cheirsilp, B., & Prasertsan, P. (2016). valorization of palm oil mill effluent into lipid and cell-bound lipase by marine yeast Yarrowia lipolytica and their application in biodiesel production. Waste Biomass Valorarization, 7, 417–426. https://doi.org/10.1007/s12649-015-9451-7

    Article  Google Scholar 

  • Luna, J. M., Rufino, R. D., & Sarubbo, L. A. (2016). Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties. Process Safety and Environmental Protection, 102, 558–566.

    Article  CAS  Google Scholar 

  • Madaki, Y. S., & Seng, L. (2013). Pollution control: How feasible is zero discharge concepts in Malaysia palm oil mills. American Journal of Engineering Research, 2(10), 239–252.

    Google Scholar 

  • Mahan, K. M., Le, R. K., Wells, T., Jr., Anderson, S., Yuan, J. S., Stoklosa, R. J., Bhalla, A., Hodge, D. B., & Ragauskas, A. J. (2018). Production of single cell protein from agro-waste using Rhodococcus opacus. Journal of Industrial Microbiology and Biotechnology, 45(9), 795–801.

    Article  CAS  Google Scholar 

  • Mersin, G., & Açikel, Ü. (2021). Production of Candida biomasses for heavy metal removal from wastewaters. Trakya University Journal of Natural Sciences. https://doi.org/10.23902/trkjnat.817451

  • Mhlongo, S. I., Ezeokoli, O. T., Roopnarain, A., Ndaba, B., Sekoai, P. T., Habimana, O., & Pohl, C. H. (2021). The potential of single-cell oils derived from filamentous fungi as alternative feedstock sources for biodiesel production. Frontiers in Microbiology, 12, 637381. https://doi.org/10.3389/fmicb.2021.637381

  • Mohammed, R. R., & Chong, M. F. (2014). Treatment and decolorization of biologically treated palm oil mill effluent (POME) using banana peel as novel biosorbent. Journal of Environmental Management, 132, 237–249.

    Article  CAS  Google Scholar 

  • Mohammad, S., Baidurah, S., Kobayashi, T., Ismail, N., & Leh, C. P. (2021). Palm oil mill effluent treatment processes—A review. Processes, 9, 739. https://doi.org/10.3390/pr9050739

    Article  CAS  Google Scholar 

  • Mukherjee, V., Radecka, D., Aerts, G., Verstrepen, K. J., Lievens, B., & Thevelein, J. M. (2017). Phenotypic landscape of non-conventional yeast species for different tolerance traits desirable in bioethanol fermentation. Biotechnology for Biofuels, 10(1), 1–19.

    Article  CAS  Google Scholar 

  • Nagarajan, D., Kusmayadi, A., Yen, H. W., Dong, C. di, Lee, D. J., & Chang, J. S. (2019). Current advances in biological swine wastewater treatment using microalgae-based processes. Bioresource Technology, 289, 121718. https://doi.org/10.1016/J.BIORTECH.2019.121718

  • Ndubuisi, I. A., Qin, Q., Liao, G., Wang, B., Moneke, A. N., Ogbonna, J. C., Jin, C., & Fang, W. (2020). Effects of various inhibitory substances and immobilization on ethanol production efficiency of a thermotolerant Pichia kudriavzevii. Biotechnology for Biofuels, 13, 91–102. https://doi.org/10.1186/s13068-020-01729-5

    Article  CAS  Google Scholar 

  • Nwuche, C. O., Aoyagi, H., & Ogbonna, J. C. (2014). Treatment of palm oil mill effluent by a microbial consortium developed from compost soils. International scholarly research notices. https://doi.org/10.1155/2014/762070

  • Oghenejoboh, M. K., Orugba, H. O., Oghenejoboh, U. M., & Agarry, E. S. (2021). Value added cassava waste management and environmental sustainability in Nigeria: A review. Environmental Challenges, 4, 100127. https://doi.org/10.1016/j.encv.2021.100127

  • Okoduwa, S. I. R., Igiri, B., Udeh, C. B., Edenta, C., & Gauje, B. (2017). Tannery effluent treatment by yeast species isolates from watermelon. Toxics, 5(1), 6. https://doi.org/10.3390/toxics5010006

    Article  CAS  Google Scholar 

  • Oliveira, S. M., Gomes, S. D., Sene, L., Christ, D., & Piechontcoski, J. (2015). Production of natural aroma by yeast in wastewater of cassava starch industry. Engenharia Agrícola, 35, 721–732.

    Article  Google Scholar 

  • Olorunfemi, D., & Lolodi, O. (2011). Effect of cassava processing effluents on antioxidant enzyme activities in Allium cepa L. Biokemistri, 23, 49–61.

    Google Scholar 

  • Orhue, E. R., Imasuen, E. E., & Okunima, D. E. (2014). Effect of Cassava mill effluent on some soil chemical properties and the growth of fluted pumpkin Telfairia occidentalis Hook F. Journal of Applied and Natural Science, 6, 320–325.

    Article  CAS  Google Scholar 

  • Oswal, N., Sarma, P. M., Zinjarde, S. S., & Pant, A. (2002). Palm oil mill effluent treatment by a tropical marine yeast. Bioresource Technology, 85(1), 35–37.

    Article  CAS  Google Scholar 

  • Ouzounidou, G., Ntougias, S., Asfi, M., Gaitis, F., & Zervakis, G. I. (2012). Raw and fungal-treated olive-mill wastewater effects on selected parameters of lettuce (Lactuca sativa L.) growth-The role of proline. Journal of Environmental Science and Health, Part B. 47(7), 728–735.

  • Parmar, N. D., & Shukla, S. R. (2018). Biodegradation of anthraquinone based dye using an isolated strain Staphylococcus hominis subsp. hominis DSM 20328. Environmental Progress and Sustainable Energy, 37, 203–214.

    Article  CAS  Google Scholar 

  • Patel, A., Arora, N., Pruthi, V., & Pruthi, P. A. (2017). Biological treatment of pulp and paper industry effluent by oleaginous yeast integrated with production of biodiesel as sustainable transportation fuel. Journal of Cleaner Production, 142, 2858–2864.

    Article  CAS  Google Scholar 

  • Patrick, U. A., Egwuonwn, N., & Augustine, O. A. (2011). Distribution of cyanide in a cassava-mill-effluent polluted eutric tropofluvent soils of Ohaji Area, South-eastern Nigeria. Journal of Soil Science and Environmental Management, 2, 49–57.

    CAS  Google Scholar 

  • Peng, W. F., Huang, C., Chen, X. F., Xiong, L., Chen, Y., & Ma, L. L. (2013). Microbial conversion of wastewater from butanol fermentation to microbial oil by oleaginous yeast Trichosporon dermatis. Renewable Energy, 55, 31–34.

    Article  CAS  Google Scholar 

  • Pi, Y., Chen, B., Bao, M., Fan, F., Cai, Q., Ze, L., & Zhang, B. (2017). Microbial degradation of four crude oil by biosurfactant producing strain Rhodococcus sp. Bioresource Technology, 232, 263–269. https://doi.org/10.1016/j.biortech.2017.02.007

    Article  CAS  Google Scholar 

  • Pires, J. F., Ferreira, G. M., Reis, K. C., Schwan, R. F., & Silva, C. F. (2016). Mixed yeasts inocula for simultaneous production of SCP and treatment of vinasse to reduce soil and fresh water pollution. Journal of Environmental Management, 182, 455–463.

    Article  CAS  Google Scholar 

  • Ratna, S., Rastogi, S., & Kumar, R. (2021). Current trends for distillery wastewater management and its emerging applications for sustainable environment. Journal of Environmental Management, 290, 112544. https://doi.org/10.1016/j.jenvman.2021.112544

  • Ribeiro, J. E. S., da Silva Sant'Ana, A. M., Martini, M., Sorce, C., Andreucci, A., de Melo, D. J. N., & da Silva, F. L. H. (2019). Rhodotorula glutinis cultivation on cassava wastewater for carotenoids and fatty acids generation. Biocatalysis and Agricultural Biotechnology22, 101419. https://doi.org/10.1016/j.bcac.2019.101419

  • Rim-Rukeh, A. (2012). Microbiologically influenced corrosion of S45c mild steel in cassava mill effluent. Research Journal in Engineering and Applied Sciences, 1, 284–290.

    Google Scholar 

  • Rytwo, G., Lavi, R., Rytwo, Y., Monchase, H., Dultz, S., & König, T. N. (2013). Clarification of olive mill and winery wastewater by means of clay-polymer nanocomposites. Science of the Total Environment, 442, 134–142.

    Article  CAS  Google Scholar 

  • Saenge, C., Cheirsilp, B., Suksaroge, T. T., & Bourtoom, T. (2011). Efficient concomitant production of lipids and carotenoids by oleaginous red yeast Rhodotorula glutinis cultured in palm oil mill effluent and application of lipids for biodiesel production. Biotechnology and Bioprocess Engineering, 16(1), 23–33.

    Article  CAS  Google Scholar 

  • Sarris, D., Matsakasa, L., Aggelisb, G., Koutinasa, A. A., & Papanikolaou, S. (2014). Aerated vs non-aerated conversions of molasses and olive mill wastewaters blends into bioethanol by Saccharomyces cerevisiae under non-aseptic conditions. Industrial Crops and Products, 56, 83–93.

    Article  CAS  Google Scholar 

  • Sarris, D., Giannakis, M., Philippoussis, A., Komaitis, M., Koutinas, A. A., & Papanik, S. (2013). Conversions of olive mill wastewater-basedmedia by Saccharomyces cerevisiae through sterile and non-sterile bioprocesses. Journal of Chemical Technology & Biotechnology, 88(5), 958–969.

    Article  CAS  Google Scholar 

  • Sarris, D., Stoforos, N. G., Mallouchos, A., Kookos, L. K., Koutinas, A. A., Aggelis, G., & Papanikolaou, S. (2017). Production of added-value metabolites by Yarrowia lipolytica growing in olive mill wastewater-based media under aseptic and non-aseptic conditions. Engineering in Life Science, 17, 695–709.

    Article  CAS  Google Scholar 

  • Sarris, D., Rapti, A., Papafotis, N., Koutinas, A. A., & Papanikolaou, S. (2019). Production of added-value chemical compounds through bioconversions of olive-mill wastewaters blended with crude glycerol by a Yarrowia lipolytica strain. Molecules, 24(2), 222.

    Article  Google Scholar 

  • Sassi, A., Ouazzani, N., Walker, G. M., Ibnsouda, S., El Mzibri, M., & Boussaid, A. (2008). Detoxification of olive mill wastewaters by Moroccan yeast isolates. Biodegradation, 19(3), 337–346.

    Article  Google Scholar 

  • Schneider, T., Graeff-Hönninger, S., French, W. T., Hernandez, R., Merkt, N., Claupein, W., Hetrick, M., & Pham, P. (2013). Lipid and carotenoid production by oleaginous red yeast Rhodotorula glutinis cultivated on brewery effluents. Energy, 61, 34–43.

    Article  CAS  Google Scholar 

  • Singh, U. S., & Tripathi, Y. C. (2020). Characteristics and treatment of pulp and paper mill effluents -A review. International Journal of Engineering and Technical Research, 10(11), 454–4698.

    Google Scholar 

  • Stathatou, P. M., Athanasiou, C. E., Tsezos, M., Goss, J. W., Blackburn, C., Tourlomousis, F., Mershin, A., Sheldon, B. W., Padture, N. P., Darling, E. M., & Gao, H. (2021). Investigating lead removal at trace concentrations from water by inactive yeast cells. Communications Earth & Environment, 3, 132.

    Article  Google Scholar 

  • Sun, G. L., Reynolds, E. E., & Belcher, A. M. (2020). Using yeast to sustainably remediate and extract heavy metals from waste waters. Nature Sustainability. https://doi.org/10.1038/s41893-020-0478-9

    Article  Google Scholar 

  • Tamilalagan, A., Singaram, J., & Rajamohan, S. (2019). Generation of biodiesel from industrial wastewater using oleaginous yeast: Performance and emission characteristics of microbial biodiesel and its blends on a compression injection diesel engine. Environmental Science and Pollution Research, 26(11), 11371–11386.

    Article  CAS  Google Scholar 

  • Theerachat, M., Tanapong, P., & Chulalaksananukul, W. (2017). The culture or co-culture of Candida rugosa and Yarrowia lipolytica strain rM-4A, or incubation with their crude extracellular lipase and laccase preparations, for the biodegradation of palm oil mill wastewater. International Biodeterioration and Biodegradation, 121, 11–18.

    Article  CAS  Google Scholar 

  • Toczyłowska-Mamińska, R. (2017). Limits and perspectives of pulp and paper industry wastewater treatment-A review. Renewable and Sustainable Energy Reviews, 78, 764–772. https://doi.org/10.1016/j.rser.2017.05.021

    Article  CAS  Google Scholar 

  • Tsilo, P. H., Basson, A. K., Ntombela, Z. G., Maliehe, T. S., & Pullabhotla, V. R. (2022). Production and characterization of a bioflocculant from Pichia kudriavzevii MH545928.1 and its application in wastewater treatment. International Journal of Environmental Research and Public Health, 19, 3148. https://doi.org/10.3390/ijerph19063148

  • Umair Hassan, M., Aamer, M., Umer Chattha, M., Haiying, T., Khan, I., Seleiman, M. F., Rasheed, A., Nawaz, M., Rehman, A., Talha Aslam, M., Aniqa, A., & Guoqin, H. (2021). Sugarcane distillery spent wash (DSW) as a bio-nutrient supplement: A win-win option for sustainable crop production. Agronomy, 11, 183. https://doi.org/10.3390/agronomy11010183

    Article  CAS  Google Scholar 

  • Wang, J., Hu, M., Zhang, H., & Bao, J. (2017). Converting chemical oxygen demand (COD) of cellulosic ethanol fermentation wastewater into microbial lipid by oleaginous yeast Trichosporon cutaneum. Applied Biochemistry and Biotechnology, 182(3), 1121–1130.

    Article  CAS  Google Scholar 

  • Wagha, M. P., & Nemadeb, P. D. (2018). Biogas generation from distillery spent wash by using an OPUR western biotechnology process: A case study. Desalination and Water Treatment, 118, 241–248. https://doi.org/10.5004/dwt.2018.22404

    Article  CAS  Google Scholar 

  • Wells, T., Jr., Wei, Z., & Ragauskas, A. (2015). Bioconversion of lignocellulosic pretreatment effluent via oleaginous Rhodococcus opacus DSM 1069. Biomass and Bioenergy, 72, 200–205.

    Article  CAS  Google Scholar 

  • Wierzchowska, K., Zieniuk, B., & Fabiszewska, A. (2022). Use of non-conventional yeast Yarrowia lipolytica in treatment or upgradation of hydrophobic industry wastes. Waste and Biomass Valorization, 13, 757–779.

    Article  CAS  Google Scholar 

  • Xiong, L., Huang, C., Li, X. M., Chen, X. F., Wang, B., Wang, C., Zeng, X. A., & Chen, X. D. (2015). Acetone-Butanol-Ethanol (ABE) Fermentation wastewater treatment by oleaginous yeast Trichosporon cutaneum. Applied Biochemistry and Biotechnology, 176, 563–571. https://doi.org/10.1007/s12010-015-1595-1

    Article  CAS  Google Scholar 

  • Yaseen, D. A., & Scholz, M. (2016). Shallow pond systems planted with Lemna minor treating azo dyes. Ecological Engineering, 94, 295–305.

    Article  Google Scholar 

  • Yaseen, D. A., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. International Journal of Environmental Science and Technology, 16(2), 1193–1226.

    Article  CAS  Google Scholar 

  • Yang, M., & Zheng, S. (2014). Pollutant removal-oriented yeast biomass production from high-organic strength industrial wastewater: A review. Biomass and Bioenergy, 64, 356–362. https://doi.org/10.1016/j.biombioe.2014.03.020

    Article  CAS  Google Scholar 

  • Yang, Q., Zhang, H., Li, X., Wang, Z., Xu, Y., Ren, S., Chen, X., Xu, Y., Hao, H., & Wang, H. (2013). Extracellular enzyme production and phylogenetic distribution of yeasts in wastewater treatment systems. Bioresource Technology, 129, 264–273.

    Article  CAS  Google Scholar 

  • Yousuf, A., Sannino, F., Addorisio, V., & Pirozzi, D. (2010). Microbial conversion of olive oil mill wastewaters into lipids suitable for biodiesel production. Journal of Agricultural and Food Chemistry, 58(15), 8630–8635.

    Article  CAS  Google Scholar 

  • Yu, D., Wang, X., Fan, X., Ren, H., Hu, S., Wang, L., Shi, Y., Liu, N., & Qiao, N. (2018). Refined soybean oil wastewater treatment and its utilization for lipid production by the oleaginous yeast Trichosporon fermentans. Biotechnology for Biofuels, 11(1), 1–12.

    Article  Google Scholar 

  • Zhang, X., Liu, M., Zhang, X., & Tan, T. (2018). Microbial lipid production and organic matters removal from cellulosic ethanol wastewater through coupling oleaginous yeasts and activated sludge biological method. Bioresource Technology, 267, 395–400.

    Article  CAS  Google Scholar 

  • Zhang, L., Zhou, P., Chen, Y. C., Cao, Q., Liu, X. F., & Li, D. (2021). The production of single cell protein from biogas slurry with high ammonia-nitrogen content by screened Nectaromyces rattusPoultry Science, 100(9), 101334. https://doi.org/10.1016/j.psj.2021.101334

  • Zhou, W., Wang, W., Li, Y., & Zhang, Y. (2013). Lipid production by Rhodosporidium toruloides Y2 in bioethanol wastewater and evaluation of biomass energetic yield. Bioresource Technology, 127, 435–440.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ndubuisi, Ifeanyi Amara: Conceptualization, Paper Resources, Data curation, Writing- Original draft, Writing- editing, Validation. Enemour, Simeon Chukwuemeka: Conceptualization, Paper Resources, Writing- Original draft, Validation. Nnabuife, Obianuju Obiajulu: Paper Resources, Writing- review and editing, Validation. Ogbonna, James Chukwuma: Paper Resources, Writing- review and editing, Validation.

Corresponding author

Correspondence to Nnabuife Obianuju Obiajulu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amara, N.I., Chukwuemeka, E.S., Obiajulu, N.O. et al. Yeast-driven valorization of agro-industrial wastewater: an overview. Environ Monit Assess 195, 1252 (2023). https://doi.org/10.1007/s10661-023-11863-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11863-w

Keywords

Navigation