Skip to main content
Log in

A review on potential approach for in silico toxicity analysis of respirable fraction of ambient particulate matter

  • Review
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Epidemiological and toxicological studies have shown the adverse effect of ambient particulate matter (PM) on respiratory and cardiovascular systems inside the human body. Various cellular and acellular assays in literature use indicators like ROS generation, cell inflammation, mutagenicity, etc., to assess PM toxicity and associated health effects. The presence of toxic compounds in respirable PM needs detailed studies for proper understanding of absorption, distribution, metabolism, and excretion mechanisms inside the body as it is difficult to accurately imitate or simulate these mechanisms in lab or animal models. The leaching kinetics of the lung fluid, PM composition, retention time, body temperature, etc., are hard to mimic in an artificial experimental setup. Moreover, the PM size fraction also plays an important role. For example, the ultrafine particles may directly enter systemic circulations while coarser PM10 may be trapped and deposited in the tracheo-bronchial region. Hence, interpretation of these results in toxicity models should be done judiciously. Computational models predicting PM toxicity are rare in the literature. The variable composition of PM and lack of proper understanding for their synergistic role inside the body are prime reasons behind it. This review explores different possibilities of in silico modeling and suggests possible approaches for the risk assessment of PM particles. The toxicity testing approach for engineered nanomaterials, drugs, food industries, etc., have also been investigated for application in computing PM toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

References have been cited.

References

  • Agarwal, A. K., Singh, A. P., Gupta, T., Agarwal, R. A., Sharma, N., Pandey, S. K., & Ateeq, B. (2020). Toxicity of exhaust particulates and gaseous emissions from gasohol (ethanol blended gasoline)-fuelled spark ignition engines. Environmental Science. Processes & Impacts, 22, 1540–1553. https://doi.org/10.1039/D0EM00082E

    Article  CAS  Google Scholar 

  • Agarwal, A. K., Singh, A. P., Gupta, T., Agarwal, R. A., Sharma, N., Rajput, P., Pandey, S. K., & Ateeq, B. (2018). Mutagenicity and cytotoxicity of particulate matter emitted from biodiesel-fueled engines. Environmental Science and Technology, 52, 14496–14507. https://doi.org/10.1021/acs.est.8b03345

    Article  CAS  Google Scholar 

  • Akhtar, U., Rastogi, N., McWhinney, R. D., Urch, B., Chow, C., Evans, G. J., & Scott, J. A. (2014). The combined effects of physicochemical properties of size-fractionated ambient particulate matter on in vitro toxicity in human A549 lung epithelial cells. Toxicology Reports, 1, 145–156. https://doi.org/10.1016/j.toxrep.2014.05.002

    Article  CAS  Google Scholar 

  • Barber, C., Cayley, A., Hanser, T., Harding, A., Heghes, C., Vessey, J. D., Werner, S., Weiner, S. K., Wichard, J., Giddings, A., Glowienke, S., Parenty, A., Brigo, A., Spirkl, H.-P., Amberg, A., Kemper, R., & Greene, N. (2016). Evaluation of a statistics-based Ames mutagenicity QSAR model and interpretation of the results obtained. Regulatory Toxicology and Pharmacology, 76, 7–20. https://doi.org/10.1016/j.yrtph.2015.12.006

    Article  CAS  Google Scholar 

  • Bates, J. T., Fang, T., Verma, V., Zeng, L., Weber, R. J., Tolbert, P. E., Abrams, J. Y., Sarnat, S. E., Klein, M., Mulholland, J. A., & Russell, A. G. (2019). Review of acellular assays of ambient particulate matter oxidative potential: Methods and relationships with composition, sources, and health effects. Environmental Science and Technology, 53, 4003–4019. https://doi.org/10.1021/acs.est.8b03430

    Article  CAS  Google Scholar 

  • Bleam, W. F. (2012). Risk assessment, in: Soil and environmental chemistry. Elsevier, pp. 409–447. https://doi.org/10.1016/B978-0-12-415797-2.00010-8

  • Boreson, J., Dillner, A. M., & Peccia, J. (2004). Correlating bioaerosol load with PM2.5 and PM10cf concentrations: A comparison between natural desert and urban-fringe aerosols. Atmospheric Environment, 38, 6029–6041. https://doi.org/10.1016/j.atmosenv.2004.06.040

    Article  CAS  Google Scholar 

  • Brunekreef, B., & Forsberg, B. (2005). Epidemiological evidence of effects of coarse airborne particles on health. European Respiratory Journal, 26, 309–318. https://doi.org/10.1183/09031936.05.00001805

    Article  CAS  Google Scholar 

  • Cao, J., Xu, H., Xu, Q., Chen, B., & Kan, H. (2012). Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese city. Environmental Health Perspectives, 120, 373–378. https://doi.org/10.1289/ehp.1103671

    Article  CAS  Google Scholar 

  • Chakraborty, A., & Gupta, T. (2010). Chemical characterization and source apportionment of submicron (PM 1) aerosol in Kanpur Region. India Aerosol and Air Quality Research, 10, 433–445. https://doi.org/10.4209/aaqr.2009.11.0071

    Article  CAS  Google Scholar 

  • Cho, S. H., Tong, H., McGee, J. K., Baldauf, R. W., Krantz, Q. T., & Gilmour, M. I. (2009). Comparative toxicity of size-fractionated airborne particulate matter collected at different distances from an urban highway. Environmental Health Perspectives, 117, 1682–1689. https://doi.org/10.1289/ehp.0900730

    Article  CAS  Google Scholar 

  • Choi, J. H., Kim, J. S., Kim, Y. C., Kim, Y. S., Chung, N. H., Cho, M. H. (2004). Comparative study of PM2.5 - and PM10 - induced oxidative stress in rat lung epithelial cells. Journal of  Veterinary Science, 5, 11. https://doi.org/10.4142/jvs.2004.5.1.11

  • Cigánková, H., Mikuška, P., Hegrová, J., Krajčovič, J. (2021). Comparison of oxidative potential of PM1 and PM2.5 urban aerosol and bioaccessibility of associated elements in three simulated lung fluids. Science of the Total Environment, 800, 149502. https://doi.org/10.1016/j.scitotenv.2021.149502

  • Clements, A. L., Fraser, M. P., Upadhyay, N., Herckes, P., Sundblom, M., Lantz, J., & Solomon, P. A. (2014). Chemical characterization of coarse particulate matter in the Desert Southwest – Pinal County Arizona. USA. Atmospheric Pollution Researh, 5, 52–61. https://doi.org/10.5094/APR.2014.007

    Article  CAS  Google Scholar 

  • Cohen, Y., Rallo, R., Liu, R., & Liu, H. H. (2013). In silico analysis of nanomaterials hazard and risk. Accounts of Chemical Research, 46, 802–812. https://doi.org/10.1021/ar300049e

    Article  CAS  Google Scholar 

  • Combes, R. D. (2012). In silico methods for toxicity prediction, in: New technologies for toxicity testing. Springer, New York, New York, pp. 96–116. https://doi.org/10.1007/978-1-4614-3055-1_7

  • Dandona, L., Dandona, R., Kumar, G. A., Shukla, D. K., Paul, V. K., Balakrishnan, K., Prabhakaran, D., Tandon, N., Salvi, S., Dash, A. P., Nandakumar, A., Patel, V., Agarwal, S. K., Gupta, P. C., Dhaliwal, R. S., Mathur, P., Laxmaiah, A., Dhillon, P. K., Dey, S.,  M., Mukhopadhyay, S., Murhekar, M., Murthy, G. V. S., Nair, S., Nair, S.A., Nanda, L., Nongmaithem, R. S., Oommen, A. M., Pandian, J. D., Pandya, S., Parameswaran, S., Pati, S., Prasad, K., Prasad, N., Purwar, M., Rahim, A., Raju, S., Ramji, S., Rangaswamy, T., Rath, G. K., Roy, A., Sabde, Y., Sachdeva, K. S., Sadhu, H., Sagar, R., Sankar, M. J., Sharma, R., Shet, A., Shirude, S., Shukla, R., Shukla, S. R., Singh, G., Singh, N. P., Singh, V., Sinha, A., Sinha, D. N., Srivastava, R. K., Srividya, A., Suri, V., Swaminathan, R., Sylaja, P. N., Tandale, B., Thakur, J. S., Thankappan, K. R., Thomas, N., Tripathy, S., Varghese, M., Varughese, S., Venkatesh, S., Venugopal, K., Vijayakumar, L., Xavier, D., Yajnik, C. S., Zachariah, G., Zodpey, S., Rao, J. V. R. P., Vos, T., Reddy, K. S., Murray, C. J. L., Swaminathan, S. (2017). Nations within a nation: Variations in epidemiological transition across the states of India, 1990–2016 in the Global Burden of Disease Study. Lancet, 390, 2437–2460. https://doi.org/10.1016/S0140-6736(17)32804-0

    Article  Google Scholar 

  • Das, A., Habib, G., Vivekanandan, P., Kumar, A. (2021). Reactive oxygen species production and inflammatory effects of ambient PM2.5 -associated metals on human lung epithelial A549 cells “one year-long study”: The Delhi chapter. Chemosphere 262, 128305. https://doi.org/10.1016/j.chemosphere.2020.128305

  • Dearden, J. C. (2003). In silico prediction of drug toxicity. Journal of Computer-Aided Molecular Design, 17, 119–127. https://doi.org/10.1023/A:1025361621494

    Article  CAS  Google Scholar 

  • Dutkiewicz, J., Cisak, E., Sroka, J., Wójcik-Fatla, A., & Zając, V. (2011). Biological agents as occupational hazards - selected issues. Annals of Agricultural and Environmental Medicine, 18, 286–293.

    CAS  Google Scholar 

  • Galindo, N., Varea, M., Gil-Moltó, J., Yubero, E., & Nicolás, J. (2011). The influence of meteorology on particulate matter concentrations at an urban Mediterranean location. Water, Air, and Soil Pollution, 215, 365–372. https://doi.org/10.1007/s11270-010-0484-z

    Article  CAS  Google Scholar 

  • Gellatly, N., & Sewell, F. (2019). Regulatory acceptance of in silico approaches for the safety assessment of cosmetic-related substances. Comput. Toxicol., 11, 82–89. https://doi.org/10.1016/j.comtox.2019.03.003

    Article  Google Scholar 

  • Ghosh, S., Gupta, T., Rastogi, N., Gaur, A., Misra, A., Tripathi, S. N., Paul, D., Tare, V., Prakash, O., Bhattu, D., Dwivedi, A. K., Kaul, D. S., Dalai, R., & Mishra, S. K. (2014). Chemical characterization of summertime dust events at Kanpur: Insight into the sources and level of mixing with anthropogenic emissions. Aerosol and Air Quality Research, 14, 879–891. https://doi.org/10.4209/aaqr.2013.07.0240

    Article  CAS  Google Scholar 

  • Goudarzi, G., Shirmardi, M., Naimabadi, A., Ghadiri, A., & Sajedifar, J. (2019). Chemical and organic characteristics of PM2.5 particles and their in-vitro cytotoxic effects on lung cells: The Middle East dust storms in Ahvaz. Iran Science of the Total Environment, 655, 434–445. https://doi.org/10.1016/j.scitotenv.2018.11.153

    Article  CAS  Google Scholar 

  • Gronlund, C. J., Humbert, S., Shaked, S., O’Neill, M. S., & Jolliet, O. (2015). Characterizing the burden of disease of particulate matter for life cycle impact assessment. Air Qualilty Atmosphere and Health, 8, 29–46. https://doi.org/10.1007/s11869-014-0283-6

    Article  CAS  Google Scholar 

  • Gualtieri, M., Øvrevik, J., Holme, J. A., Perrone, M. G., Bolzacchini, E., Schwarze, P. E., & Camatini, M. (2010). Differences in cytotoxicity versus pro-inflammatory potency of different PM fractions in human epithelial lung cells. Toxicology in Vitro, 24, 29–39. https://doi.org/10.1016/j.tiv.2009.09.013

    Article  CAS  Google Scholar 

  • Gupta, T., Agarwal, A. K. (2010). Toxicology of combustion products, in: Handbook of combustion. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. https://doi.org/10.1002/9783527628148.hoc015

  • Gupta, A. D., Srivastava, V., & Gupta, T. (2021). Seasonal bioaerosol load and statistical analysis within different microenvironments of an academic institute situated in the Indo-Gangetic Plain. Aerobiologia (bologna)., 37, 663–680. https://doi.org/10.1007/s10453-021-09715-6

    Article  Google Scholar 

  • Hai, C. D., & Kim Oanh, N. T. (2013). Effects of local, regional meteorology and emission sources on mass and compositions of particulate matter in Hanoi. Atmospheric Environment, 78, 105–112. https://doi.org/10.1016/j.atmosenv.2012.05.006

    Article  CAS  Google Scholar 

  • Hetland, R. B., Cassee, F. R., Låg, M., Refsnes, M., Dybing, E., Schwarze, P. E. (2005). Cytokine release from alveolar macrophages exposed to ambient particulate matter: heterogeneity in relation to size, city an season. Part. Fibre Toxicology, 2. https://doi.org/10.1186/1743-8977-2-4

  • Hong, Z., Guo, Z., Zhang, R., Xu, J., Dong, W., Zhuang, G., & Deng, C. (2016). Airborne fine particulate matter induces oxidative stress and inflammation in human nasal epithelial cells. Tohoku Journal of Experimental Medicine, 239, 117–125. https://doi.org/10.1620/tjem.239.117

    Article  CAS  Google Scholar 

  • Hsu, Y., Chuang, H., Lee, Y., Lin, Y., Chen, Y., Hsiao, T., Wu, M., & Chiu, H. (2019). Traffic-related particulate matter exposure induces nephrotoxicity in vitro and in vivo. Free Radical Biology & Medicine, 135, 235–244. https://doi.org/10.1016/j.freeradbiomed.2019.03.008

    Article  CAS  Google Scholar 

  • Hu, J., Huang, L., Chen, M., Liao, H., Zhang, H., Wang, S., Zhang, Q., & Ying, Q. (2017). Premature mortality attributable to particulate matter in China: Source contributions and responses to reductions. Environmental Science and Technology, 51, 9950–9959. https://doi.org/10.1021/acs.est.7b03193

    Article  CAS  Google Scholar 

  • Huang, X., Betha, R., Tan, L. Y., & Balasubramanian, R. (2016). Risk assessment of bioaccessible trace elements in smoke haze aerosols versus urban aerosols using simulated lung fluids. Atmospheric Environment, 125, 505–511. https://doi.org/10.1016/j.atmosenv.2015.06.034

    Article  CAS  Google Scholar 

  • ICRP. (1994). Human respiratory tract model for radiological protection. ICRP Publication 66. Ann. ICRP, 24, (1–3).

  • Izhar, S., Rajput, P., & Gupta, T. (2018). Variation of particle number and mass concentration and associated mass deposition during Diwali festival. Urban Clim., 24, 1027–1036. https://doi.org/10.1016/j.uclim.2017.12.005

    Article  Google Scholar 

  • Jarvis, I. W. H., Enlo-Scott, Z., Nagy, E., Mudway, I. S., Tetley, T. D., Arlt, V. M., & Phillips, D. H. (2018). Genotoxicity of fine and coarse fraction ambient particulate matter in immortalised normal (TT1) and cancer-derived (A549) alveolar epithelial cells. Environmental and Molecular Mutagenesis, 59, 290–301. https://doi.org/10.1002/em.22166

    Article  CAS  Google Scholar 

  • Jia, Y.-Y., Wang, Q., Liu, T. (2017). Toxicity research of PM2.5 compositions in vitro. International Journal Environment Research Public Health, 14, 232. https://doi.org/10.3390/ijerph14030232

  • Jiang, X., Xu, F., Qiu, X., Shi, X., Pardo, M., Shang, Y., Wang, J., Rudich, Y., & Zhu, T. (2019). Hydrophobic organic components of ambient fine particulate matter (PM 2.5) associated with inflammatory cellular response. Environmental Science and Technology, 53, 10479–10486. https://doi.org/10.1021/acs.est.9b02902

    Article  CAS  Google Scholar 

  • Kappos, A. D., Bruckmann, P., Eikmann, T., Englert, N., Heinrich, U., Höppe, P., Koch, E., Krause, G. H. M., Kreyling, W. G., Rauchfuss, K., Rombout, P., Schulz-Klemp, V., Thiel, W. R., & Wichmann, H.-E. (2004). Health effects of particles in ambient air. International Journal of Hygiene and Environmental Health, 207, 399–407. https://doi.org/10.1078/1438-4639-00306

    Article  CAS  Google Scholar 

  • Kastury, F., Smith, E., & Juhasz, A. L. (2017). A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal(loid)s from ambient particulate matter or dust. Science of the Total Environment, 574, 1054–1074. https://doi.org/10.1016/j.scitotenv.2016.09.056

    Article  CAS  Google Scholar 

  • Kelly, F. J., & Fussell, J. C. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environment, 60, 504–526. https://doi.org/10.1016/j.atmosenv.2012.06.039

    Article  CAS  Google Scholar 

  • Khomenko, S., Cirach, M., Pereira-Barboza, E., Mueller, N., Barrera-Gómez, J., Rojas-Rueda, D., de Hoogh, K., Hoek, G., & Nieuwenhuijsen, M. (2021). Premature mortality due to air pollution in European cities: A health impact assessment. Lancet Planet. Heal., 5, e121–e134. https://doi.org/10.1016/S2542-5196(20)30272-2

    Article  Google Scholar 

  • Kim, K.-H., Kabir, E., & Jahan, S. A. (2018). Airborne bioaerosols and their impact on human health. Journal of Environmental Sciences, 67, 23–35. https://doi.org/10.1016/j.jes.2017.08.027

    Article  CAS  Google Scholar 

  • Labiris, N. R., & Dolovich, M. B. (2003). Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications. British Journal of Clinical Pharmacology, 56, 588–599. https://doi.org/10.1046/j.1365-2125.2003.01892.x

    Article  CAS  Google Scholar 

  • Lacey, J., & Dutkiewicz, J. (1994). Bioaerosols and occupational lung disease. Journal of Aerosol Science, 25, 1371–1404. https://doi.org/10.1016/0021-8502(94)90215-1

    Article  CAS  Google Scholar 

  • Lalchandani, V., Kumar, V., Tobler, A., M. Thamban, N., Mishra, S., Slowik, J. G., Bhattu, D., Rai, P., Satish, R., Ganguly, D., Tiwari, Suresh, Rastogi, N., Tiwari, Shashi, Močnik, G., Prévôt, A. S. H., Tripathi, S. N. (2021). Real-time characterization and source apportionment of fine particulate matter in the Delhi megacity area during late winter. Science of the Total Environment, 770, 145324. https://doi.org/10.1016/j.scitotenv.2021.145324

  • Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., & Pozzer, A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525, 367–371. https://doi.org/10.1038/nature15371

    Article  CAS  Google Scholar 

  • Lemos, M., Diaz, E. A., Gupta, T., Kang, C.-M., Ruiz, P., Coull, B. A., Godleski, J. J., & Gonzalez-Flecha, B. (2011). Cardiac and pulmonary oxidative stress in rats exposed to realistic emissions of source aerosols. Inhalation Toxicology, 23, 75–83. https://doi.org/10.3109/08958378.2011.601433

    Article  CAS  Google Scholar 

  • Levy, A. (2020). Correlation between in-vitro and in-vivo studies based on pharmacokinetic considerations. American Journal of Biomedical Science and Research, 8, 48–50. https://doi.org/10.34297/AJBSR.2020.08.001236

  • Li, N., Xia, T., & Nel, A. E. (2008). The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radical Biology & Medicine, 44, 1689–1699. https://doi.org/10.1016/j.freeradbiomed.2008.01.028

    Article  CAS  Google Scholar 

  • Longhin, E., Pezzolato, E., Mantecca, P., Holme, J. A., Franzetti, A., Camatini, M., & Gualtieri, M. (2013). Season linked responses to fine and quasi-ultrafine Milan PM in cultured cells. Toxicology in Vitro, 27, 551–559. https://doi.org/10.1016/j.tiv.2012.10.018

    Article  CAS  Google Scholar 

  • Lyu, Y., Guo, H., Cheng, T., & Li, X. (2018). Particle size distributions of oxidative potential of lung-deposited particles: Assessing contributions from quinones and water-soluble metals. Environmental Science and Technology, 52, 6592–6600. https://doi.org/10.1021/acs.est.7b06686

    Article  CAS  Google Scholar 

  • Martonen, T., & Isaacs, K. K. (2004). Computational toxicology: An in silico dosimetry model for risk assessment of air pollutants. Air Pollution Xii, 14, 749–758.

    Google Scholar 

  • Mbareche, H., Morawska, L., & Duchaine, C. (2019). On the interpretation of bioaerosol exposure measurements and impacts on health. J. Air Waste Manage. Assoc., 69, 789–804. https://doi.org/10.1080/10962247.2019.1587552

    Article  Google Scholar 

  • Moller, P., Hemmingsen, J. G., Jensen, D. M., Danielsen, P. H., Karottki, D. G., Jantzen, K., Roursgaard, M., Cao, Y., Kermanizadeh, A., Klingberg, H., Christophersen, D. V., Hersoug, L.-G., & Loft, S. (2015). Applications of the comet assay in particle toxicology: Air pollution and engineered nanomaterials exposure. Mutagenesis, 30, 67–83. https://doi.org/10.1093/mutage/geu035

    Article  CAS  Google Scholar 

  • Mukherjee, A., & Agrawal, M. (2017). World air particulate matter: Sources, distribution and health effects. Environmental Chemistry Letters, 15, 283–309. https://doi.org/10.1007/s10311-017-0611-9

    Article  CAS  Google Scholar 

  • Murad, N., Pasikanti, K. K., Madej, B. D., Minnich, A., McComas, J. M., Crouch, S., Polli, J. W., & Weber, A. D. (2021). Predicting volume of distribution in humans: Performance of in silico methods for a large set of structurally diverse clinical compounds. Drug Metabolism and Disposition, 49, 169–178. https://doi.org/10.1124/dmd.120.000202

    Article  CAS  Google Scholar 

  • Nair, V. S., Moorthy, K. K., Alappattu, D. P., Kunhikrishnan, P. K., George, S., Nair, P. R., Babu, S. S., Abish, B., Satheesh, S. K., Tripathi, S. N., Niranjan, K., Madhavan, B. L., Srikant, V., Dutt, C. B. S., Badarinath, K. V. S., & Reddy, R. R. (2007). Wintertime aerosol characteristics over the Indo-Gangetic Plain (IGP): Impacts of local boundary layer processes and long-range transport. Journal of Geophysical Research, 112, 1–15. https://doi.org/10.1029/2006JD008099

    Article  CAS  Google Scholar 

  • Nisbet, I. C. T., & LaGoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16, 290–300. https://doi.org/10.1016/0273-2300(92)90009-X

    Article  CAS  Google Scholar 

  • Organisation for Economic Co-operation and Development (OECD) (2022) The OECD QSAR Toolbox. https://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm. Accessed 6/25/22

  • Øvrevik, J. (2019). Oxidative potential versus biological effects: A review on the relevance of cell-free/abiotic assays as predictors of toxicity from airborne particulate matter. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms20194772

    Article  Google Scholar 

  • Pandolfi, M., Querol, X., Alastuey, A., Jimenez, J. L., Jorba, O., Day, D., Ortega, A., Cubison, M. J., Comerón, A., Sicard, M., Mohr, C., Prévôt, A. S. H., Minguillón, M. C., Pey, J., Baldasano, J. M., Burkhart, J. F., Seco, R., Peñuelas, J., van Drooge, B. L., … Szidat, S. (2014). Effects of sources and meteorology on particulate matter in the Western Mediterranean Basin: An overview of the DAURE campaign. J. Geophys. Res. Atmos., 119, 4978–5010. https://doi.org/10.1002/2013JD021079

    Article  CAS  Google Scholar 

  • Patlewicz, G., & Fitzpatrick, J. M. (2016). Current and future perspectives on the development, evaluation, and application of in silico approaches for predicting toxicity. Chemical Research in Toxicology, 29, 438–451. https://doi.org/10.1021/acs.chemrestox.5b00388

    Article  CAS  Google Scholar 

  • Peixoto, M. S., de Oliveira Galvão, M. F., & Batistuzzo de Medeiros, S. R. (2017). Cell death pathways of particulate matter toxicity. Chemosphere, 188, 32–48. https://doi.org/10.1016/j.chemosphere.2017.08.076

    Article  CAS  Google Scholar 

  • Perrone, M. G., Gualtieri, M., Ferrero, L., Porto, C. L., Udisti, R., Bolzacchini, E., & Camatini, M. (2010). Seasonal variations in chemical composition and in vitro biological effects of fine PM from Milan. Chemosphere, 78, 1368–1377. https://doi.org/10.1016/j.chemosphere.2009.12.071

    Article  CAS  Google Scholar 

  • Perrone, M. G., Zhou, J., Malandrino, M., Sangiorgi, G., Rizzi, C., Ferrero, L., Dommen, J., & Bolzacchini, E. (2016). PM chemical composition and oxidative potential of the soluble fraction of particles at two sites in the urban area of Milan, Northern Italy. Atmospheric Environment, 128, 104–113. https://doi.org/10.1016/j.atmosenv.2015.12.040

    Article  CAS  Google Scholar 

  • Poorbahrami, K., Vignon-Clementel, I. E., Shadden, S. C., & Oakes, J. M. (2021). A whole lung in silico model to estimate age dependent particle dosimetry. Science and Reports, 11, 11180. https://doi.org/10.1038/s41598-021-90509-8

    Article  CAS  Google Scholar 

  • Priyamvada, H., Priyanka, C., Singh, R. K., Akila, M., Ravikrishna, R., & Gunthe, S. S. (2018). Assessment of PM and bioaerosols at diverse indoor environments in a southern tropical Indian region. Building and Environment, 137, 215–225. https://doi.org/10.1016/j.buildenv.2018.04.016

    Article  Google Scholar 

  • Puzyn, T., Rasulev, B., Gajewicz, A., Hu, X., Dasari, T. P., Michalkova, A., Hwang, H.-M., Toropov, A., Leszczynska, D., & Leszczynski, J. (2011). Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nature Nanotechnology, 6, 175–178. https://doi.org/10.1038/nnano.2011.10

    Article  CAS  Google Scholar 

  • Raies, A. B., Bajic, V. B. (2016). In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip. Review Computational Molecular Science, https://doi.org/10.1002/wcms.1240

  • Samburova, V., Zielinska, B., & Khlystov, A. (2017). Do 16 polycyclic aromatic hydrocarbons represent PAH air toxicity? Toxics, 5, 17. https://doi.org/10.3390/toxics5030017

    Article  CAS  Google Scholar 

  • Selick, H. E., Beresford, A. P., & Tarbit, M. H. (2002). The emerging importance of predictive ADME simulation in drug discovery. Drug Discovery Today, 7, 109–116. https://doi.org/10.1016/S1359-6446(01)02100-6

    Article  Google Scholar 

  • Singh, D. K., & Gupta, T. (2016). Effect through inhalation on human health of PM 1 bound polycyclic aromatic hydrocarbons collected from foggy days in northern part of India. Journal of Hazardous Materials, 306, 257–268. https://doi.org/10.1016/j.jhazmat.2015.11.049

    Article  CAS  Google Scholar 

  • Sjoholm, P., Ingham, D. B., Lehtimaki, M., Perttu, L., Goodfellow, H., Torvela, H. (2001). Gas-cleaning technology, in: Industrial ventilation design guidebook. Elsevier, pp. 1197–1316. https://doi.org/10.1016/B978-012289676-7/50016-3

  • Soukup, J. M., & Becker, S. (2001). Human alveolar macrophage responses to air pollution particulates are associated with insoluble components of coarse material, including particulate endotoxin. Toxicology and Applied Pharmacology, 171, 20–26. https://doi.org/10.1006/taap.2000.9096

    Article  CAS  Google Scholar 

  • Sridharan, S., Kumar, M., Singh, L., Bolan, N. S., Saha, M. (2021). Microplastics as an emerging source of particulate air pollution: a critical review. Journal of Hazardous Materials, 418, 126245. https://doi.org/10.1016/j.jhazmat.2021.126245

  • State of Global Air. (2020). Boston, MA.

  • Sturm, R. (2020). Modelling the deposition of fine particulate matter (PM2.5) in the human respiratory tract. AME Medical Journal, 5, 14–14. https://doi.org/10.21037/amj.2020.03.04

  • USEPA. (2005). Guidelines for carcinogen risk assessment, EPA/630/P-03/001F. Washington, DC.

  • USEPA (2016) Chemical search | IRIS | US EPA. https://cfpub.epa.gov/ncea/iris/search/index.cfm. Accessed 6/24/22

  • USEPA (2022a) U.S. Environmental protection agency. National Ambient Air Quality Standards (NAAQS). http://www.epa.gov/ttn/naaqs/. Accessed 6/3/22

  • USEPA (2022b) United States Environmental Protection Agency, Risk Assessment. https://www.epa.gov/risk. Accessed 3/24/22

  • Waidyatillake, N. T., Campbell, P. T., Vicendese, D., Dharmage, S. C., Curto, A., & Stevenson, M. (2021). Particulate matter and premature mortality: A bayesian meta-analysis. International Journal of Environmental Research and Public Health, 18, 7655. https://doi.org/10.3390/ijerph18147655

    Article  Google Scholar 

  • Worth, A., Barroso, J., Bremer, S., Burton, J., Casati, S., Coecke, S., Corvi, R., Desprez, B., Dumont, C., Gouliarmou, V., Goumenou, M., Gräpel, R., Griesinger, C., Halder, M., Roi, A. J., Kienzler, A., Madia, F., Munn, S., Nepelska, M., Paini, A., Price, A., Prieto, P., Rolaki, A., Schäffer, M., Triebe, J., Whelan, M., Wittwehr, C., Zuang, V. (2014). Alternative methods for regulatory toxicology – a state-of-the-art review. https://doi.org/10.2788/11111

  • Wu, S., Fisher, J., Naciff, J., Laufersweiler, M., Lester, C., Daston, G., & Blackburn, K. (2013). Framework for identifying chemicals with structural features associated with the potential to act as developmental or reproductive toxicants. Chemical Research in Toxicology, 26, 1840–1861. https://doi.org/10.1021/tx400226u

    Article  CAS  Google Scholar 

  • Yoo, S.-J., & Ito, K. (2018). Assessment of transient inhalation exposure using in silico human model integrated with PBPK-CFD hybrid analysis. Sustainable Cities and Society, 40, 317–325. https://doi.org/10.1016/j.scs.2018.04.023

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the MHRD, India, and IIT Kanpur for providing fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Both authors participated in the conceptualization of this review and have contributed equally in drafting the manuscript.

Corresponding author

Correspondence to Tarun Gupta.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A.D., Gupta, T. A review on potential approach for in silico toxicity analysis of respirable fraction of ambient particulate matter. Environ Monit Assess 195, 1216 (2023). https://doi.org/10.1007/s10661-023-11859-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11859-6

Keywords

Navigation