Skip to main content
Log in

Assessment of radiological indices and physiochemical characterization of sediments in Chashma Lake, Pakistan

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Twenty surface sediment samples were gathered from Chasma Lake, deciding the radionuclides 137Cs, 226Ra, 228Ra, 232Th, and 40K and their associated hazard indices. The deliberate radionuclide activities of present research have been contrasted with earlier research, and acquired outcomes in the present study are found below the results in the world. The radiation hazard indices following the presence of natural radionuclides in sediment samples were estimated, and the results assigned the values of all the determined radiological indices found inside the worldwide suggested limits. It was concluded from the current review that the sediment of Chashma Lake is safe for construction and agriculture and does not make radiation dangerous to the nearby local area of the lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data can be obtained from the corresponding author on reasonable request.

References

  • Abdel-Halim, A. A., & Saleh, I. H. (2016). Radiological characterization of beach sediments along the Alexandria–Rosetta coasts of Egypt. Journal of Taibah University for Science, 10, 212–220.

    Google Scholar 

  • Abu Haija, O. (2012). Determination of natural radionuclides concentrations in surface soil in Tafila/Jordan, Mod. Applied Sciences, 6, 3.

    Google Scholar 

  • Afzal, I., Chaudhary, M. Z., Khan, E. U., Nasir, T., & Yaqoob, N. (2022). Radiological risk assessment in sediment of Namal Lake Mianwali–Pakistan. Environmental Monitoring and Assesment, 194, 223. https://doi.org/10.1007/s10661-022-09881-1

    Article  CAS  Google Scholar 

  • Aitchison, J. (1986). The statistical analysis of compositional data (p. 416). Chapman and Hall.

    Google Scholar 

  • Akram, M., Qureshi, R. M., Ahmad, N., & Solaija, T. J. (2007). Determination of gamma-emitting radionuclides in the inter-tidal sediments off Balochistan (Pakistan) Coast, Arabian Sea. Radiation Protection Dosimetry, 23(2), 268–273.

    Google Scholar 

  • Allison, L. E. (1965). Organic carbon. In C. A. Black, D. D. Evans, J. L. White, L. E. Enisminger, & F. E. Clark (Eds.), In methods of soil analysis (pp. 1372–1378). American Society of Agronomy Wisconsin.

    Google Scholar 

  • Arapis, G. D., & Karandinos, M. G. (2004). Migration of 137Cs in the soil of sloping semi-natural ecosystems in Northern Greece. Journal of Environmental Radioactivity, 77(2), 133–142.

    CAS  Google Scholar 

  • Aytas S, Yusan S, Aslani M A, Karali T, Turkozu D A, Gok C, Erenturk S, Gokce M and Oguz, K. F. (2012). Natural radioactivity of riverbank sediments of the Maritza and Tundja Rivers in Turkey, Journal of Environmental Science and Health Part A, 47, 2163–2172.

  • Beretka J, Mathew, P. J. (1985). Natural radioactivity of Australian building materials, industrial wastes and by-products, Health Physics. 48, 87-95.

  • Blott, S. J., & Pye, K. (2001). Gradistat: a grain size distribution and statistics package for the analysis of consolidated sediment. Earth Surface Processes and Landform, 26(2), 1237–1248.

    Google Scholar 

  • Botwe, B. O., Schirone, A., Delbono, I., Barsanti, M., Delfanti, R., Kelderman, P., Nyarko, E., & Lens, P. N. (2017). Radioactivity concentrations and their radiological significance in sediments of the Tema Harbour (Greater Accra, Ghana). Journal of Radiation Research and Applied Sciences, 10(1), 6371.

    CAS  Google Scholar 

  • Brown, G., & Brindly, G. W. (1984). X-ray diffraction procedures for clay mineral identification. In G. W. Brindly & G. Brown (Eds.), In crystal structure of clay minerals and their identification (pp. 305–360).

    Google Scholar 

  • Chaudhary, M. Z., Ahmad, N., Mashiatullah, A., Yaqoob, N., & Robab, U. (2021b). Metal contamination in Sunairi Point sediment core along Karachi Coast. Pakistan, Journal of Radio analytical and Nuclear Chemistry, 328(2), 605–615.

    CAS  Google Scholar 

  • Chaudhary, M. Z., Ahmad, N., Yaqoob, N., Robab, U., & Abid, J. (2021c). Assessment of metal contamination in Manora Picnic Point sediment core from Karachi coast, Pakistan. Environmental Earth Sciences, 80(475), 1–11.

    Google Scholar 

  • Chaudhary, M. Z., Khan, K., Ahmad, N., Mashiatullah, A., Javed, T., Yaqoob, N., Robab, U., Khan, M. S., & Abid, J. (2021a). Sediment accumulation rates in Karachi coastal area Pakistan using 210Pb dating method. Journal of Radio analytical and Nuclear Chemistry, 327(1), 13–20.

    CAS  Google Scholar 

  • Chen, K., Jiao, J. J., Huang, J., & Huang, R. (2007). Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen, China. Environmental. Pollution., 147, 771–780.

    CAS  Google Scholar 

  • Chowdhurry, M. I., Alam, M. N., & Hazari, S. K. S. (1999). Distribution of radionuclides in the rivers sediments and coastal soils of Chittagong, Bangladesh and evaluation of the radiation hazard. Applied Radiation and Isotope, 51, 747–755.

    Google Scholar 

  • Debertin, K., & Helmer, R. G. (1988). Gamma and X-ray spectrometry with semiconductor detectors. Amsterdam, North Holland: Elsevier Science.

    Google Scholar 

  • Diab, H. M., Nouh, S. A., Hamdy, A., & and. EL-Fiki, S. A. (2008). Evaluation of natural radioactivity in cultivated area around a fertilizer factory. Journal of Nuclear Radiaton Physics, 3(1), 53–62.

    Google Scholar 

  • Ekwere, S. J. (1992). Geochemical studies of sediments in Qua Iboe estuary associated creeks, south eastern Nigeria. Tropical Journal of Applied Natural Sciences, 2, 91–95.

    Google Scholar 

  • El-Gamal, A., Nasra, S., & El-Taher, A. (2007). Study of spatial distribution of natural radioactivity in the upper Egypt Nile River sediments. Radiation Measurement, 42, 457–465.

    CAS  Google Scholar 

  • El-Taher, A., & Madkour, H. A. (2011). Distribution and environmental impacts of metals and natural radionuclides in marine sediments in-front of different wadies mouth along the Egyptian Red Sea Coast. Applied Radiation and Isotope, 69, 550–558.

    CAS  Google Scholar 

  • Ergül, H. A., Belivermiş, M., Kılıç, O., Topcuoğlu, S., & Çotuk, Y. (2013a). Natural and artificial radionuclide activity concentrations in surface sediments of Izmit Bay, Turkey. Journal of Environmental Radioactivity, 126, 125–132.

    Google Scholar 

  • Ergül, H. A., Belivermiş, M., Kılıç, Ö., Topcuoğlu, S., & Çotuk, Y. (2013b). Natural and artificial radionuclide activity concentrations in surface sediments of Izmit Bay, Turkey. Journal of Environmental Radioactivity, 126, 125–132.

    Google Scholar 

  • Eroglu, H., & Kabadayi, O. (2013). Natural radioactivity levels in lake sediment samples. Radiation Protection Dosimetry, 156, 331–335.

    CAS  Google Scholar 

  • Fallah, M., Jahangiri, S., Janadeleh, H., & Kameli, M. A. (2019). Distribution and risk assessment of radionuclides in river sediments along the Arvand River, Iran3. Microchemical Journal, 146, 1090–1094.

    CAS  Google Scholar 

  • Fatima, I., Zaidi, J. H., Arif, M., et al. (2008). Measurement of natural radioactivity and dose rate assessment of terrestrial gamma radiation in the soil of southern Punjab, Pakistan. Radiation Protection Dosimetry, 128(2), 206–212.

    CAS  Google Scholar 

  • Hamzah, Z., Saat, A., Riduan, S. D., & Amirudin, C. Y. (2012). Assessment of 137Cs activity concentration in soil from tea plantation areas in Cameron Highlands. Journal Nuclear and Related Technologies, 9(1), 1–5.

    Google Scholar 

  • Harb, S., et al. (2008). Proceedings of the 3rd Environmental Physics Conference, 19–23 Feb. Aswan.

    Google Scholar 

  • Holgye, Z., & Maly, M. (2000). Vertical distribution and migration rates of 239Pu, 240Pu, 238Pu, and 137Cs in the grassland soil in three locations of Central Bohemia. Journal of Environmental Radioactivity, 47, 135–147.

    CAS  Google Scholar 

  • Isinkaye, M. O., & Farai, I. P. (2008). Activity concentrations of primordial radionuclides in sediments of surface water dams in southwest Nigeria-a baseline survey. Radioprotection, 43(4), 533–545.

    CAS  Google Scholar 

  • Isinkaye, M. O., & Emelue, H. U. (2015). Natural radioactivity measurements and evaluation of radiological hazards in sediment of Oguta Lake, South East Nigeria. Journal of Radiation Research and Applied Sciences, 8, 459–469.

    Google Scholar 

  • Jabbar, A., Khan, K., Jabbar, T., et al. (2016). Radioactive contents and background doses from northern alluvial sediment plains between rivers Ravi and Chenab, Pakistan. Nuclear Science and Techniques, 27, 94.

    Google Scholar 

  • Javed, T., Ahmad, N., Mashiatullah, A., & Khan, K. (2021). Chronological record, source identification and ecotoxicological impact assessment of heavy metals in sediments of Kallar Kahar Lake, Salt Range-Punjab, Pakistan. Environmental Earth Sciences, 80, 546. https://doi.org/10.1007/s12665-021-09764-7

    Article  CAS  Google Scholar 

  • Javed, T., Ahmad, N., & Mashiatullah, A. (2018). Heavy metals contamination and ecological risk assessment in surface sediments of Namal Lake, Pakistan. Polish Journal of Environmental Studies, 27(2), 675–688.

    CAS  Google Scholar 

  • Jibiri, N. N., & Okeyode, I. C. (2012). Evaluation of radiological hazards in the sediments of Ogun river, South-Western Nigeria. Radiation Physics and Chemistry, 81, 1829–1835.

    Google Scholar 

  • Khater, A. E. M., Ebaid, Y. Y., & El-mongy, S. A. (2005). Distribution pattern of natural radionuclides in lake Nasser bottom sediments. International Congress, 1276, 405–406.

    CAS  Google Scholar 

  • Kobya, Y., Taşkın, H., Yeşilkanat, C. M., Varinlioğlu, A., & Korcak, S. (2015). Natural and artificial radioactivity assessment of dam lakes sediments in Çoruh River, Turkey. Journal of Radio analytical and Nuclear Chemistry, 303, 287–295.

    CAS  Google Scholar 

  • Krmar, M., Slivka, J., Varga, E., Bikit, I., & Veskovic, M. (2009). Correlations of natural radionuclides in sediment from Danube. Journal of Geochemical Exploration, 100(1), 20–24.

    CAS  Google Scholar 

  • Loring, D. H., & Rantala, R. T. T. (1992). Manual for the geochemical analyses of marine sediment and suspended particulate matter. Earth-Science Reviews, 32, 235–283.

    CAS  Google Scholar 

  • Lu, X., & Xiolan, Z. (2006). Measurement of natural radioactivity in sand samples collected from the Booje Weithe sand park, China. Environmental Geology, 5, 977–988.

    Google Scholar 

  • Malta, M., Oliveira, J. M., Silva, L., & Carvalho, F. P. (2013). Radioactivity from Lisboa urban wastewater discharges in the Tejo River Estuary. Journal of Integrated Coastal Zone Management, 13, 399–408.

    Google Scholar 

  • Mashiatullah, A., Chaudhary, M. Z., Ahmad, N., Ahmad, N., Javed, T., & Ghaffar, A. (2015). Geochemical assessment of metal pollution and ecotoxicology in sediment cores along Karachi coast Pakistan. Environmental Monitoring and Assessment, 187, 249.

    Google Scholar 

  • Matiullah, A., Ahad, A., ur Rehman, S., et al. (2004). Measurement of radioactivity in the soil of Bahawalpur division, Pakistan. Radiation Protection Dosimetry, 12(3), 443–447.

    Google Scholar 

  • McKeague, J. A. (1978). Mannual on soil sampling and methods of analysis 2nd Ed.

    Google Scholar 

  • Nada, A., & Ibrahim, E. M. (2013). Relations between radionuclides activities before and after leaching processes of different rock types. Research Journal of Applied Sciences, 9(6), 3536–3542.

    CAS  Google Scholar 

  • Nada, A., Abd-El Maksoud, T. M., Abu-Zeid Hosnia, M., et al. (2009). Distribution of radionuclides in soil samples from a petrified wood forest in El-Qattamia, Cairo, Egypt. Applied Radiation and Isotope Journal, 184, 5773–5779.

    Google Scholar 

  • Narayana, Y., Rajashekara, K. M., & Siddappa, K. (2007). Natural radioactivity in some major rivers of coastal Karnataka on the southwest coast of India. Journal of Environmental Radioactivity, 95, 98–106.

    CAS  Google Scholar 

  • Nasirm, T., Al-Sulaiti, H., & Regan, P. H. (2012). Assessment of radioactivity in some soil samples of Quatar by gamma-ray spectroscopy and the derived dose rates. Pakistan Journal of Scientific and Industrial Research, 55(3), 128–134.

    Google Scholar 

  • Ndontchueng, M. M., Simo, A., Nguelem, E. J. M., Beyala, J. F., & Kryeziu, D. (2013). Preliminary study of natural radioactivity and radiological risk assessment in some mineral bottled water produced in Cameroon. International Journal of Environmental Science and Technology, 3(5), 271–276.

    Google Scholar 

  • NEA-OECD. (1979). Nuclear Energy Agency. Exposure to radiation from natural radioactivity in building materials. Report by NEA Group of Experts OECD.

    Google Scholar 

  • Ngachin, M., Garavaglia, M., Giovani, C., Kwato-Njock, M. G., & Nourredine, A. (2007). Assessment of natural Radioactivity and associated radiation hazards in some Cameroonian building materials. Radiation Measurement, 42, 61–67.

    CAS  Google Scholar 

  • Papaefthymiou, H., Athanasopoulos, D., Papatheodorou, G., Iatrou, M., Geraga, M., Christodoulou, D., Kordella, S., Fakiris, E., & Tsikouras, B. (2013). Uranium and other natural radionuclides in the sediments of a Mediterranean fjord-like embayment, Amvrakikos Gulf (Ionian Sea), Greece. Journal of Environmental Radioactivity, 122, 43–54.

    CAS  Google Scholar 

  • Rafique, M., Rehman, H., Matiullah, M., et al. (2011). Assessment of radiological hazards due to soil and building materials used in Mirpur Azad Kashmir; Pakistan. International Journal Radiation Research., 9, 77.

    Google Scholar 

  • Ravisankar, R., Sivakumar, S., Chandrasekaran, A., Prince Prakash Jebakumar, J., Vijayalakshmi, I., Vijayagopal, P., & Venkatraman, B. (2014). Spatial distribution of gamma radioactivity levels and radiological hazard indices in the east coastal sediment of Tamilnadu, India with statistical approach. Radiation Physics and Chemistry Journal, 103, 89–98.

    CAS  Google Scholar 

  • Ravisankar, R., Chandramohan, J., Chandrasekaran, A., Prince Prakash Jebakumar, J., Vijayalakshmi, I., Vijayagopal, P., & Venkatraman, B. (2015). Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approach. Marine Pollution Bulletin., 97, 419–430.

    CAS  Google Scholar 

  • Sahin, L., Hafızoğlu, N., Çetinkaya, H., et al. (2017). Assessment of radiological hazard parameters due to natural radioactivity in soils from granite-rich regions in Kütahya Province, Turkey. Isotopes in Environmental Health Studies, 53(2), 212–221.

    CAS  Google Scholar 

  • Said, R. (1962). The Geology of Egypt. Elsevier.

    Google Scholar 

  • Sanchez, F., & Rodriguez-Alvarez, M. J. (1999). Effect of pH, temperature, conductivity and sediment size of thorium and radium activities along Jucar River (Spain). Journal of Radio analytical and Nuclear Chemistry, 242(3), 671–668.

    CAS  Google Scholar 

  • Semkow, T. M., Parekh, P. P., Schwenker, C. D., Khan, A. J., Bari, A., Colaresi, J. F., Tench, O. K., David, G., & Guryn, W. (2002). Low-background gamma spectrometry for environmental radioactivity. Applied Radiation and Isotope Journal, 57, 213–223.

    CAS  Google Scholar 

  • Singh, J., Singh, H., Singh, S., et al. (2009). Comparative study of natural radioactivity levels in soil samples from the Upper Siwaliks and Punjab, India using gamma-ray spectrometry. Journal of Environmental Radioactivity, 100(1), 94–98.

    CAS  Google Scholar 

  • Sirin, M. (2019). Evaluation of radioactive pollution in sediment samples of Borçka Dam Lake, Turkey. Cumhuriyet Science Journal (CSJ), 40-3, 624–639.

    Google Scholar 

  • Tabar, E., Yakut, H., Saç, M. M., et al. (2017). Natural radioactivity levels and related risk assessment in soil samples from Sakarya, Turkey. Journal of Radio analytical and Nuclear Chemistry, 313, 49–259.

    Google Scholar 

  • Taleb, A. A., Abbady, A., & Harb, S. (2019). Assessment of natural radioactivity level in shore sediment samples from Nasser Lake at Aswan, Egypt. International Journal of Biology Biomed. Eng., (IJBES), 6(1), 1–11. https://doi.org/10.5121/ijbes.2019.6101

    Article  Google Scholar 

  • Tufail, M., Asghar, M., Akram, M., et al. (2013). Measurement of natural radioactivity in soil from Peshawar basin of Pakistan. Journal of Radio analytical and Nuclear Chemistry, 298, 1085–1096.

    CAS  Google Scholar 

  • UNSCEAR. (1993). Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation.

    Google Scholar 

  • UNSCEAR. (2000). Sources and effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2000 Rep to Gen Assem. UNSCEAR.

    Google Scholar 

  • UNSCEAR. (2008). Sources, effects and risks of ionizing radiation. Report to the general assembly scientific annexes A and B. UNSCEAR.

    Google Scholar 

  • Vasile, M., & Benedik, L. (2008). On the determination of 228Ra, 210Po, 234U and 238U in mineral waters. In JRS Scientific and Technical Reports EUR 23683 EN, ISBN 978-92-79-11126-6. European Commission Joint Research Centre Institute for Reference Materials and Measurement, Retieseweg 111, B-2440.

    Google Scholar 

  • Veerasingam, S., Venkatachalapathy, R., & Ramkumar, T. (2014). Distribution of clay minerals in marine sediment off Chennai, Bay of Bengal, India: Indicators of sediment sources and transport processes. International Journal of Sediment Research, 29, 11–23.

    Google Scholar 

  • Wo, Y. M., & Ahmad, Z. (2008). Validation of 226Ra and 40K measurement in environmental samples using gamma spectrometry system. Malaysian Journal of Analytical Sciences, 12(1), 179–186.

    Google Scholar 

  • Xinwei, L., Xiaolan, Z., & Fengling, W. (2008). Natural radioactivity in sediment of Wei River, China. Environmental Geology, 53, 1483–1489.

    Google Scholar 

  • Zar, J. H. (1996). Bio statistical Analysis (3rd ed.). Prentice-Hall.

    Google Scholar 

  • Zorer, O. S. (2019). Evaluations of environmental hazard parameters of natural and some artificial radionuclides in river water and sediments. Micro chemical Journal, 145, 762–766.

    Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to Head Isotope Application Division (IAD), Mr Tarq Javed and Dr. Tanveer Ahmad for their review and valuable suggestions. During this review, the authors profoundly recognize the specialized directions given by Mr. Tariq Javed and Dr. Tanveer Ahmad, IAD.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Ehsan and Dr. Tabassum provided the central concept of this project. Dr. Zaman writes the main manuscript. Mustafa Khan, Dr. Nadeem, Dr. Zaman and Dr. Jawaria analyzed sediment samples and field sampling from Chashma Lake. Finally, all authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Muhammad Zaman Chaudhary.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M., Chaudhary, M.Z., Khan, E.U. et al. Assessment of radiological indices and physiochemical characterization of sediments in Chashma Lake, Pakistan. Environ Monit Assess 195, 1219 (2023). https://doi.org/10.1007/s10661-023-11825-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11825-2

Keywords

Navigation