Skip to main content

Advertisement

Log in

Debris flow simulation and modeling of the 2021 flash flood hazard caused by a rock-ice avalanche in the Rishiganga River valley of Uttarakhand

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The high mountain ecosystem of the Indian Himalayas has frequently been experiencing primary hazards (like earthquakes, avalanches, and landslides). Often, these events are followed by the triggering of secondary hazards (like landslide dams, debris flows, and flooding), thereby posing massive risks to infrastructure and residents in the region. This study was taken up to understand the dynamics of an extraordinary debris flood disaster in the Rishiganga River valley, Chamoli district of Uttarakhand on 7th February 2021. Rapid mass movements (RAMMS)-debris flow software was employed to recreate the entire sequence of the hazard consisting of a rock-ice slide, mass deposition and erosion along the channel, and subsequent debris flood. Forty-nine scenarios were analyzed for accurate calibration of dry-Coulomb type friction coefficient (µ) and viscous-turbulent friction coefficient (ξ). Consequently, the geomorphologic characteristics of the debris flow were validated using high-resolution satellite image interpretation and field photographs. The volume of detached rock-ice mass was estimated to be 26.42 × 106 m3. At the same time, the RAMMS-derived model outputs for velocity, flow depth, and momentum were found in good agreement with the extent and height of actual debris on the ground. The study highlights an urgent need to identify the glaciers with a high risk of ice avalanches in the Indian Himalayas. The presented modeling approach may be applied in dynamic mountain ecosystems to simulate potential flash floods due to avalanches. Moreover, the information reported in this study can be vital input for improving the district-level disaster management plan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All the data used in this study can be downloaded from the links provided in Table 1.

Code availability

Not applicable.

References

  • ADB. (2013). The rise of natural disasters in the Asia and the Pacific. Mandaluyong City, Philippines: Asian Development Bank. https://www.adb.org/sites/default/files/evaluation-document/36114/files/rise-natural-disasters-asia-pacific.pdf

  • Banerjee, A., Dimri, A. P., & Kumar, K. (2021). Temperature over the Himalayan foothill state of Uttarakhand: Present and future. Journal of Earth System Science, 130(1), 33. https://doi.org/10.1007/s12040-020-01527-5

    Article  Google Scholar 

  • Bartelt, P., Buehler, Y., Christen, M., Deubelbeiss, Y., Graf, C., McArdell, B., Salz, M., & Schneider, M. (2021). A numerical model for debris flow in research and practice, User Manual v1.8.0 Debris Flow. WSL Institute for Snow and Avalanche Research SLF.

  • Bhardwaj, A., & Sam, L. (2022). Reconstruction and characterisation of past and the most recent slope failure events at the 2021 rock-ice avalanche site in Chamoli Indian Himalaya. Remote Sensing, 14(4), 949. https://doi.org/10.3390/rs14040949

    Article  Google Scholar 

  • Choudhary, A., & Dimri, A. P. (2018). Assessment of CORDEX-South Asia experiments for monsoonal precipitation over Himalayan region for future climate. Climate Dynamics, 50(7), 3009–3030. https://doi.org/10.1007/s00382-017-3789-4

    Article  Google Scholar 

  • Christen, M., Bartelt, P., & Kowalski, J. (2010). Back calculation of the In den Arelen avalanche with RAMMS: Interpretation of model results. Annals of Glaciology, 51(54), 161–168.

    Article  Google Scholar 

  • Clague, J. J., & Evans, S. G. (2000). A review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quaternary Science Reviews, 19, 1763–1783.

    Article  Google Scholar 

  • Davies, M. C. R., Hamza, O., & Harris, C. (2001). The effect of rise in mean annual temperature on the stability of rock slopes containing ice-filled discontinuities. Permafrost and Periglacial Processes, 12(1), 137–144. https://doi.org/10.1002/ppp.378

    Article  Google Scholar 

  • Dimri, A. P., Chevuturi, A., Niyogi, D., Thayyen, R. J., Ray, K., Tripathi, S. N., Pandey, A. K., & Mohanty, U. C. (2017). Cloudbursts in Indian Himalayas: A review. Earth-Science Reviews, 168(2016), 1–23.

    Article  Google Scholar 

  • Evans, S. G., & Clague, J. J. (1994). Recent climatic change and catastrophic geomorphic processes in mountain environments. In M. Morisawa (Ed.), Geomorphology and Natural Hazards (pp. 107–128). Elsevier. https://doi.org/10.1016/B978-0-444-82012-9.50012-8

  • Evans, S. G., & Delaney, K. B. (2015). Chapter 16—Catastrophic mass flows in the mountain glacial environment. In J. F. Shroder, W. Haeberli, & C. Whiteman (Eds.), Snow and Ice-Related Hazards, Risks, and Disasters (pp. 563–606). Academic Press. https://doi.org/10.1016/B978-0-12-394849-6.00016-0

  • Evans, S. G., Bishop, N. F., Fidel Smoll, L., Valderrama Murillo, P., Delaney, K. B., & Oliver-Smith, A. (2009a). A re-examination of the mechanism and human impact of catastrophic mass flows originating on Nevado Huascarán, Cordillera Blanca, Peru in 1962 and 1970. Engineering Geology, 108(1), 96–118. https://doi.org/10.1016/j.enggeo.2009.06.020

    Article  Google Scholar 

  • Evans, S. G., Tutubalina, O. V., Drobyshev, V. N., Chernomorets, S. S., McDougall, S., Petrakov, D. A., & Hungr, O. (2009b). Catastrophic detachment and high-velocity long-runout flow of Kolka Glacier, Caucasus Mountains, Russia in 2002. Geomorphology, 105(3), 314–321. https://doi.org/10.1016/j.geomorph.2008.10.008

    Article  Google Scholar 

  • Faillettaz, J., Sornette, D., & Funk, M. (2011). Numerical modeling of a gravity-driven instability of a cold hanging glacier: Reanalysis of the 1895 break-off of Altelsgletscher. Switzerland. Journal of Glaciology, 57(205), 817–831.

    Article  Google Scholar 

  • Falaschi, D., Kääb, A., Paul, F., Tadono, T., Rivera, J. A., & Lenzano, L. E. (2019). Brief communication: Collapse of 4 Mm3 of ice from a cirque glacier in the Central Andes of Argentina. The Cryosphere, 13(3), 997–1004. https://doi.org/10.5194/tc-13-997-2019

    Article  Google Scholar 

  • Frey, H., Haeberli, W., Linsbauer, A., Huggel, C., & Paul, F. (2010). A multi-level strategy for anticipating future glacier lake formation and associated hazard potentials. Natural Hazards and Earth System Sciences, 10, 339–352.

    Article  Google Scholar 

  • Geertsema, M., Clague, J. J., Schwab, J. W., & Evans, S. G. (2006). An overview of recent large catastrophic landslides in northern British Columbia. Canada. Engineering Geology, 83(1), 120–143. https://doi.org/10.1016/j.enggeo.2005.06.028

    Article  Google Scholar 

  • Gilbert, A., Leinss, S., Kargel, J., Kääb, A., Gascoin, S., Leonard, G., Berthier, E., Karki, A., & Yao, T. (2018). Mechanisms leading to the 2016 giant twin glacier collapses, Aru Range. Tibet. the Cryosphere, 12(9), 2883–2900. https://doi.org/10.5194/tc-12-2883-2018

    Article  Google Scholar 

  • Haeberli, W., & Beniston, M. (1998). Climate change and its impacts on glaciers and permafrost in the Alps. Ambio, 27(4), 258–265.

    Google Scholar 

  • Huggel, C., Salzmann, N., Allen, S., Caplan-Auerbach, J., Fischer, L., Haeberli, W., Larsen, C., Schneider, D., & Wessels, R. (2010). Recent and future warm extreme events and high-mountain slope stability. Philosophical Transactions of the Royal Society a: Mathematical, Physical and Engineering Sciences, 368(1919), 2435–2459. https://doi.org/10.1098/rsta.2010.0078

    Article  CAS  Google Scholar 

  • Jacquemart, M., Loso, M., Leopold, M., Welty, E., Berthier, E., Hansen, J. S. S., Sykes, J., & Tiampo, K. (2020). What drives large-scale glacier detachments? Insights from Flat Creek glacier, St. Elias Mountains, Alaska. Geology, 48(7), 703–707. https://doi.org/10.1130/G47211.1

  • Jha, S. K., Negi, A. K., Alatalo, J. M., Negi, R. S., & Patasaraiya, M. K. (2020). Assessment of climate change pattern in the Pauri Garhwal of the Western Himalayan region: Based on climate parameters and perceptions of forest-dependent communities. Environmental Monitoring and Assessment, 192(10), 632. https://doi.org/10.1007/s10661-020-08575-w

    Article  Google Scholar 

  • Jiang, R., Zhang, L., Peng, D., He, X., & He, J. (2021). The landslide hazard chain in the Tapovan of the Himalayas on 7 February 2021. Geophysical Research Letters, 48(17), e2021GL093723. https://doi.org/10.1029/2021GL093723

  • Kansal, M. L., & Singh, S. (2022). Flood management issues in hilly regions of Uttarakhand (India) under changing climatic conditions. Water, 14(12), Article 12. https://doi.org/10.3390/w14121879

  • Korup, O., & Tweed, F. (2007). Ice, moraine, and landslide dams in mountainous terrain. Quaternary Science Reviews, 26(25–28), 3406–3422.

    Article  Google Scholar 

  • Kropáček, J., Vilímek, V., & Mehrishi, P. (2021). A preliminary assessment of the Chamoli rock and ice avalanche in the Indian Himalayas by remote sensing. Landslides, 18(10), 3489–3497. https://doi.org/10.1007/s10346-021-01742-1

    Article  Google Scholar 

  • Kumar, P., Shukla, B. P., Sharma, S., Kishtawal, C. M., & Pal, P. K. (2016). A high-resolution simulation of catastrophic rainfall over Uttarakhand, India. Natural Hazards, 80, 1119–1134.

    Article  Google Scholar 

  • Leinss, S., Bernardini, E., Jacquemart, M., & Dokukin, M. (2021). Glacier detachments and rock-ice avalanches in the Petra Pervogo range, Tajikistan (1973–2019). Natural Hazards and Earth System Sciences, 21(5), 1409–1429. https://doi.org/10.5194/nhess-21-1409-2021

    Article  Google Scholar 

  • Mao, W., Wu, L., Singh, R. P., Qi, Y., Xie, B., Liu, Y., Ding, Y., Zhou, Z., & Li, J. (2022). Progressive destabilization and triggering mechanism analysis using multiple data for Chamoli rockslide of 7 February 2021. Geomatics, Natural Hazards and Risk, 13(1), 35–53. https://doi.org/10.1080/19475705.2021.2013960

    Article  Google Scholar 

  • Martha, T. R., Roy, P., Jain, N., Vinod Kumar, K., Reddy, P. S., Nalini, J., Sharma, S. V. S. P., Shukla, A. K., Durga Rao, K. H. V., Narender, B., Rao, P. V. N., & Muralikrishnan, S. (2021). Rock avalanche induced flash flood on 07 February 2021 in Uttarakhand, India—A photogeological reconstruction of the event. Landslides, 18(8), 2881–2893. https://doi.org/10.1007/s10346-021-01691-9

    Article  Google Scholar 

  • Mehta, M., Kumar, V., Sain, K., Tiwari, S. K., Kumar, A., & Verma, A. (2021). Causes and consequences of rishiganga flash flood, Nanda Devi biosphere reserve, Central Himalaya, India. Current Science, 121, 1483-1487. https://doi.org/10.18520/cs/v121/i11/1483-1487

  • Nainwal, H. C., Shankar, R., Mishra, A., Mishra, S., Pandey, A., Shah, S. S., Chauhan, G. S., & Kumar, D. (2022). A comprehensive and quantitative assessment of Raunthi Gad flash flood, Rishi Ganga catchment, central Himalaya, Uttarakhand, India. Natural Hazards. https://doi.org/10.1007/s11069-022-05385-w

  • NDMA report. (2022). Study of causes and impacts of the Uttarakhand disaster on 7 February 2021 in Raunthi Gadhera, Rishiganga and Dhauliganga Valley: Measures to reduce disaster risks. https://ndma.gov.in/Resources/Reports-Studies

  • Pandey, P., Chauhan, P., Bhatt, C. M., Thakur, P. K., Kannaujia, S., Dhote, P. R., Roy, A., Kumar, S., Chopra, S., Bhardwaj, A., & Aggrawal, S. P. (2021). Cause and process mechanism of rockslide triggered flood event in Rishiganga and Dhauliganga river valleys, Chamoli, Uttarakhand, India using satellite remote sensing and in situ observations. Journal of the Indian Society of Remote Sensing, 49(5), 1011–1024. https://doi.org/10.1007/s12524-021-01360-3

    Article  Google Scholar 

  • Pandey, V. K., Kumar, R., Singh, R., Kumar, R., Rai, S. C., Singh, R. P., Tripathi, A. K., Soni, V. K., Ali, S. N., Tamang, D., & Latief, S. U. (2022). Catastrophic ice-debris flow in the Rishiganga River, Chamoli, Uttarakhand (India). Geomatics, Natural Hazards and Risk, 13(1), 289–309. https://doi.org/10.1080/19475705.2021.2023661

    Article  Google Scholar 

  • Rana, N., Sundriyal, Y., Sharma, S., Khan, F., Kaushik, S., Chand, P., Bagri, D. S., Sati, S. P., & Juyal, N. (2021). Hydrological characteristics of 7th February 2021 Rishi Ganga flood: Implication towards understanding flood hazards in higher Himalaya. Journal of the Geological Society of India, 97(8), 827–835. https://doi.org/10.1007/s12594-021-1781-4

    Article  Google Scholar 

  • Rautela, P., Khanduri, S., Kundalia, S., Joshi, G. C., & Jugran, R. (2021). Sequential damming induced winter season flash flood in Uttarakhand province of India. Journal of Environmental & Earth Sciences, 3(2). https://doi.org/10.30564/jees.v3i2.3069

  • Sain, K., Kumar, A., Mehta, M., Verma, A., Tiwari, S. K., Garg, P. K., Kumar, V., Rai, S. K., Srivastava, P., & Sen, K. (2021). A perspective on Rishiganga-Dhauliganga flash flood in the Nanda Devi Biosphere Reserve, Garhwal Himalaya, India. Journal of the Geological Society of India, 97(4), 335–338. https://doi.org/10.1007/s12594-021-1691-5

    Article  Google Scholar 

  • Salm, B. (1993). Flow, flow transition and runout distances of flowing avalanches. Annals of Glaciology, 18, 221–226.

    Article  Google Scholar 

  • Sati, V. P. (2022). Glacier bursts-triggered debris flow and flash flood in Rishi and Dhauli Ganga valleys: A study on its causes and consequences. Natural Hazards Research, 2(1), 33–40. https://doi.org/10.1016/j.nhres.2022.01.001

    Article  Google Scholar 

  • Schneider, D., Bartelt, P., Caplan-Auerbach, J., Christen, M., Huggel, C., & McArdell, B. W. (2010). Insights into rock-ice avalanche dynamics by combined analysis of seismic recordings and a numerical avalanche model. Journal of Geophysical Research: Earth Surface, 115(F4). https://doi.org/10.1029/2010JF001734

  • Schneider, D., Huggel, C., Haeberli, W., & Kaitna, R. (2011). Unraveling driving factors for large rock–ice avalanche mobility. Earth Surface Processes and Landforms, 36(14), 1948–1966. https://doi.org/10.1002/esp.2218

    Article  Google Scholar 

  • Shugar, D. H., Jacquemart, M., Shean, D., Bhushan, S., Upadhyay, K., Sattar, A., Schwanghart, W., McBride, S., de Vries, M. V. W., Mergili, M., Emmer, A., Deschamps-Berger, C., McDonnell, M., Bhambri, R., Allen, S., Berthier, E., Carrivick, J. L., Clague, J. J., Dokukin, M., … Westoby, M. J. (2021). A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science, 373(6552), 300–306. https://doi.org/10.1126/science.abh4455

  • Singh, G., & Pandey, A. (2021a). Flash flood vulnerability assessment and zonation through an integrated approach in the Upper Ganga Basin of the Northwest Himalayan region in Uttarakhand. International Journal of Disaster Risk Reduction, 66, 1–18. https://doi.org/10.1016/j.ijdrr.2021.102573

    Article  Google Scholar 

  • Singh, G., & Pandey, A. (2021b). Evaluation of classification algorithms for land use land cover mapping in the snowfed Alaknanda River Basin of the Northwest Himalayan Region. Applied Geomatics, 13, 863–875. https://doi.org/10.1007/s12518-021-00401-3

    Article  Google Scholar 

  • Singh, G., & Pandey, A. (2022). Hybrid ensemble modeling for flash flood potential assessment and susceptibility analysis of a Himalayan River catchment. Geocarto International, 1–28. https://doi.org/10.1080/10106049.2021.2017007

  • Singh, G., Rawat, M., & Pandey, A. (2023). Investigation of the flash flood event caused by a massive rock-ice avalanche in the Himalayan river valleys of Rishiganga and Dhauliganga, Uttarakhand, through hydrodynamic modeling perspectives. Springer. https://doi.org/10.1007/s11069-023-05972-5

    Book  Google Scholar 

  • Thakur, P. K., Aggarwal, S., Aggarwal, S. P., & Jain, S. K. (2016). One-dimensional hydrodynamic modeling of GLOF and impact on hydropower projects in Dhauliganga river using remote sensing and GIS applications. Natural Hazards, 83(2), 1057–1075. https://doi.org/10.1007/s11069-016-2363-4

    Article  Google Scholar 

  • Thayyen, R. J., Mishra, P. K., Jain, S. K., Wani, J. M., Singh, H., Singh, M. K., & Yadav, B. (2022). Hanging glacier avalanche (Raunthigad–Rishiganga) and debris flow disaster on 7 February 2021, Uttarakhand, India: A preliminary assessment. Natural Hazards. https://doi.org/10.1007/s11069-022-05454-0

  • Tiwari, A., Sain, K., Kumar, A., Tiwari, J., Paul, A., Kumar, N., Haldar, C., Kumar, S., & Pandey, C. P. (2022). Potential seismic precursors and surficial dynamics of a deadly Himalayan disaster: An early warning approach. Scientific Reports, 12(1), Article 1. https://doi.org/10.1038/s41598-022-07491-y

  • Tyagi, N., Jayal, T., Singh, M., Mandwal, V., Saini, A., Nirbhav, Sahu, N., & Nayak, S. (2022). Evaluation of observed and future climate change projection for Uttarakhand, India, using CORDEX-SA. Atmosphere, 13(6), Article 6. https://doi.org/10.3390/atmos13060947

  • Vangla, P. (2022). Site visit and drone based reconnaissance study of the severely affected infrastructure by February 7th, 2021, Chamoli rock-ice avalanche disaster Uttarakhand India . GEER Association (Report - 74). https://doi.org/10.18118/G6V95B

  • Wester, P., Mishra, A., Mukherji, A., & Shrestha, A. B. (2019). The Hindu Kush Himalaya assessment: Mountains, climate change, sustainability and people (p. 627). Springer Nature.

  • Zhang, T., Yin, Y., Li, B., Liu, X., Wang, M., Gao, Y., Wan, J., & Gnyawali, K. R. (2022). Characteristics and dynamic analysis of the February 2021 long-runout disaster chain triggered by massive rock and ice avalanche at Chamoli, Indian Himalaya. Journal of Rock Mechanics and Geotechnical Engineering. https://doi.org/10.1016/j.jrmge.2022.04.003

Download references

Acknowledgements

We wish to express a deep sense of gratitude and sincere thanks to the Department of Water Resources Development and Management (WRD&M), IIT Roorkee, for providing a conducive environment and resources to conduct the research work. We also thank Team RAMMS at the WSL Institute for Snow and Avalanche Research SLF for providing the free student license of RAMMS debris flow software module.

Author information

Authors and Affiliations

Authors

Contributions

Gagandeep Singh, Research Associate at the Department of Water Resources Development and Management, Indian Institute of Technology Roorkee, Roorkee, India, conceptualized the idea and methodology, processed the relevant data sets, developed the model set-up, validated the results, and carried out the formal analysis. He also drafted the manuscript and reviewed the results. Manish Rawat, Ph.D. Scholar at the Department of Water Resources Development and Management, Indian Institute of Technology Roorkee, Roorkee, India, developed the model set-up and validated the results. Dr. Ashish Pandey, Professor at the Department of Water Resources Development and Management, Indian Institute of Technology Roorkee, Roorkee, India, supervised the first author, reviewed the manuscript draft, and administered the progress of the research work.

Corresponding author

Correspondence to Gagandeep Singh.

Ethics declarations

Ethics approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Consent to participate

Subjects gave their informed consent for inclusion before they participated in the study.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Rawat, M. & Pandey, A. Debris flow simulation and modeling of the 2021 flash flood hazard caused by a rock-ice avalanche in the Rishiganga River valley of Uttarakhand. Environ Monit Assess 195, 1118 (2023). https://doi.org/10.1007/s10661-023-11774-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11774-w

Keywords

Navigation