Skip to main content

Advertisement

Log in

Environmental sensitivity assessment and land degradation in southeastern Serbia: application of modified MEDALUS model

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This paper aims to improve the methodology and results accuracy of MEDALUS model for assessing land degradation sensitivity through the application of different data detail levels and by introducing the application of Ellenberg indices in metrics related to vegetation drought sensitivity assessment. For that purpose, the MEDALUS model was applied at 2 levels of detail. Level I (municipality level) implied the use of available large-scale databases and level II (watershed) contains more detailed information about vegetation used in the calculation of the VQI and MQI factors (Fig. S6). The comparison was made using data based on CORINE Land Cover (2012) and forest inventory data, complemented with object-based classification. Results showed that data based on forest inventory data with the application of Ellenberg’s indices and object-based classification have one class more, critical (C1 and C2) and that the percentage distribution of classes is different in both quantitative (area size of class sensitivity) and qualitative (aggregation and dispersion of sensitivity classes). The use of data from Forest Management Plans and the application of Ellenberg’s indices affect the quality of the results and find its application in the model, especially if these results are used for monitoring and land area management on fine scales. Remote sensed data images (Sentinel-2B) were introduced into the methodology as a very important environmental monitoring tool and model results validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Alewell, C., Borrelli, P., Meusburger, K., & Panagos, P. (2019). Using the USLE: Chances, challenges and limitations of soil erosion modeling. International Soil and Water Conservation Research, 7(3), 203–225. https://doi.org/10.1016/j.iswcr.2019.05.004

    Article  Google Scholar 

  • Azimi Sardari, M. R., Bazrafshan, O., Panagopoulos, T., & Sardooi, E. R. (2019). Modeling the impact of climate change and land use change scenarios on soil erosion at the Minab Dam Watershed. Sustainability, 11(12), 3353. https://doi.org/10.3390/su11123353

    Article  Google Scholar 

  • Bakr, N., Weindorf, D. C., Bahnassy, M. H., & El-Badawi, M. M. (2012). Multi-temporal assessment of land sensitivity to desertification in a fragile agro-ecosystem: Environmental indicators. Ecological Indicators, 15, 271–280. https://doi.org/10.1016/j.ecolind.2011.09.034

    Article  Google Scholar 

  • Basso, F., Bove, E., Dumontet, S., Ferrara, A., Pisante, M., Quaranta, G., & Taberner, M. (2000). Evaluating environmental sensitivity at the basin scale through the use of geographic information systems and remotely sensed data: An example covering the Agri basin (Southern Italy). CATENA, 40(1), 19–35. https://doi.org/10.1016/S0341-8162(99)00062-4

    Article  Google Scholar 

  • Blaga, L. (2012). Aspects regarding the significance of the curvature types and values in the studies of geomorphometry assisted by GIS (pp. 327–337). University of Oradea.

    Google Scholar 

  • Bohajar, Y. A. M. (2016). Suše i proces aridizacije kao faktor degradacije zemljišta na području Deliblatske peščare [Droughts and the Process of Aridification as Soil Degradation Factor in Deliblato Sands]. University of Belgrade, Faculty of Forestry.

    Google Scholar 

  • Bossa, A. Y., Diekkrüger, B., & Agbossou, E. K. (2014). Scenario-based impacts of land use and climate change on land and water degradation from the meso to regional scale. Water, 6(10), 3152–3181. https://doi.org/10.3390/w6103152

    Article  Google Scholar 

  • Boudjemline, F., & Semar, A. (2018). Assessment and mapping of desertification sensitivity with MEDALUS model and GIS - Case study: Basin of Hodna, Algeria. Journal of Water and Land Development, 36, 17–26. https://doi.org/10.2478/jwld-2018-0002

    Article  Google Scholar 

  • Carroll, T., Gillingham, P. K., Stafford, R., Bullock, J. M., & Diaz, A. (2018). Improving estimates of environmental change using multilevel regression models of Ellenberg indicator values. Ecology and Evolution, 8(19), 9739–9750. https://doi.org/10.1002/ece3.4422

    Article  Google Scholar 

  • Cholet, C., Houle, D., Sylvain, J.-D., Doyon, F., & Maheu, A. (2022). Climate change increases the severity and duration of soil water stress in the temperate forest of Eastern North America. Front. For. Glob. Change, 5, 879382. https://doi.org/10.3389/ffgc.2022.879382

    Article  Google Scholar 

  • Contador, J. F., Schnabel, S., Gutiérrez, A., & Pulido-Fernández, M. (2009). Mapping sensitivity to land degradation in Extremadura, SW Spain. Land Degradation & Development, 20, 129–144. https://doi.org/10.1002/ldr.884

    Article  Google Scholar 

  • CORINE Land Cover (CLC). (2012). Inventory of European land cover classes. https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012

  • Costache, R. (2019). Flash-flood potential assessment in the upper and middle sector of Prahova river catchment (Romania). A comparative approach between four hybrid models. Science of The Total Environment, 659, 1115–1134. https://doi.org/10.1016/j.scitotenv.2018.12.397

    Article  CAS  Google Scholar 

  • D’Amen, M., Rahbek, C., Zimmermann, N. E., & Guisan, A. (2015). Spatial predictions at the community level: From current approaches to future frameworks. Biological Reviews, 92(1), 169–187. https://doi.org/10.1111/brv.12222

    Article  Google Scholar 

  • European Environmental Agency (EEA). (2009). Digital map of European Ecological Regions. https://www.eea.europa.eu/data-and-maps/figures/dmeer-digital-map-of-european-ecological-regions

  • FAO-UNEP. (2015). National Action Plan (NAP) to Combat Land Degradation. In Aligned to the UNCCD’S 10-year (2008-2018). FAO.

    Google Scholar 

  • Fotelli, M. N., Nahm, M., Radoglou, K., Rennenberg, H., Halyvopoulos, G., & Matzarakis, A. (2009). Seasonal and interannual ecophysiological responses of beech (Fagus sylvatica) at its south-eastern distribution limit in Europe. Forest Ecology and Management, 257(3), 1157–1164. https://doi.org/10.1016/j.foreco.2008.11.026

    Article  Google Scholar 

  • Geßler, A., Keitel, C., Kreuzwieser, J., Matyssek, R., Seiler, W., & Rennenberg, H. (2007). Potential risks for European Beech (Fagus sylvatica L.) in a changing climate. Trees, 21, 1–11. https://doi.org/10.1007/s00468-006-0107-x

    Article  Google Scholar 

  • Gyssels, G., Poesen, J., Bochet, E., & Li, Y. (2005). Impact of plant roots on the resistance of soils to erosion by water: A review. Progress in Physical Geography: Earth and Environment., 29(2), 189–217. https://doi.org/10.1191/0309133305pp443ra

    Article  Google Scholar 

  • Hargreaves, G. H., & Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture., 1(2), 96–99. https://doi.org/10.13031/2013.26773

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change. (2022). Climate change and land: IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Cambridge University Press. https://doi.org/10.1017/9781009157988

    Book  Google Scholar 

  • Jenness, J. (2006). Topographic Position Index. Jenness Enterprises http://www.jennessent.com/arcview/tpi.htm

    Google Scholar 

  • Kadović, R., Bohajar, Y. A. M., Perović, V., Simić, S. B., Todosijević, M., Tošić, S., Anđelić, M., Mlađan, D., & Dovezenski, U. (2016). Land sensitivity analysis of degradation using MEDALUS model: Case study of Deliblato Sands, Serbia. Archives of Environmental Protection, 42(4), 114–124. https://doi.org/10.1515/aep-2016-0045

    Article  Google Scholar 

  • Knežević, M., Đorđević, A., Košanin, O., Miletić, Z., Golubović, S., Pekač, S., Životić, Lj., Nikolić, N., & Žarković, M. (2011). Usklađivanje nomenklature osnovne pedološke karte sa WRB klasifikacijom [Harmonization of the nomenclature of the basic pedological map with the WRB classification]. Belgrade, Serbia: University of Belgrade, Faculty of Forestry.

    Google Scholar 

  • Kornejady, A., Ownegh, M., & Bahremand, A. (2017). Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. CATENA, 152, 144–162. https://doi.org/10.1016/j.catena.2017.01.010

    Article  Google Scholar 

  • Kosmas, C., Ferrara, A., Briasouli, H., & Imeson, A. (1999). Methodology for mapping environmentally sensitive areas (ESAs) to desertification. In C. Kosmas, M. Kirkby, & N. Geeson (Eds.), The Medalus project: Mediterranean desertification and land use. Manual on key indicators of desertification and mapping environmentally sensitive areas to desertification (p. 18882). European Union.

    Google Scholar 

  • Kosmas, C., Karamesouti, M., Kounalaki, K., Detsis, V., Vassiliou, P., & Salvati, L. (2016). Land degradation and long-term changes in agro-pastoral systems: an empirical analysis of ecological resilience in Asteroussia - Crete (Greece). CATENA, 147, 196–204. https://doi.org/10.1016/j.catena.2016.07.018

    Article  Google Scholar 

  • Kosmas, C., Tsara, M., Moustakas, N., & Karavitis, C. (2003). Identification of indicators for desertification. Annals of Arid Zone, 42, 393–416.

    Google Scholar 

  • Kosmas, C., Tsara, M., Moustakas, N., Kosma, D., & Yassoglou, N. (2006). Environmentally sensitive areas and indicators of desertification. In W. G. Kepner, J. L. Rubio, D. A. Mouat, & F. Pedrazzini (Eds.), Desertification in the Mediterranean region. A security issue. NATO Security Through Science Series (pp. 525-547). Springer.

    Google Scholar 

  • Lee, E. J., Piao, D., Song, C., Kim, J., Lim, C. H., Kim, E., Moon, J., Kafatos, M., Lamchin, M., Jeon, S. W., & Lee, W. K. (2019). Assessing environmentally sensitive land to desertification using MEDALUS method in Mongolia. Forest Science and Technology, 15(4), 210–220. https://doi.org/10.1080/21580103.2019.1667880

    Article  Google Scholar 

  • Leuschner, C. (2020). Drought response of European beech (Fagus sylvatica L.) – A review. Perspectives in Plant Ecology, Evolution and Systematics., 47. https://doi.org/10.1016/j.ppees.2020.125576

  • Lukić, S., Baumgertel, A., Obradović, S., Kadović, R., Beloica, J., Pantić, D., Miljković, P., & Belanović Simić, S. (2022). Assessment of land sensitivity to degradation using MEDALUS model - A case study of Grdelica Gorge and Vranjska Valley (southeastern Serbia). iForest -Biogeosciences and Forestry, 15, 163–170. https://doi.org/10.3832/ifor3871-015

    Article  Google Scholar 

  • Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B., & Rakitin, V. Y. (1999). Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia Plantarum, 106(1), 135–141. https://doi.org/10.1034/j.1399-3054.1999.106119.x

    Article  CAS  Google Scholar 

  • Momirović, N., Kadović, R., Perović, V., Marjanović, M., & Baumgertel, A. (2019). Spatial assessment of the areas sensitive to degradation in the rural area of the municipality Čukarica. International Soil and Water Conservation Research, 7(1), 71–80. https://doi.org/10.1016/J.ISWCR.2018.12.004

    Article  Google Scholar 

  • Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., & Meehl, G. A. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756. https://doi.org/10.1038/nature08823

    Article  CAS  Google Scholar 

  • Nestola, E., Scartazza, A., Di Baccio, D., Castagna, A., Ranieri, A., Cammarano, M., Mazzenga, F., Matteucci, G., & Calfapietra, C. (2018). Are optical indices good proxies of seasonal changes in carbon fluxes and stress-related physiological status in a beech forest? Science of The Total Environment, 612, 1030–1041. https://doi.org/10.1016/j.scitotenv.2017.08.167

    Article  CAS  Google Scholar 

  • Nistor, M. M., Mîndrescu, M., Petrea, D., Nicula, A. S., Rai, P. K., Benzaghta, M. A., Dezsi, Ş., Hognogi, G., & Porumb-Ghiurco, C. G. (2019). Climate change impact on crop evapotranspiration in Turkey during the 21st Century. Meteorological Applications, 26(3), 442–453. https://doi.org/10.1002/met.1774

    Article  Google Scholar 

  • Perović, V., Đorđević, A., Životić, L., Nikolić, N., Kadović, R., & Belanović, S. (2012). Soil erosion modeling in the complex terrain of Pirot municipality. Carpathian Journal of Earth and Environmental Sciences, 7(2), 93–100.

    Google Scholar 

  • Perović, V., Kadović, R., Đurđević, V., Pavlovic, D., Pavlović, M., Cakmak, D., Mitrović, M., & Pavlović, P. (2021). Major drivers of land degradation risk in Western Serbia: Current trends and future scenarios. Ecological Indicators, 123, 107377. https://doi.org/10.1016/j.ecolind.2021.107377

    Article  Google Scholar 

  • Poesen, J., van Wesemael, B., Bunte, K., & Benet, A. (1998). Variation of rock fragment cover and size along semiarid hillslopes: A case study from southern Spain. Geomorphology, 23, 2–4. https://doi.org/10.1016/S0169-555X(98)00013-0

    Article  Google Scholar 

  • Prăvălie, R., Patriche, C., Săvulescu, I., Sîrodoev, I., Bandoc, G., & Sfîcă, L. (2020). Spatial assessment of land sensitivity to degradation across Romania. A quantitative approach based on the modified MEDALUS methodology. CATENA, 187. https://doi.org/10.1016/j.catena.2019.104407

  • Prăvălie, R., Săvulescu, I., Patriche, C., Dumitraşcu, M., & Bando, G. (2017). Spatial assessment of land degradation sensitive areas in southwestern Romania using modified MEDALUS method. Catena, 153, 114–130. https://doi.org/10.1016/j.catena.2017.02.011

    Article  Google Scholar 

  • Republic Hydrometeorological Service of Serbia (RHMZ) (2016). Basic climate characteristics in the territory of Serbia. http://www.hidmet.gov.rs/

  • Salunkhe, S. S., Bera, A. K., Rao, S. S., Venkataraman, V. R., Raj, U., & Murthy, Y. V. N. K. (2018). Evaluation of indicators for desertification risk assessment in part of Thar Desert Region of Rajasthan using geospatial techniques. Journal of Earth System Science, 127, 1–24. https://doi.org/10.1007/s12040-018-1016-2

    Article  CAS  Google Scholar 

  • Salvati, L., & Bajocco, S. (2011). Land sensitivity to desertification across Italy: Past, present, and future. Applied Geography, 31(1), 223–231. https://doi.org/10.1016/j.apgeog.2010.04.006

    Article  Google Scholar 

  • Salvati, L., Mancino, G., De Zuliani, E., Sateriano, A., Zitti, M., & Ferrara, A. (2013). An expert system to evaluate environmental sensitivity: A local – scale approach o desertification risk. Applied Ecology and Environmental Reserch, 11(4), 611–627.

    Article  Google Scholar 

  • Scherrer, D., Karl-Friedrich, B. M., & Korner, C. (2011). Drought-sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies. Agricultural and Forest Meteorology, 151(12), 1632–1640. https://doi.org/10.1016/j.agrformet.2011.06.019

    Article  Google Scholar 

  • Sepehr, A., Hassanli, A. M., Ekhtesasi, M. R., & Jamali, J. B. (2007). Quantitative assessment of desertification in south of Iran using MEDALUS method. Environmental Monitoring and Assessment, 134, 243–254. https://doi.org/10.1007/s10661-007-9613-6

    Article  CAS  Google Scholar 

  • Statistical Office of the Republic of Serbia (RZS) (2011). The Census of Population of 2011. https://www.stat.gov.rs/

  • Symeonakis, E., Karathanasis, N., Koukoulas, S., & Panagopoulos, G. (2014). Monitoring sensitivity to land degradation and desertification with the environmentally sensitive area index: the case of Lesvos Island. Land Degradation & Development, 27(6), 1562–1573. https://doi.org/10.1002/ldr.2285

    Article  Google Scholar 

  • Tavares, J. D. P., Baptista, I., Ferreira, A. J. D., Amiotte-Suchet, P., Coelho, C., Gomes, S., & Varela, L. (2015). Assessment and mapping the sensitive areas to desertification in an insular Sahelian mountain region case study of the Ribeira Seca watershed, Santiago Island, Cabo Verde. Catena, 128. https://doi.org/10.1016/j.catena.2014.10.005

  • UNCCD. (2017). Global Land Outlook. First.

    Google Scholar 

  • UNEP. (1992). World atlas of desertification. Edward Arnold.

    Google Scholar 

  • Uzuner, Ç., & Dengiz, O. (2020). Desertification risk assessment in Turkey based on environmentally sensitive areas. Ecological Indicators, 114. https://doi.org/10.1016/j.ecolind.2020.106295

  • Wang, G., Mang, S. L., Cai, H., Liu, S., Zhang, Z., Wang, L., & Innes, J. L. (2016). Integrated watershed management: Evolution, development and emerging trends. Journal of Forestry Research, 27, 967–994. https://doi.org/10.1007/s11676-016-0293-3

    Article  Google Scholar 

  • Wischmeier, W.H. & Smith, D.D. (1978). Prediction rainfall erosion losses: A guide to conservation planning. Agriculture Handbook No. 537.

  • Xu, D., You, X., & Xia, C. (2019). Assessing the spatial-temporal pattern and evolution of areas sensitive to land desertification in North China. Ecological Indicators, 97, 150–158. https://doi.org/10.1016/j.ecolind.2018.10.005

    Article  Google Scholar 

  • Zaharia, L., Costache, R., Prăvălie, R., & Ioana-Toroimac, G. (2017). Mapping flood and flooding potential indices: A methodological approach to identifying areas susceptible to flood and flooding risk. Case study: the Prahova catchment (Romania). Frontiers of. Earth Science, 11. https://doi.org/10.1007/s11707-017-0636-1

  • Zaharia, L., Costache, R., Prăvălie, R., & Minea, G. (2015). Assessment and mapping of flood potential in the Slănic catchment in Romania. Journal of Earth System Science, 124, 1311–1324. https://doi.org/10.1007/s12040-015-0608-3

    Article  Google Scholar 

  • Zobiri, M., Mazour, M., & Morsli, B. (2018). Water erosion on marl slopes and prevention of its effects using conservation of water and soil systems in the Wadi Isser watershed – Algeria. Journal of Water and Land Development, 37, 161–169. https://doi.org/10.2478/jwld-2018-0035

    Article  Google Scholar 

Download references

Funding

Part of the results was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (grant no. 451-03-9/2021-14/ 200169). The authors are grateful for the soil and precipitation data by the Ministry of Education, Science and Technological Development of the Republic of Serbia (grant no. 451-03-68/2022-14/200007).

Author information

Authors and Affiliations

Authors

Contributions

Stefan Miletić: conceptualization, methodology, data curation, software, writing—original draft, investigation, formal analysis, resources, visualization; Jelena Beloica: conceptualization, methodology, validation, writing—original draft, writing—review and editing, visualization, supervision; Veljko Perović: conceptualization, methodology, data curation, writing—original draft, writing—review and editing, formal analysis, resources, supervision; Predrag Miljković: data curation, software, validation, resources, visualization; Sara Lukić: writing—review and editing, supervision; Snežana Obradović: data curation, writing—review and editing, resources; Dragan Čakmak: data curation, investigation; Snežana Belanović-Simić: writing—review and editing.

Corresponding author

Correspondence to Stefan Miletić.

Ethics declarations

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Research involving human participants and/or animals

N/A.

Informed consent

N/A.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 4.56 mb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miletić, S., Beloica, J., Perović, V. et al. Environmental sensitivity assessment and land degradation in southeastern Serbia: application of modified MEDALUS model. Environ Monit Assess 195, 1241 (2023). https://doi.org/10.1007/s10661-023-11761-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11761-1

Keywords

Navigation