Skip to main content

Advertisement

Log in

Soil erosion in diverse agroecological regions of India: a comprehensive review of USLE-based modelling

  • Review
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil erosion caused by water refers to the removal of topsoil by rainfall and runoff. Proper selection of an assessment method is crucial for quantifying the spatial variance of soil erosion. The Universal Soil Loss Equation (USLE) and its revised version (RUSLE) are widely used for modelling soil erosion. This study aimed to evaluate the effectiveness of the USLE-based soil erosion modelling in different agroecological regions of India, identify potential issues, and provide suggestions for future applications. The review revealed that little attention has been given to estimate soil erosion in high-priority land degradation regions of India. Additionally, many studies failed to thoroughly verify the authenticity of stated soil loss rates in their research regions either by overestimating or underestimating at least one of the five soil loss parameters. Furthermore, flaws in the application of methods to calculate these parameters leading to erroneous values were identified and suggestions for improvement were made. The USLE-based soil erosion modelling is an effective tool for quantifying soil erosion risk, but researchers should put emphasis on thoroughly verifying the methodologies adopted, unit conversions, and data availability for the estimation of soil loss parameters to improve the accuracy of their final results. This paper provides valuable insights to assist researchers in implementing USLE-based erosion models in diverse agroecological regions in India and elsewhere. However, for effective soil conservation and sustainable agriculture, further research is necessary to develop efficient techniques for using USLE-based soil erosion modelling to achieve a comprehensive understanding of erosion risk across different agroecological regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data and resources used in this review are accessible in the published literature and from reputable internet sources and repositories. Upon request, the corresponding author will provide any extra information necessary.

References

  • Ahmad, W. S., Jamal, S., Taqi, M., El-Hamid, H. T. A., & Norboo, J. (2022). Estimation of soil erosion and sediment yield concentrations in Dudhganga watershed of Kashmir Valley using RUSLE & SDR model. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-022-02705-9

  • Ahmed, I., Das, N., Debnath, J., & Bhowmik, M. (2017). An assessment to prioritise the critical erosion-prone sub-watersheds for soil conservation in the Gumti basin of Tripura, North-East India. Environmental Monitoring and Assessment, 189(11). https://doi.org/10.1007/s10661-017-6315-6

  • Alewell, C., Borrelli, P., Meusburger, K., & Panagos, P. (2019). Using the USLE: Chances, challenges and limitations of soil erosion modelling. International Soil and Water Conservation Research, 7(3), 203–225. https://doi.org/10.1016/j.iswcr.2019.05.004

    Article  Google Scholar 

  • Ambassa-Kiki, R., & Nill, D. (1999). Effects of different land management techniques on selected topsoil properties of a forest Ferralsol. Soil and Tillage Research, 52(3–4), 259–264. https://doi.org/10.1016/S0167-1987(99)00067-7

    Article  Google Scholar 

  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: Model development. Journal of the American Water Resources Association, 34(1). https://doi.org/10.1111/j.1752-1688.1998.tb05961.x

  • Arnoldus, H. M. J. (1977). Methodology used to determine the maximum potential average annual soil loss due to sheet and rill erosion in Morocco. FAO Soils Bulletins (FAO)..

    Google Scholar 

  • Arnoldus, H. M. J. (1980). An approximation of the rainfall factor in the Universal Soil Loss Equation. In Assessment of erosion (pp. 127–132). John Wiley and Sons Ltd..

    Google Scholar 

  • Aswathi, J., Sajinkumar, K. S., Rajaneesh, A., Oommen, T., Bouali, E. H., Binoj Kumar, R. B., Rani, V. R., Thomas, J., Thrivikramji, K. P., Ajin, R. S., Abioui, M., Sajinkumar, K. S., Ajin, R. S., & Abioui, M. (2022). Furthering the precision of RUSLE soil erosion with PSInSAR data: An innovative model. Geocarto International. https://doi.org/10.1080/10106049.2022.2105407

  • Auerswald, K., Fiener, P., Martin, W., & Elhaus, D. (2014). Use and misuse of the K factor equation in soil erosion modeling: An alternative equation for determining USLE nomograph soil erodibility values. Catena, 118, 220–225. https://doi.org/10.1016/j.catena.2014.01.008

    Article  Google Scholar 

  • Aulakh, M. S., & Sidhu, G. S. (2015). Soil Degradation in India: Causes, Major Threats, and Management Options. In MARCO Symposium 2015 - Next Challenges of Agro-Environmental research in Monsoon Asia (pp. 151-156). Tsukuba, Japan: National Institute for Agro-Environmental Sciences (NIAES).

  • Avwunudiogba, A., & Hudson, P. F. (2014). A review of soil erosion models with special reference to the needs of humid tropical mountainous environments. European Journal of Sustainable Development, 3(4), 299–310. https://doi.org/10.14207/ejsd.2014.v3n4p299

    Article  Google Scholar 

  • Babu, R., Dhyani, B. L., & Kumar, N. (2004). Assessment of erodibility status and refined iso-erodent map of India. Indian Journal of Soil Conservation, 32(3), 171–177.

    Google Scholar 

  • Babu, R., Tejwani, K. G., Agarwal, M. C., & Bhushan, L. S. (1978). Distribution of erosion index and iso-erodent map of India. Indian Journal of Soil Conservation, 6(1), 1–12.

    Google Scholar 

  • Bach, E. M., Ramirez, K. S., Fraser, T. D., & Wall, D. H. (2020). Soil biodiversity integrates solutions for a sustainable future. Sustainability (Switzerland), 12(7). https://doi.org/10.3390/su12072662

  • Bagherzadeh, A. (2014). Estimation of soil losses by USLE model using GIS at Mashhad plain, Northeast of Iran. Arabian Journal of Geosciences, 7(1), 211–220. https://doi.org/10.1007/s12517-012-0730-3

    Article  Google Scholar 

  • Bagwan, W. A., & Gavali, R. S. (2021). Delineating changes in soil erosion risk zones using RUSLE model based on confusion matrix for the Urmodi river watershed, Maharashtra, India. Modeling Earth Systems and Environment, 7(3), 2113–2126. https://doi.org/10.1007/s40808-020-00965-w

    Article  Google Scholar 

  • Bai, Z. G., Dent, D. L., Olsson, L., & Schaepman, M. E. (2008). Proxy global assessment of land degradation. Soil Use and Management, 24(3), 223–234. https://doi.org/10.1111/j.1475-2743.2008.00169.x

    Article  Google Scholar 

  • Batista, P. V. G., Davies, J., Silva, M. L. N., & Quinton, J. N. (2019). On the evaluation of soil erosion models: Are we doing enough? In Earth-Science Reviews (Vol. 197). Elsevier B.V. https://doi.org/10.1016/j.earscirev.2019.102898

    Chapter  Google Scholar 

  • Batista, P. V. G., Laceby, J. P., Davies, J., Carvalho, T. S., Tassinari, D., Silva, M. L. N., Curi, N., & Quinton, J. N. (2021). A framework for testing large-scale distributed soil erosion and sediment delivery models: Dealing with uncertainty in models and the observational data. Environmental Modelling & Software, 137, 104961. https://doi.org/10.1016/j.envsoft.2021.104961

    Article  Google Scholar 

  • Batistella, M. (2004). Mapping soil erosion risk in Rondônia, Brazilian Amazonia: Using RUSLE, remote sensing and GIS. Land Degrad Dev, 15, 499.

    Google Scholar 

  • Bednář, M., & Šarapatka, B. (2018). Relationships between physical–geographical factors and soil degradation on agricultural land. Environmental Research, 164, 660–668. https://doi.org/10.1016/j.envres.2018.03.042

    Article  CAS  Google Scholar 

  • Benavidez, R., Jackson, B., Maxwell, D., & Norton, K. (2018). A review of the (Revised) Universal Soil Loss Equation ((R))USLE: With a view to increasing its global applicability and improving soil loss estimates. Hydrology and Earth System Sciences, 22, 6059–6086. https://doi.org/10.5194/hess-22-6059-2018

    Article  Google Scholar 

  • Bera, A. (2017a). Assessment of soil loss by universal soil loss equation (USLE) model using GIS techniques: A case study of Gumti River Basin, Tripura, India. Modeling Earth Systems and Environment, 3(1). https://doi.org/10.1007/s40808-017-0289-9

  • Bera, A. (2017b). Estimation of soil loss by USLE model using GIS and remote sensing techniques: A case study of Muhuri River Basin, Tripura, India. Eurasian. Journal of Soil Science, 6(3), 206–206. https://doi.org/10.18393/ejss.288350

    Article  Google Scholar 

  • Bhan, S., & Behera, U. K. (2014). Conservation agriculture in India – Problems, prospects and policy issues. International Soil and Water Conservation Research, 2(4), 1–12. https://doi.org/10.1016/S2095-6339(15)30053-8

    Article  Google Scholar 

  • Bhattacharya, R. K., Chatterjee, N. D., & Das, K. (2020). Estimation of erosion susceptibility and sediment yield in ephemeral channel using RUSLE and SDR model: Tropical plateau fringe region, India. In Advances in Science, Technology and Innovation (pp. 163–185). Springer Nature. https://doi.org/10.1007/978-3-030-23243-6_10

    Chapter  Google Scholar 

  • Bhattacharyya, R., Ghosh, B. N., Mishra, P. K., Mandal, B., Rao, C. S., Sarkar, D., Das, K., Anil, K. S., Lalitha, M., Hati, K. M., & Franzluebbers, A. J. (2015). Soil degradation in India: Challenges and potential solutions. Sustainability (Switzerland), 7(4), 3528–3570. https://doi.org/10.3390/su7043528

    Article  Google Scholar 

  • Blanco, H., & Lal, R. (2008). Principles of soil conservation and management. Springer.

    Google Scholar 

  • Bocco, G. (1991). Gully erosion: Processes and models. Progress in Physical Geography, 15(4), 392–406. https://doi.org/10.1177/030913339101500403

    Article  Google Scholar 

  • Borrelli, P., Alewell, C., Alvarez, P., Anache, J. A. A., Baartman, J., Ballabio, C., Bezak, N., Biddoccu, M., Cerdà, A., Chalise, D., Chen, S., Chen, W., De Girolamo, A. M., Gessesse, G. D., Deumlich, D., Diodato, N., Efthimiou, N., Erpul, G., Fiener, P., et al. (2021). Soil erosion modelling: A global review and statistical analysis. In Science of the total environment (Vol. 780). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2021.146494

    Chapter  Google Scholar 

  • Borrelli, P., Panagos, P., Langhammer, J., Apostol, B., & Schütt, B. (2016). Assessment of the cover changes and the soil loss potential in European forestland: First approach to derive indicators to capture the ecological impacts on soil-related forest ecosystems. Ecological Indicators, 60, 1208–1220. https://doi.org/10.1016/j.ecolind.2015.08.053

    Article  Google Scholar 

  • Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Oost, K. V., Montanarella, L., & Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature. Communications, 8(1). https://doi.org/10.1038/s41467-017-02142-7

  • Borrelli, P., Robinson, D. A., Panagos, P., Lugato, E., Yang, J. E., Alewell, C., Wuepper, D., Montanarella, L., & Ballabio, C. (2020). Land use and climate change impacts on global soil erosion by water (2015-2070). Proceedings of the National Academy of Sciences of the United States of America, 117(36), 21994–22001. https://doi.org/10.1073/pnas.2001403117

    Article  CAS  Google Scholar 

  • Chakraborty, D., Dutta, D., & Chandrasekharan, H. (2001). Land use indicators of a watershed in arid region, Western Rajasthan using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 29(3), 115–128. https://doi.org/10.1007/BF02989923

    Article  Google Scholar 

  • Chandramohan, T., & Durbude, D. G. (2002). Estimation of soil erosion potential using universal soil loss equation. Photonirvachak Journal of the Indian Society of Remote Sensing, 30(4).

  • Chatterjee, N. (2020). Soil erosion assessment in a humid, Eastern Himalayan watershed undergoing rapid land use changes, using RUSLE, GIS and high-resolution satellite imagery. Modeling Earth Systems and Environment, 6(1), 533–543. https://doi.org/10.1007/s40808-019-00700-0

    Article  Google Scholar 

  • Chatterjee, S., Krishna, A. P., & Sharma, A. P. (2014). Geospatial assessment of soil erosion vulnerability at watershed level in some sections of the Upper Subarnarekha river basin, Jharkhand, India. Environmental Earth Sciences, 71(1), 357–374. https://doi.org/10.1007/s12665-013-2439-3

    Article  Google Scholar 

  • Chen, W., Huang, Y. C., Lebar, K., & Bezak, N. (2023). A systematic review of the incorrect use of an empirical equation for the estimation of the rainfall erosivity around the globe. Earth-Science Reviews, 238. https://doi.org/10.1016/j.earscirev.2023.104339

  • Chopra, R. (2016). Environmental degradation: Causes and consequences. International Journal of Applied Environmental Sciences, 11, 1593–1601. https://doi.org/10.13187/er.2014.81.1491

    Article  Google Scholar 

  • Dabral, P. P., Baithuri, N., & Pandey, A. (2008). Soil erosion assessment in a hilly catchment of North Eastern India using USLE, GIS and remote sensing. Water Resources Management, 22(12), 1783–1798. https://doi.org/10.1007/s11269-008-9253-9

    Article  Google Scholar 

  • Das, B., Paul, A., Bordoloi, R., Tripathi, O. P., & Pandey, P. K. (2018). Soil erosion risk assessment of hilly terrain through integrated approach of RUSLE and geospatial technology: a case study of Tirap District, Arunachal Pradesh. Modeling Earth Systems and Environment, 4(1), 373–381. https://doi.org/10.1007/s40808-018-0435-z

    Article  Google Scholar 

  • Das, D. C. (1977). Soil conservation practices and erosion control in India-A case study (p. 33). FAO Soils Bulletins (FAO).

    Google Scholar 

  • Das, S., Mohanty, S., Sahu, G., Rana, M., & Pilli, K. (2021). Biochar: A sustainable approach for improving soil health and environment. In A. Vieira (Ed.), Soil erosion - Current challenges and future perspectives in a changing world. IntechOpen. www.intechopen.com.

    Google Scholar 

  • David, W. P. (1988). Soil and water conservation planning: Policy issues and recommendations. Philippine Journal of Development, 1, 47–84.

    Google Scholar 

  • de Jong, S. M. (1994). Applications of reflective remote sensing for land degradation studies in a Mediterranean environment. Koninklijk Nederlands Aardrijkskundig Genootschap.

    Google Scholar 

  • de Jong, S. M., Brouwer, L. C., & Riezebos, H. T. (1998). Erosion hazard assessment in the Peyne catchment, France. Working Paper EU DeMon-II Project, i.o.v. EU. Utrecht University. Netherlands.

  • Desavathu, R. N., & Rao, P. J. (2019). Soil erosion assessment of hilly terrain of Paderu using USLE and GIS. In Springer Series in Geomechanics and Geoengineering (pp. 347–358). Springer Verlag. https://doi.org/10.1007/978-3-319-77276-9_31

    Chapter  Google Scholar 

  • Desmet, P. J. J., & Govers, G. (1996). A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil and Water Conservation, 51(5), 427–433.

    Google Scholar 

  • Devatha, C. P., Deshpande, V., & Renukaprasad, M. S. (2015). Estimation of soil loss using USLE model for Kulhan watershed, Chattisgarh- A case study. Aquatic Procedia, 4, 1429–1436. https://doi.org/10.1016/j.aqpro.2015.02.185

    Article  Google Scholar 

  • Dutta, D., Das, S., Kundu, A., & Taj, A. (2015). Soil erosion risk assessment in Sanjal watershed, Jharkhand (India) using geo-informatics, RUSLE model and TRMM data. Modeling Earth Systems and Environment, 1(4). https://doi.org/10.1007/s40808-015-0034-1

  • Ebrahimzadeh, S., Motagh, M., Mahboub, V., & Mirdar Harijani, F. (2018). An improved RUSLE/SDR model for the evaluation of soil erosion. Environmental Earth Sciences, 77(12). https://doi.org/10.1007/s12665-018-7635-8

  • El-Swaify, S. A., Gramier, C. L., & Lo, A. (1987). Recent advances in soil conservation in steepland in humid tropics. In Proceedings of the International Conference on Steepland Agriculture in the Humid Tropics (pp. 87–100). Kuala Lumpur: MARDI. 

  • FAO. (2015a). Healthy soils are the basis for healthy food production. Food and Agriculture Organization of United Nations.

    Google Scholar 

  • FAO. (2015b). Status of the world’s soil resources. Food and Agriculture Organization of United Nations.

    Google Scholar 

  • Fernández, C., & Vega, J. A. (2016). Evaluation of RUSLE and PESERA models for predicting soil erosion losses in the first year after wildfire in NW Spain. Geoderma, 273, 64–72. https://doi.org/10.1016/j.geoderma.2016.03.016

    Article  Google Scholar 

  • Fernández, C., & Vega, J. A. (2018). Evaluation of the RUSLE and disturbed WEPP erosion models for predicting soil loss in the first year after wildfire in NW Spain. Environmental Research, 165, 279–285. https://doi.org/10.1016/j.envres.2018.04.008

    Article  CAS  Google Scholar 

  • Ferreira, C. S. S., Pereira, P., & Kalantari, Z. (2018). Human impacts on soil. In Science of the total environment (Vol. 644, pp. 830–834). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2018.06.391

    Chapter  Google Scholar 

  • Foster, G. R., McCool, D. K., Renard, K. G., & Moldenhauer, W. C. (1981). Conversion of the universal soil loss equation to SI metric units. Journal of Soil and Water Conservation, 36(6), 355–359.

    Google Scholar 

  • Foster, G. R., Meyer, L. D., & Onstad, C. A. (1977). A runoff erosivity factor and variable slope length exponents for soil loss estimates. Transactions of the ASAE, 20(4), 683–687. https://doi.org/10.13031/2013.35628

    Article  Google Scholar 

  • Gabriels, D., Ghekiere, G., Schiettecatte, W., & Rottiers, I. (2003). Assessment of USLE cover-management C-factors for 40 crop rotation systems on arable farms in the Kemmelbeek watershed, Belgium. Soil and Tillage Research, 74(1), 47–53. https://doi.org/10.1016/S0167-1987(03)00092-8

    Article  Google Scholar 

  • Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS - A case study of Nethravathi Basin. Geoscience Frontiers, 7(6), 953–961. https://doi.org/10.1016/j.gsf.2015.10.007

    Article  Google Scholar 

  • Gayen, A., Saha, S., & Pourghasemi, H. R. (2020). Soil erosion assessment using RUSLE model and its validation by FR probability model. Geocarto International. https://doi.org/10.1080/10106049.2019.1581272

  • George, J. K., & Kumar, S. (2017). Modelling soil erosion risk in a mountainous watershed of mid-Himalaya by integrating RUSLE model with GIS. Eurasian Journal of Soil Science, 6(2), 1–14. https://doi.org/10.18393/ejss.2017.2.092-105

    Article  Google Scholar 

  • George, J. K., Kumar, S., & Hole, R. M. (2021). Geospatial modelling of soil erosion and risk assessment in Indian Himalayan region—A study of Uttarakhand state. Environmental Advances, 4. https://doi.org/10.1016/j.envadv.2021.100039

  • Ghosal, K., & Bhattacharya, S. das. (2020). A review of RUSLE model. In Journal of the Indian Society of Remote Sensing (Vol. 48, Issue 4, pp. 689–707). Springer. https://doi.org/10.1007/s12524-019-01097-0

  • Ghosh, K., Kumar De, S., Bandyopadhyay, S., & Saha, S. (2013). Assessment of soil loss of the Dhalai river basin, Tripura, India using USLE. International Journal of Geosciences, 04(01), 11–23. https://doi.org/10.4236/ijg.2013.41002

    Article  Google Scholar 

  • Golosov, V., Koiter, A., Ivanov, M., Maltsev, K., Gusarov, A., Sharifullin, A., & Radchenko, I. (2018). Assessment of soil erosion rate trends in two agricultural regions of European Russia for the last 60 years. Journal of Soils and Sediments, 18(12), 3388–3403. https://doi.org/10.1007/S11368-018-2032-1/

    Article  CAS  Google Scholar 

  • Gotardo, R., Piazza, A., & G., Torres, E., Kaufmann, V., & Pinheiro, A. (2016). Soil loss vulnerability in an agricultural catchment in the Atlantic forest biome in Southern Brazil. AIMS Geosciences, 2(4), 345–365. https://doi.org/10.3934/geosci.2016.4.345

    Article  Google Scholar 

  • Govers, G. (2011). Misapplications and misconceptions of erosion models. In R. P. C. Morgan & M. A. Nearing (Eds.), Handbook of erosion modelling (1st ed., pp. 117–134). Blackwell Publishing.

    Google Scholar 

  • Guo, Y., Peng, C., Zhu, Q., Wang, M., Wang, H., Peng, S., & He, H. (2019). Modelling the impacts of climate and land use changes on soil water erosion: Model applications, limitations and future challenges. In Journal of Environmental Management (Vol. 250). Academic Press. https://doi.org/10.1016/j.jenvman.2019.109403

  • Haddadchi, A., Hicks, M., Olley, J. M., Singh, S., & Srinivasan, M. S. (2019). Grid-based sediment tracing approach to determine sediment sources. Land Degradation and Development, 30(17), 2088–2106. https://doi.org/10.1002/ldr.3407

    Article  Google Scholar 

  • Heaton, L., Fullen, M. A., & Bhattacharyya, R. (2016). Critical analysis of the van Bemmelen conversion factor used to convert soil organic matter data to soil organic carbon data: Comparative analyses in a UK loamy sand soil. Espaço Aberto, 6(1), 35–44.

    Google Scholar 

  • Hussain, F., Nabi, G., Wu, R. S., Hussain, B., & Abbas, T. (2019). Parameter evaluation for soil erosion estimation on small watersheds using SWAT model. International Journal of Agricultural and Biological. Engineering, 12(1), 96–108. https://doi.org/10.25165/j.ijabe.20191201.3769

    Article  Google Scholar 

  • Ismail, J., & Ravichandran, S. (2008). RUSLE2 model application for soil erosion assessment using remote sensing and GIS. Water Resources Management, 22(1), 83–102. https://doi.org/10.1007/s11269-006-9145-9

    Article  Google Scholar 

  • Jain, M. K., & Das, D. (2010). Estimation of sediment yield and areas of soil erosion and deposition for watershed prioritization using GIS and remote sensing. Water Resources Management, 24(10), 2091–2112. https://doi.org/10.1007/s11269-009-9540-0

    Article  Google Scholar 

  • Jain, M. K., Mishra, S. K., & Shah, R. B. (2009). Identification of sediment source and sink areas in a Himalayan watershed using GIS and remote sensing. Land Degradation & Development, 20, 623–639.

    Google Scholar 

  • Kashiwar, S. R., Kundu, M. C., & Dongarwar, U. R. (2022). Soil erosion estimation of Bhandara region of Maharashtra, India, by integrated use of RUSLE, remote sensing, and GIS. Natural Hazards, 110(2), 937–959. https://doi.org/10.1007/s11069-021-04974-5

    Article  Google Scholar 

  • Kayet, N., Pathak, K., Chakrabarty, A., & Sahoo, S. (2018). Evaluation of soil loss estimation using the RUSLE model and SCS-CN method in hillslope mining areas. International Soil and Water Conservation Research, 6(1), 31–42. https://doi.org/10.1016/j.iswcr.2017.11.002

    Article  Google Scholar 

  • Kerr, J., & Pender, J. (2005). Farmer’s perceptions of soil erosion and its consequences in India’s semiarid tropics. Land Degradation and Development, 16(3), 257–271. https://doi.org/10.1002/ldr.649

    Article  Google Scholar 

  • Ketema, A., & Dwarakish, G. S. (2021). Water erosion assessment methods: A review. ISH Journal of Hydraulic Engineering, 27(4), 434–441. https://doi.org/10.1080/09715010.2019.1567398

    Article  Google Scholar 

  • Khan, A., & Govil, H. (2020). Evaluation of potential sites for soil erosion risk in and around Yamuna River flood plain using RUSLE. Arabian Journal of Geosciences, 13(707), 1–13. https://doi.org/10.1007/s12517-020-05646-7/Published

    Article  CAS  Google Scholar 

  • Kinnell, P. I. A. (2010). Event soil loss, runoff and the Universal Soil Loss Equation family of models: A review. Journal of Hydrology, 385(1–4), 384–397. https://doi.org/10.1016/J.JHYDROL.2010.01.024

    Article  Google Scholar 

  • Kinnell, P. I. A. (2019). A review of the science and logic associated with approach used in the universal soil loss equation family of models. Soil Systems, 3(4), 1–33. https://doi.org/10.3390/soilsystems3040062

    Article  Google Scholar 

  • Kothyari, U. C. (1996). Erosion and sedimentation problems in India. IAHS-AISH Publication, 236, 531–540.

    Google Scholar 

  • Kumar, A., Devi, M., & Deshmukh, B. (2014). Integrated remote sensing and geographic information system based RUSLE modelling for estimation of soil loss in western Himalaya, India. Water Resources Management, 28(10), 3307–3317. https://doi.org/10.1007/s11269-014-0680-5

    Article  Google Scholar 

  • Kumar, B. B., Rao, S. K., Sonowal, K., Prasad, N. S. R., & Sahoo, U. K. (2020). Soil erosion assessment using revised universal soil loss equation model and geo-spatial technology: A case study of upper Tuirial river basin, Mizoram, India. AIMS Geosciences, 6(4), 525–544. https://doi.org/10.3934/geosci.2020030

    Article  Google Scholar 

  • Kumar, M., & Sahu, A. (2020). Soil erosion problems in India. https://doi.org/10.22541/au.158282395.50994066

    Book  Google Scholar 

  • Kumar, S., & Kushwaha, S. P. S. (2013). Modelling soil erosion risk based on RUSLE-3D using GIS in a Shivalik sub-watershed. Journal of Earth System Science, 122(2), 389–398.

    Google Scholar 

  • Kumar, S., Singh, D., Kumar, A., Kumar, M., Giri, K., Devi, K., & Singh, S. (2022). Estimation of soil erosion in indo-gangetic region using revised universal soil loss equation (RUSLE) model and geospatial technology. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-022-01553-w

  • Labrière, N., Locatelli, B., Laumonier, Y., Freycon, V., & Bernoux, M. (2015). Soil erosion in the humid tropics: A systematic quantitative review. Agriculture, Ecosystems and Environment, 203, 127–139. https://doi.org/10.1016/j.agee.2015.01.027

    Article  Google Scholar 

  • Lal, R. (2001). Soil degradation by erosion. Land Degradation and Development, 12(6), 519–539. https://doi.org/10.1002/ldr.472

    Article  Google Scholar 

  • Lal, R. (2003). Soil erosion and the global carbon budget. Environment International, 29(4), 437–450. https://doi.org/10.1016/S0160-4120(02)00192-7

    Article  CAS  Google Scholar 

  • Li, Z., & Fang, H. (2016). Impacts of climate change on water erosion: A review. In Earth-Science Reviews (Vol. 163, pp. 94–117). Elsevier B.V. https://doi.org/10.1016/j.earscirev.2016.10.004

    Chapter  Google Scholar 

  • Lin, B. S., Thomas, K., Chen, C. K., & Ho, H. C. (2016). Evaluation of soil erosion risk for watershed management in Shenmu watershed, central Taiwan using USLE model parameters. Paddy and Water Environment, 14(1), 19–43. https://doi.org/10.1007/s10333-014-0476-5

    Article  Google Scholar 

  • lo Papa, G., Palermo, V., & Dazzi, C. (2013). The “genetic erosion” of the soil ecosystem. International Soil and Water Conservation Research, 1(1), 11–18. https://doi.org/10.1016/S2095-6339(15)30045-9

    Article  Google Scholar 

  • Long, H. L., Heilig, G. K., Wang, J., Li, X. B., Luo, M., Wu, X. Q., & Zhang, M. (2006). Land use and soil erosion in the upper reaches of the Yangtze River: Some socio-economic considerations on China’s Grain-for-Green Programme. Land Degradation and Development, 17(6), 589–603. https://doi.org/10.1002/ldr.736

    Article  Google Scholar 

  • López-Vicente, M., Lana-Renault, N., García-Ruiz, J. M., & Navas, A. (2011). Assessing the potential effect of different land cover management practices on sediment yield from an abandoned farmland catchment in the Spanish Pyrenees. Journal of Soils and Sediments, 11(8), 1440–1455. https://doi.org/10.1007/S11368-011-0428-2

    Article  Google Scholar 

  • Lu, D., Li, G., Valladares, G. S., & Batistella, A. M. (2004). Mapping soil erosion risk in Rodonia, Brazilian Amazonia: Using RUSLE, remote sensing and GIS. Land Degradation and Development, 15, 499–512. https://doi.org/10.1002/ldr.634

    Article  Google Scholar 

  • Magesh, N. S., & Chandrasekar, N. (2016). Assessment of soil erosion and sediment yield in the Tamiraparani sub-basin, South India, using an automated RUSLE-SY model. Environmental Earth Sciences, 75(16). https://doi.org/10.1007/s12665-016-6010-x

  • Mahala, A. (2018). Soil erosion estimation using RUSLE and GIS techniques—A study of a plateau fringe region of tropical environment. Arabian Journal of Geosciences, 11(13). https://doi.org/10.1007/s12517-018-3703-3

  • Mahapatra, S. K., Reddy, G. P. O., Nagdev, R., Yadav, R. P., Singh, S. K., & Sharda, V. N. (2018). Assessment of soil erosion in the fragile Himalayan ecosystem of Uttarakhand, India using USLE and GIS for sustainable productivity. Current Science, 115(1).

  • Maji, A. K., Reddy, G. P. O., & Sarkar, D. (2010). Degraded and wastelands of India status and spatial distribution. Indian Council of Agricultural Research.

    Google Scholar 

  • Mancino, G., Nolè, A., Salvati, L., & Ferrara, A. (2016). In-between forest expansion and cropland decline: A revised USLE model for soil erosion risk under land-use change in a Mediterranean region. Ecological Indicators, 71, 544–550. https://doi.org/10.1016/j.ecolind.2016.07.040

    Article  Google Scholar 

  • Mandal, D., & Giri, N. (2021). Soil erosion and policy initiatives in India. Current Science, 120(6), 1007–1012.

    Google Scholar 

  • Markose, V. J., & Jayappa, K. S. (2016). Soil loss estimation and prioritization of sub-watersheds of Kali River basin, Karnataka, India, using RUSLE and GIS. Environmental Monitoring and Assessment, 188(4). https://doi.org/10.1007/s10661-016-5218-2

  • McCool, D. K., Brown, L. C., Foster, G. R., Mutchler, C. K., & Meyer, L. D. (1987). Revised slope steepness factor for the universal soil loss equation. Transactions of the ASAE, 30(5), 1387–1396. https://doi.org/10.13031/2013.30576

    Article  Google Scholar 

  • McCool, D. K., Foster, G. R., Mutchler, C. K., & Meyer, L. D. (1989). Revised slope length factor for the universal soil loss equation. Transactions of the ASAE, 32(5), 1571–1576.

    Google Scholar 

  • Mehra, M., & Singh, C. K. (2018). Spatial analysis of soil resources in the Mewat district in the semiarid regions of Haryana, India. Environment, Development and Sustainability, 20(2), 661–680. https://doi.org/10.1007/s10668-016-9904-6

    Article  Google Scholar 

  • Meinen, B. U., & Robinson, D. T. (2021). Agricultural erosion modelling: Evaluating USLE and WEPP field-scale erosion estimates using UAV time-series data. Environmental Modelling and Software, 137. https://doi.org/10.1016/j.envsoft.2021.104962

  • Meraj, G., Romshoo, S. A., Ayoub, S., & Altaf, S. (2018). Geoinformatics based approach for estimating the sediment yield of the mountainous watersheds in Kashmir Himalaya, India. Geocarto International, 33(10), 1114–1138. https://doi.org/10.1080/10106049.2017.1333536

    Article  Google Scholar 

  • Merritt, W. S., & Croke, B. F. W. (2002). The biophysical toolbox: A biophysical modelling tool developed within the IWRAM-DSS. The Australian National University.

    Google Scholar 

  • Merritt, W. S., Letcher, R. A., & Jakeman, A. J. (2003). A review of erosion and sediment transport models. Environmental Modelling and Software, 18(8–9), 761–799. https://doi.org/10.1016/S1364-8152(03)00078-1

    Article  Google Scholar 

  • Millward, A. A., & Mersey, J. E. (1999). Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena, 38(2), 109–129. https://doi.org/10.1016/S0341-8162(99)00067-3

    Article  Google Scholar 

  • Moges, D. M., & Bhat, H. G. (2017). Integration of geospatial technologies with RUSLE for analysis of land use/cover change impact on soil erosion: Case study in Rib watershed, north-western highland Ethiopia. Environmental Earth Sciences, 76(22), 1–14. https://doi.org/10.1007/s12665-017-7109-4

    Article  CAS  Google Scholar 

  • Mondal, A., Khare, D., & Kundu, S. (2018). A comparative study of soil erosion modelling by MMF, USLE and RUSLE. Geocarto International, 33(1), 89–103. https://doi.org/10.1080/10106049.2016.1232313

    Article  Google Scholar 

  • Moore, I. D., & Burch, G. J. (1986). Modelling erosion and deposition: Topographic effects. Transactions of the ASAE, 29(6), 1624–1630.

    Google Scholar 

  • Moore, I. D., & Wilson, J. P. (1992). Length-slope factors for the Revised Universal Soil Loss Equation: Simplified method of estimation. Journal of Soil and Water Conservation, 47(5), 423–428.

    Google Scholar 

  • Morgan, R. P. C. (2005). Soil erosion and conservation (3rd ed.). Blackwell Publishing.

    Google Scholar 

  • Nagaraju, M. S. S., Reddy, G. P. O., Maji, A. K., Srivastava, R., Raja, P., & Barthwal, A. K. (2011). Soil loss mapping for sustainable development and management of land resources in Warora tehsil of Chandrapur district of Maharashtra: An integrated approach using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 39(1), 51–61. https://doi.org/10.1007/s12524-010-0055-1

    Article  Google Scholar 

  • Nakil, M. B., Khire, M. V., & Mundhe, M. S. (2010). Sedimentation analysis using USLE model with modified parameters. Indian Geotechnical Conference, 1103–1106.

  • Ngatunga, E. L. N., Lal, R., & Uriyo, A. P. (1984). Effects of surface management on runoff and soil erosion from some plots at Mlingano, Tanzania. Geoderma, 33(1), 1–12. https://doi.org/10.1016/0016-7061(84)90086-7

    Article  Google Scholar 

  • NRSC. (2019). Status of land degradation in India: 2015-16. National Remote Sensing Centre, ISRO.

    Google Scholar 

  • Pal, S. C., & Chakrabortty, R. (2019). Modeling of water induced surface soil erosion and the potential risk zone prediction in a sub-tropical watershed of Eastern India. Modeling Earth Systems and Environment, 5(2), 369–393. https://doi.org/10.1007/s40808-018-0540-z

    Article  Google Scholar 

  • Pal, S. C., & Shit, M. (2017). Application of RUSLE model for soil loss estimation of Jaipanda watershed, West Bengal. Spatial Information Research, 25(3), 399–409. https://doi.org/10.1007/s41324-017-0107-5

    Article  Google Scholar 

  • Panagos, P., Ballabio, C., Poesen, J., Lugato, E., Scarpa, S., Montanarella, L., & Borrelli, P. (2020). A soil erosion indicator for supporting agricultural, environmental and climate policies in the European union. Remote Sensing, 12(9). https://doi.org/10.3390/RS12091365

  • Panagos, P., Borrelli, P., Meusburger, K., Alewell, C., Lugato, E., & Montanarella, L. (2015). Estimating the soil erosion cover-management factor at the European scale. Land Use Policy, 48, 38–50. https://doi.org/10.1016/j.landusepol.2015.05.021

    Article  Google Scholar 

  • Panagos, P., Borrelli, P., Meusburger, K., van der Zanden, E. H., Poesen, J., & Alewell, C. (2015). Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environmental Science & Policy, 51, 23–34. https://doi.org/10.1016/J.ENVSCI.2015.03.012

    Article  Google Scholar 

  • Panagos, P., Borrelli, P., Meusburger, K., Yu, B., Klik, A., Lim, K. J., Yang, J. E., Ni, J., Miao, C., Chattopadhyay, N., Sadeghi, S. H., Hazbavi, Z., Zabihi, M., Larionov, G. A., Krasnov, S. F., Gorobets, A. V., Levi, Y., Erpul, G., Birkel, C., et al. (2017). Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-04282-8

  • Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., & Alewell, C. (2015). The new assessment of soil loss by water erosion in Europe. Environmental Science and Policy, 54, 438–447. https://doi.org/10.1016/j.envsci.2015.08.012

    Article  Google Scholar 

  • Panagos, P., & Katsoyiannis, A. (2019). Soil erosion modelling: The new challenges as the result of policy developments in Europe. In Environmental research (Vol. 172, pp. 470–474). Academic Press Inc.. https://doi.org/10.1016/j.envres.2019.02.043

    Chapter  Google Scholar 

  • Panagos, P., Meusburger, K., Ballabio, C., Borrelli, P., & Alewell, C. (2014). Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Science of The Total Environment, 479–480(1), 189–200. https://doi.org/10.1016/J.SCITOTENV.2014.02.010

    Article  Google Scholar 

  • Panagos, P., Standardi, G., Borrelli, P., Lugato, E., Montanarella, L., & Bosello, F. (2018). Cost of agricultural productivity loss due to soil erosion in the European Union: From direct cost evaluation approaches to the use of macroeconomic models. Land Degradation and Development, 29(3), 471–484. https://doi.org/10.1002/ldr.2879

    Article  Google Scholar 

  • Pandey, A., Chowdary, V. M., & Mal, B. C. (2007). Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing. Water Resources Management, 21(4), 729–746. https://doi.org/10.1007/s11269-006-9061-z

    Article  Google Scholar 

  • Pandey, A., Mathur, A., Mishra, S. K., & Mal, B. C. (2009). Soil erosion modeling of a Himalayan watershed using RS and GIS. Environmental Earth Sciences, 59(2), 399–410. https://doi.org/10.1007/s12665-009-0038-0

    Article  Google Scholar 

  • Park, S., Oh, C., Jeon, S., Jung, H., & Choi, C. (2011). Soil erosion risk in Korean watersheds, assessed using the revised universal soil loss equation. Journal of Hydrology, 399(3–4), 263–273. https://doi.org/10.1016/j.jhydrol.2011.01.004

    Article  Google Scholar 

  • Patil, R. J., Sharma, S. K., & Tignath, S. (2015). Remote Sensing and GIS based soil erosion assessment from an agricultural watershed. Arabian Journal of Geosciences, 8(9), 6967–6984. https://doi.org/10.1007/s12517-014-1718-y

    Article  Google Scholar 

  • Patil, R. J., Sharma, S. K., Tignath, S., & Sharma, A. P. M. (2017). Use of remote sensing, GIS and C++ for soil erosion assessment in the Shakkar River basin, India. Hydrological Sciences Journal, 62(2), 217–231.

    Google Scholar 

  • Prasannakumar, V., Shiny, R., Geetha, N., & Vijith, H. (2011). Spatial prediction of soil erosion risk by remote sensing, GIS and RUSLE approach: A case study of Siruvani river watershed in Attapady valley, Kerala, India. Environmental Earth Sciences, 64(4), 965–972. https://doi.org/10.1007/s12665-011-0913-3

    Article  Google Scholar 

  • Prasannakumar, V., Vijith, H., Abinod, S., & Geetha, N. (2012). Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geoscience Frontiers, 3(2), 209–215. https://doi.org/10.1016/j.gsf.2011.11.003

    Article  Google Scholar 

  • Prasannakumar, V., Vijith, H., Geetha, N., & Shiny, R. (2011). Regional scale erosion assessment of a sub-tropical highland segment in the Western Ghats of Kerala, South India. Water Resources Management, 25(14), 3715–3727. https://doi.org/10.1007/s11269-011-9878-y

    Article  Google Scholar 

  • Rahaman, S. A., Aruchamy, S., Jegankumar, R., & Abdul Ajeez, S. (2015). Estimation of annual average soil loss, based on RUSLE model in Kallar watershed, Bhavani basin, Tamil Nadu, India. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(2W2), 207–214. https://doi.org/10.5194/isprsannals-II-2-W2-207-2015

    Article  Google Scholar 

  • Rajbanshi, J., & Bhattacharya, S. (2020). Assessment of soil erosion, sediment yield and basin specific controlling factors using RUSLE-SDR and PLSR approach in Konar river basin, India. Journal of Hydrology, 587. https://doi.org/10.1016/j.jhydrol.2020.124935

  • Rao, M. B. N., Umamahesh, N. V., & Reddy, G. T. (2005). GIS based soil erosion modelling for conservation planning of watersheds. ISH Journal of Hydraulic Engineering, 11(3), 11–23. https://doi.org/10.1080/09715010.2005.10514797

    Article  Google Scholar 

  • Rao, Y. P. (1981). Evaluation of cropping management factor in Universal Soil Loss Equation under natural rainfall conditions of Kharagpur, India. Proceedings of the South-East Asian Regional Symposium on Problems of Soil Erosion and Sedimentation, Held at Asian Institute of Technology, January 27-29, 1981/Edited by T. Tingsanchali, H. Eggers.

  • Rawat, K. S., & Singh, S. K. (2018). Appraisal of soil conservation capacity using NDVI model-based C factor of RUSLE model for a semi arid ungauged watershed: A case study. Water Conservation Science and Engineering, 3(1), 47–58. https://doi.org/10.1007/s41101-018-0042-x

    Article  Google Scholar 

  • Reddy, V. R. (2003). Economic and political weekly land degradation in India extent, costs and determinants. Economic and Political Weekly, 38(44), 4700–4713.

    Google Scholar 

  • Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). In USDA agriculture handbook no. 703. Department of Agriculture, United States Government Printing.

  • Renard, K. G., Foster, G. R., Weesles, G. A., & Porter, J. P. (1991). RUSLE: Revised universal soil loss equation. Journal of Soil and Water Conservation (USA), 46(1), 30–33.

    Google Scholar 

  • Renard, K. G., Foster, G. R., Yoder, D. C., & McCool, D. K. (1994). RUSLE revisited: Status, questions, answers, and the future. Journal of Soil and Water Conservation, 49(3), 213–220.

    Google Scholar 

  • Renard, K. G., & Freimund, J. R. (1994). Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of Hydrology, 157(1–4), 287–306. https://doi.org/10.1016/0022-1694(94)90110-4

    Article  Google Scholar 

  • Rizeei, H. M., Saharkhiz, M. A., Pradhan, B., & Ahmad, N. (2016). Soil erosion prediction based on land cover dynamics at the Semenyih watershed in Malaysia using LTM and USLE models. Geocarto International, 31(10), 1158–1177. https://doi.org/10.1080/10106049.2015.1120354

    Article  Google Scholar 

  • Roose, E. J. (1977). Use of the universal soil loss equation to predict erosion in West Africa. In Soil erosion: Prediction and control (Vol. 21, pp. 60–74). Soil Conservation Society of America Ankeny.

    Google Scholar 

  • Roy, P. (2018). Application of USLE in a GIS environment to estimate soil erosion in the Irga watershed, Jharkhand, India. Physical Geography, 40(4), 361–383. https://doi.org/10.1080/02723646.2018.1550301

    Article  Google Scholar 

  • Sahu, A., Baghel, T., Sinha, M. K., & Kumar Verma, M. (2017). Soil erosion modeling using RUSLE and GIS on Dudhawa catchment. International Journal of Applied Environmental Sciences, 12(6), 1147–1158 https://www.researchgate.net/publication/326693494

    Google Scholar 

  • Samanta, R. K., Bhunia, G. S., & Shit, P. K. (2016). Spatial modelling of soil erosion susceptibility mapping in lower basin of Subarnarekha river (India) based on geospatial techniques. Modeling Earth Systems and Environment, 2(2). https://doi.org/10.1007/s40808-016-0170-2

  • Santra, A., & Mitra, S. S. (2020). Space-time drought dynamics and soil erosion in Puruliya district of West Bengal, India: A conceptual design. Journal of the Indian Society of Remote Sensing, 48(8), 1191–1205. https://doi.org/10.1007/s12524-020-01147-y

    Article  Google Scholar 

  • Sathiyamurthi, S., Ramya, M., Saravanan, S., & Subramani, T. (2023). Estimation of soil erosion for a semi-urban watershed in Tamil Nadu, India using RUSLE and geospatial techniques. Urban Climate, 48. https://doi.org/10.1016/j.uclim.2023.101424

  • Sharda, V. N., Dogra, P., & Prakash, C. (2010). Assessment of production losses due to water erosion in rainfed areas of India. Journal of Soil and Water Conservation, 65(2), 79–91. https://doi.org/10.2489/jswc.65.2.79

    Article  Google Scholar 

  • Sharpley, A. N., & Williams, J. R. (1990). EPIC, erosion/productivity impact calculator. Technical Bulletin (USA).

    Google Scholar 

  • Sherriff, S. C., Rowan, J. S., Fenton, O., Jordan, P., & O’hUallachain, D. (2019). Influence of land management on soil erosion, connectivity, and sediment delivery in agricultural catchments: Closing the sediment budget. Land Degradation and Development, 30(18), 2257–2271. https://doi.org/10.1002/ldr.3413

    Article  Google Scholar 

  • Shit, P. K., Nandi, A. S., & Bhunia, G. S. (2015). Soil erosion risk mapping using RUSLE model on Jhargram sub-division at West Bengal in India. Modeling Earth Systems and Environment, 1(3). https://doi.org/10.1007/s40808-015-0032-3

  • Singh, G., & Panda, R. K. (2017). Grid-cell based assessment of soil erosion potential for identification of critical erosion prone areas using USLE, GIS and remote sensing: A case study in the Kapgari watershed, India. International Soil and Water Conservation Research, 5(3), 202–211. https://doi.org/10.1016/j.iswcr.2017.05.006

    Article  Google Scholar 

  • Singh, R., & Phadke, V. S. (2006). Assessing soil loss by water erosion in Jamni River Basin, Bundelkhand region, India, adopting universal soil loss equation using GIS. Current Science, 90(10), 1431–1435 https://www.researchgate.net/publication/242197506

    Google Scholar 

  • Sinha, D., & Joshi, V. U. (2012). Application of Universal Soil Loss Equation (USLE) to recently reclaimed badlands along the Adula and Mahalungi Rivers, Pravara Basin, Maharashtra. Journal of Geological Society of India, 80, 341–350.

    Google Scholar 

  • Smith, H. J. (1999). Application of empirical soil loss models in southern Africa: A review. South African Journal of Plant and Soil, 16(3). https://doi.org/10.1080/02571862.1999.10635003

  • Smith, R. E., Quinton, J., Goodrich, D. C., & Nearing, M. A. (2010). Soil-erosion models: Where do we really stand? short communication (discussion) on the papers by Wainwright et al. (2008a, b, c). Earth Surface Processes and Landforms, 35(11), 1344–1348. https://doi.org/10.1002/esp.1985

  • Srinivasan, R., Singh, S. K., Nayak, D. C., Hegde, R., & Ramesh, M. (2019). Estimation of soil loss by USLE model using remote sensing and GIS Techniques - A case study of Coastal Odisha, India. Eurasian Journal of Soil Science, 8(4), 321–328. https://doi.org/10.18393/ejss.598120

    Article  Google Scholar 

  • Stefanidis, S., Alexandridis, V., Chatzichristaki, C., & Stefanidis, P. (2021). Assessing soil loss by water erosion in a typical Mediterranean ecosystem of Northern Greece under current and future rainfall erosivity. Water (Switzerland), 13(15). https://doi.org/10.3390/w13152002

  • Sujatha, E. R., & Sridhar, V. (2018). Spatial prediction of erosion risk of a small mountainous watershed using RUSLE: A case-study of the Palar sub-watershed in Kodaikanal, South India. Water, 10(1608), 1–17.

    Google Scholar 

  • Taye, G., Vanmaercke, M., Poesen, J., van Wesemael, B., Tesfaye, S., Teka, D., Nyssen, J., Deckers, J., & Haregeweyn, N. (2018). Determining RUSLE P- and C-factors for stone bunds and trenches in rangeland and cropland, North Ethiopia. Land Degradation and Development, 29(3), 812–824. https://doi.org/10.1002/ldr.2814

    Article  Google Scholar 

  • Terranova, O., Antronico, L., Coscarelli, R., & Iaquinta, P. (2009). Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: An application model for Calabria (southern Italy). Geomorphology, 112(3–4), 228–245. https://doi.org/10.1016/j.geomorph.2009.06.009

    Article  Google Scholar 

  • Thomas, J., Joseph, S., & Thrivikramji, K. P. (2018a). Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats, India using RUSLE and GIS. Geoscience Frontiers, 9(3), 893–906. https://doi.org/10.1016/j.gsf.2017.05.011

    Article  CAS  Google Scholar 

  • Thomas, J., Joseph, S., & Thrivikramji, K. P. (2018b). Estimation of soil erosion in a rain shadow river basin in the southern Western Ghats, India using RUSLE and transport limited sediment delivery function. International Soil and Water Conservation Research, 6(2), 111–122. https://doi.org/10.1016/j.iswcr.2017.12.001

    Article  Google Scholar 

  • Tiwari, A. K., Risse, L. M., & Nearing, M. A. (2000). Evaluation of WEPP and its comparison with USLE and RUSLE. Transactions of the American Society of Agricultural Engineers, 43(5). https://doi.org/10.13031/2013.3005

  • USDA. (1981). Supplement to agriculture handbook no. In 537: Predicting rainfall erosion losses - A guide to conservation planning. United States Department of Agriculture https://www.ars.usda.gov/ARSUserFiles/50201000/USLEDatabase/ah_537.pdf

    Google Scholar 

  • van der Knijff, J. M. F., Jones, R. J. A., & Montanarella, L. (1999). Soil erosion risk assessment in Italy. Citeseer.

    Google Scholar 

  • van der Knijff, J. M. F., Jones, R. J. A., & Montanarella, L. (2000). Soil erosion risk: Assessment in Europe. European Soil Bureau, European Commission Brussel.

    Google Scholar 

  • Vemu, S., & Pinnamaneni, U. B. (2011). Estimation of spatial patterns of soil erosion using remote sensing and GIS: A case study of Indravati catchment. Natural Hazards, 59(3), 1299–1315. https://doi.org/10.1007/s11069-011-9832-6

    Article  Google Scholar 

  • Vemu, S., & Udayabhaskar, P. (2010). An integrated approach for prioritization of reservoir catchment using remote sensing and geographic information system techniques. Geocarto International, 25(2), 149–168. https://doi.org/10.1080/10106040903015798

    Article  Google Scholar 

  • Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M. H., Amelung, W., Aitkenhead, M., Allison, S. D., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury, M., Gaiser, T., Govers, G., et al. (2016). Modeling soil processes: review, key challenges, and new perspectives. Vadose Zone Journal, 15(5). https://doi.org/10.2136/vzj2015.09.0131

  • Wischmeier, W. H. (1957). Factors affecting sheet and rill erosion. Trans Am Geophys Union, 38, 889.

    Google Scholar 

  • Wischmeier, W. H., Johnson, C. B., & Cross, B. V. (1971). Soil erodibility nomograph for farmland and construction sites. Journal of Soil and Water Conservation, 26, 189–193.

    Google Scholar 

  • Wischmeier, W. H., & Smith, D. D. (1949). Predicting rainfall-erosion losses from cropland east of the rocky mountains: Guide for selection of practices for soil and water conservation. U.S. Department of Agriculture.

    Google Scholar 

  • Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses. A guide to conservation planning. In USDA-ARS Handbook No. 282. https://doi.org/10.1029/TR039i002p00285

    Chapter  Google Scholar 

  • Zerihun, M., Mohammedyasin, M. S., Sewnet, D., Adem, A. A., & Lakew, M. (2018). Assessment of soil erosion using RUSLE, GIS and remote sensing in NW Ethiopia. Geoderma Regional, 12, 83–90. https://doi.org/10.1016/j.geodrs.2018.01.002

    Article  Google Scholar 

  • Zhang, H., Yang, Q., Li, R., Liu, Q., Moore, D., He, P., Ritsema, C. J., & Geissen, V. (2013). Extension of a GIS procedure for calculating the RUSLE equation LS factor. Computers and Geosciences, 52, 177–188. https://doi.org/10.1016/j.cageo.2012.09.027

    Article  Google Scholar 

  • Zhu, M. (2015). Soil erosion assessment using USLE in the GIS environment: A case study in the Danjiangkou Reservoir Region, China. Environmental Earth Sciences, 73(12), 7899–7908. https://doi.org/10.1007/s12665-014-3947-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Makhdumi W. conceptualised the review, reviewed the literature, compiled data, and prepared the manuscript. H. R. Shwetha and G. S. Dwarakish supervised the research, including review design, literature compilation, data analysis, and manuscript revisions.

Corresponding author

Correspondence to W. Makhdumi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhdumi, W., Shwetha, H.R. & Dwarakish, G.S. Soil erosion in diverse agroecological regions of India: a comprehensive review of USLE-based modelling. Environ Monit Assess 195, 1112 (2023). https://doi.org/10.1007/s10661-023-11687-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11687-8

Keywords

Navigation