Skip to main content

Advertisement

Log in

Potential soil organic carbon sequestration vis-a-vis methane emission in lowland rice agroecosystem

  • Review
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Mitigating the atmospheric greenhouse effect while enhancing the inherent soil quality and productive capacity is possible through soil carbon (C) sequestration, which has a significant potential to counteract the adverse effects of agroecosystem level C emission through natural and anthropogenic means. Although rice is the most important food in India, feeding more than 60% of the country’s population, it is commonly blamed for significant methane (CH4) emissions that accelerate climate change. Higher initial soil organic matter concentrations would create more CH4 under the flooded soil conditions, as reducible soil C is a prerequisite for CH4 generation. In India, rice is generally cultivated in lowlands under continuous flooding. Less extensive organic matter breakdown in lowland rice agroecosystems often significantly impacts the dynamics of soil active and passive C pools. Change from conventional to conservation agriculture might trap a significant quantity of SOC. The study aims to investigate the potential of rice-based soils to sequester C and reduce the accelerated greenhouse effects through modified farming practices, such as crop residue retention, crop rotation, organic farming, varietal selection, conservation agriculture, integrated nutrient management, and water management. Overall, lowland rice agroecosystems can sequester significant amounts of SOC, but this potential must be balanced against the potential for CH4 emissions. Management practices that reduce CH4 emissions while increasing soil C sequestration should be promoted and adopted to maximize the sustainability of rice agroecosystems. This review is important for understanding the effectiveness of the balance between SOC sequestration and CH4 emissions in lowland rice agroecosystems for adopting sustainable agricultural practices in the context of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors confirm that all data available in the manuscript are obtained from the various published research papers and review articles.

Abbreviations

C:

Carbon

CH4 :

Methane

CO2 :

Carbon dioxide

CSP:

Carbon sequestration potential

FYM:

Farmyard manure

GHG:

Greenhouse gas

IGP:

Indo-Gangetic Plain

Mha:

Million hectares

Mt:

Million tons

N2O:

Nitrous oxide

NPK:

Nitrogen, phosphorus, and potassium

O2 :

Oxygen

RW:

Rice wheat

SOC:

Soil organic carbon

SOM:

Soil organic matter

SRI:

System of rice intensification

References

  • Abril, G., Guérin, F., Richard, S., Delmas, R., Galy-Lacaux, C., Gosse, P., Tremblay, A., Varfalvy, L., Dos Santos, M. A., & Matvienko, B. (2005). Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Global Biogeochemical Cycles, 19(4).

  • Adhya, T. K., Bharati, K., Mohanty, S. R., Ramakrishnan, B., Rao, V. R., Sethunathan, N., & Wassmann, R. (2000). Methane emission from rice fields at Cuttack, India. Nutrient Cycling in Agroecosystems, 58, 95–105.

    CAS  Google Scholar 

  • Adhya, T. K., Rath, A. K., Gupta, P. K., Rao, V. R., Das, S. N., Parida, K. M., Parashar, D. C., & Sethunathan, N. (1994). Methane emission from flooded rice fields under irrigated conditions. Biology and Fertility of Soils, 18, 245–248.

    Google Scholar 

  • Ajgaonkar, S. S., & Patil, S. S. (2017). Soil health of soils in Aurangabad district (Maharashtra), India. Asian Journal of Soil Science, 12(1), 121–127.

    Google Scholar 

  • Akselsson, C., Berg, B., Meentemeyer, V., & Westling, O. (2005). Carbon sequestration rates in organic layers of boreal and temperate forest soils - Sweden as a case study. Global Ecology and Biogeography, 14, 77–84.

    Google Scholar 

  • Ali, M. A., Lee, C. H., & Kim, P. J. (2008). Effect of silicate fertilizer on reducing methane emission during rice cultivation. Biology and Fertility of Soils, 44, 597–604.

    CAS  Google Scholar 

  • Anantha, K. C., Majumder, S. P., Padhan, D., Badole, S., Datta, A., Mandal, B., & Gade, K. R. (2018). Carbon dynamics, potential and cost of carbon sequestration in double rice cropping system in semi-arid southern India. Journal of Soil Science and Plant Nutrition, 18(2), 418–434.

    CAS  Google Scholar 

  • Anas, I., Rupela, O. P., Thiyagarajan, T. M., & Uphoff, N. (2011). A review of studies on SRI effects on beneficial organisms in rice soil rhizospheres. Paddy and Water Environment, 9, 53–64.

    Google Scholar 

  • Arunrat, N., Sereenonchai, S., & Wang, C. (2021). Carbon footprint and predicting the impact of climate change on carbon sequestration ecosystem services of organic rice farming and conventional rice farming: A case study in Phichit province, Thailand. Journal of Environmental Management, 289, 112458.

    CAS  Google Scholar 

  • Babu, S., Singh, R., Avasthe, R. K., Yadav, G. S., Mohapatra, K. P., Selvan, T., Das, A., Singh, V. K., Valente, D., & Petrosillo, I. (2020). Soil carbon dynamics in Indian Himalayan intensified organic rice-based cropping sequences. Ecological Indicators, 114, 106292.

    CAS  Google Scholar 

  • Babu, V. R., & Sailaja, B. (2017). Soil organic carbon mapping and estimation of stock in rice soils of India. In Proceedings of the Global Symposium on Soil Organic Carbon (pp. 32–34). Food and Agriculture Organization of the United Nations (FAO).

    Google Scholar 

  • Balcombe, P., Speirs, J. F., Brandon, N. P., & Hawkes, A. D. (2018). Methane emissions: Choosing the right climate metric and time horizon. Environmental Science: Processes & Impacts, 20(10), 1323–1339.

    CAS  Google Scholar 

  • Bandumula, N. (2018). Rice production in Asia: Key to global food security. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88, 1323–1328.

    Google Scholar 

  • Baruah, K. K., Gogoi, B., & Gogoi, P. (2010). Plant physiological and soil characteristics associated with methane and nitrous oxide emission from rice paddy. Physiology and Molecular Biology of Plants, 16(1), 79–91.

    CAS  Google Scholar 

  • Basak, N., Datta, A., Mandal, B., Chaudhari, S. K., & Sharma, D. K. (2015). Changing trend in plant nutrition for crop production. Indian Farming, 64, 2–4.

    Google Scholar 

  • Benbi, D. K., Toor, A. S., & Kumar, S. (2012). Management of organic amendments in rice-wheat cropping system determines the pool where carbon is sequestered. Plant and Soil, 360(1), 145–162.

    CAS  Google Scholar 

  • Bhatia, A., Cowan, N. J., Drewer, J., Tomer, R., Kumar, V., Sharma, S., Paul, A., Jain, N., Kumar, S., Jha, G., & Singh, R. (2023). The impact of different fertiliser management options and cultivars on nitrogen use efficiency and yield for rice cropping in the Indo-Gangetic Plain: Two seasons of methane, nitrous oxide and ammonia emissions. Agriculture, Ecosystems & Environment, 355, 108593.

    CAS  Google Scholar 

  • Bhatia, A., Ghosh, A., Kumar, V., Tomer, R., Singh, S. D., & Pathak, H. (2011). Effect of elevated tropospheric ozone on methane and nitrous oxide emission from rice soil in North India. Agriculture, Ecosystems & Environment, 144(1), 21–28.

    CAS  Google Scholar 

  • Bhatia, A., Jain, N., & Pathak, H. (2013). Methane and nitrous oxide emissions from Indian rice paddies, agricultural soils and crop residue burning. Greenhouse Gases: Science and Technology, 3(3), 196–211.

    CAS  Google Scholar 

  • Bhatia, A., Kumar, A., Das, T. K., Singh, J., Jain, N., & Pathak, H. (2013). Methane and nitrous oxide emissions from soils under direct seeded rice. International Journal of Agricultural and Statistical Sciences, 9(2), 729–736.

    Google Scholar 

  • Bhatia, A., Pathak, H., & Aggarwal, P. K. (2004). Inventory of methane and nitrous oxide emissions from agricultural soils of India and their global warming potential. Current Science, 10, 317–324.

    Google Scholar 

  • Bhatia, A., Pathak, H., Aggarwal, P. K., & Jain, N. (2010). Trade-off between productivity enhancement and global warming potential of rice and wheat in India. Nutrient Cycling in Agroecosystems, 86, 413–424.

    Google Scholar 

  • Bhatt, R., Kukal, S. S., Busari, M. A., Arora, S., & Yadav, M. (2016). Sustainability issues on rice–wheat cropping system. International Soil and Water Conservation Research, 4(1), 64–74.

    Google Scholar 

  • Bhatt, R., Singh, P., Hossain, A., & Timsina, J. (2021). Rice–wheat system in the northwest Indo-Gangetic plains of South Asia: Issues and technological interventions for increasing productivity and sustainability. Paddy and Water Environment, 19(3), 345–365.

    Google Scholar 

  • Bhattacharyya, P., Nayak, A. K., Mohanty, S., Tripathi, R., Shahid, M., Kumar, A., Raja, R., Panda, B. B., Roy, K. S., Neogi, S., & Dash, P. K. (2013). Greenhouse gas emission in relation to labile soil C, N pools and functional microbial diversity as influenced by 39 years long-term fertilizer management in tropical rice. Soil and Tillage Research, 129, 93–105.

    Google Scholar 

  • Bhattacharyya, P., Sinhababu, D. P., Roy, K. S., Dash, P. K., Sahu, P. K., Dandapat, R., Neogi, S., & Mohanty, S. (2013). Effect of fish species on methane and nitrous oxide emission in relation to soil C, N pools and enzymatic activities in rainfed shallow lowland rice-fish farming system. Agriculture, Ecosystems & Environment, 176, 53–62.

    CAS  Google Scholar 

  • Bhattacharyya, R., Tuti, M. D., Bisht, J. K., Bhatt, J. C., & Gupta, H. S. (2012). Conservation tillage and fertilization impact on soil aggregation and carbon pools in the Indian Himalayas under an irrigated rice-wheat rotation. Soil Science, 177(3), 218–228.

    CAS  Google Scholar 

  • Bhatti, D. T. (2014). Estimation of methane flux rate from paddy fields of South Gujarat Region (India). International Journal of Science and Technology Engineering, 1(5), 29–35.

    Google Scholar 

  • Bierke, A., Kaiser, K., & Guggenberger, G. (2008). Crop residue management effects on organic matter in paddy soils—The lignin component. Geoderma, 146(1-2), 48–57.

    CAS  Google Scholar 

  • Brar, B. S., Singh, K., & Dheri, G. S. (2013). Carbon sequestration and soil carbon pools in a rice–wheat cropping system: Effect of long-term use of inorganic fertilizers and organic manure. Soil and Tillage Research, 128, 30–36.

    Google Scholar 

  • Cao, M., Gregson, K., Marshall, S., Dent, J. B., & Heal, O. W. (1996). Global methane emissions from rice paddies. Chemosphere, 33(5), 879–897.

    CAS  Google Scholar 

  • Carvalhais, L. C., Dennis, P. G., Fedoseyenko, D., Hajirezaei, M. R., Borriss, R., & von Wirén, N. (2011). Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. Journal of Plant Nutrition and Soil Science, 174(1), 3–11.

    CAS  Google Scholar 

  • Chaki, A. K., Gaydon, D. S., Dalal, R. C., Bellotti, W. D., Gathala, M. K., Hossain, A., & Menzies, N. W. (2021). Puddled and zero-till unpuddled transplanted rice are each best suited to different environments–An example from two diverse locations in the Eastern Gangetic Plains of Bangladesh. Field Crops Research, 262, 108031.

    Google Scholar 

  • Chatterjee, D., Kuotsu, R., Ao, M., Saha, S., Ray, S. K., & Ngachan, S. V. (2019). Does elevated temperature effect adversely on soil fertility, carbon fractions, microbial biomass and enzymatic activities under different land use of Nagaland, India? Current Science, 116(12), 2044–2054.

    CAS  Google Scholar 

  • Chatterjee, D., Mohanty, S., Guru, P. K., Swain, C. K., Tripathi, R., Shahid, M., Kumar, U., Kumar, A., Bhattacharyya, P., Gautam, P., & Lal, B. (2018). Comparative assessment of urea briquette applicators on greenhouse gas emission, nitrogen loss and soil enzymatic activities in tropical lowland rice. Agriculture, Ecosystems & Environment, 252, 178–190.

    CAS  Google Scholar 

  • Chatterjee, D., Saha, S., Pradhan, A., Swain, C. K., Venkatramaiah, E., Nayak, A. K., & Pathak, H. (2021). Reducing methane emission from lowland rice ecosystem. In A. Rakshit, S. K. Singh, P. C. Abhilash, & A. Biswas (Eds.), Soil Science: Fundamentals to Recent Advances. Springer.

    Google Scholar 

  • Chatterjee, D., & Saha, S. (2018). Response of soil properties and soil microbial communities to the projected climate change. In S. K. Bal et al. (Eds.), Advances in Crop Environment Interaction (pp. 87–136). Springer.

    Google Scholar 

  • Chen, S., Zheng, X., Wang, D., Xu, C., & Zhang, X. (2013). Influence of the improved system of rice intensification (SRI) on rice yield, yield components and tillering characteristics under different rice establishment methods. Plant Production Science, 16(2), 191–198.

    Google Scholar 

  • Chivenge, P., Angeles, O., Hadi, B., Acuin, C., Connor, M., Stuart, A., Puskur, R., & Johnson-Beebout, S. (2020). Ecosystem services in paddy rice systems. In The role of ecosystem services in sustainable food systems (pp. 181–201). Academic Press.

    Google Scholar 

  • Choudhury, B. U., Singh, A. K., Ngachan, S. V., Das, P. T., Nongkhlaw, L., Das, A., et al. (2012). Soil organic carbon mapping of northeastern region of India: A geographic information system approach. Carbon Management. Agriculture, 70.

  • Conner, J. P. (2022). The effects of biochar and reactive iron additions on soil carbon and nitrogen retention. (Doctoral dissertation, Virginia Tech).

    Google Scholar 

  • Cowan, N., Bhatia, A., Drewer, J., Jain, N., Singh, R., Tomer, R., Kumar, V., Kumar, O., Prasanna, R., Ramakrishnan, B., & Kumar, D. (2021). Experimental comparison of continuous and intermittent flooding of rice in relation to methane, nitrous oxide and ammonia emissions and the implications for nitrogen use efficiency and yield. Agriculture, Ecosystems & Environment, 319, 107571.

    CAS  Google Scholar 

  • Cruz, K. M., Ella, V. B., Suministrado, D. C., Pereira, G. S., & Agulto, E. S. (2022). A low-cost wireless sensor for real-time monitoring of water level in lowland rice field under alternate wetting and drying irrigation. Water, 14(24), 4128.

    Google Scholar 

  • Dash, P. K., Bhattacharyya, P., Shahid, M., Roy, K. S., Swain, C. K., Tripathi, R., & Nayak, A. K. (2017). Low carbon resource conservation techniques for energy savings, carbon gain and lowering GHGs emission in lowland transplanted rice. Soil and Tillage Research, 174, 45–57.

    Google Scholar 

  • Debnath, G., Jain, M. C., Kumar, S., Sarkar, K., & Sinha, S. K. (1996). Methane emissions from rice fields amended with biogas slurry and farm yard manure. Climatic Change, 33, 97–109.

    CAS  Google Scholar 

  • Denchak, M. (2018). Paris climate agreement: Everything you need to know. Natural Resources Defense Council, December 12.

    Google Scholar 

  • Dey, A., Dwivedi, B. S., Bhattacharyya, R., Datta, S. P., Meena, M. C., Jat, R. K., Gupta, R. K., Jat, M. L., Singh, V. K., Das, D., & Singh, R. G. (2020). Effect of conservation agriculture on soil organic and inorganic carbon sequestration and lability: A study from a rice–wheat cropping system on a calcareous soil of the eastern Indo-Gangetic Plains. Soil Use and Management, 36(3), 429–438.

    Google Scholar 

  • Drocourt, A., Mervant, Y., Milhau, F., Chinal, M., & Hélias, A. (2012). Environmental assessment of rice production in Camargue, France. In 8th Conference on LCA in the Agri-Food Sector. Research Square.

    Google Scholar 

  • Dutta, B., & Raghavan, V. (2014). A life cycle assessment of environmental and economic balance of biochar systems in Quebec. International Journal of Energy and Environmental Engineering, 5, 1–11.

    CAS  Google Scholar 

  • Dutta, D., Singh, D. K., Subash, N., Ravisankar, N., Kumar, V., Meena, A. L., Mishra, R. P., Singh, S., Kumar, V., & Panwar, A. S. (2018). Effect of long-term use of organic, inorganic and integrated management practices on carbon sequestration and soil carbon pools in different cropping systems in Tarai region of Kumayun hills. Indian Journal of Agricultural Sciences.

    Google Scholar 

  • Duxbury, J. M. (2001). Long-term yield trends in the rice-wheat cropping system: results from experiments and northwest India. Journal of Crop Production, 3(2), 27–52.

    Google Scholar 

  • Fageria, N. K., Baligar, V. C., Heinemann, A. B., & Carvalho, M. C. (2015). Nitrogen uptake and use efficiency in rice. In Nutrient Use Efficiency: From Basics to Advances (pp. 285–296). Springer.

    Google Scholar 

  • Fahad, S., Adnan, M., Noor, M., Arif, M., Alam, M., Khan, I. A., Ullah, H., Wahid, F., Mian, I. A., Jamal, Y., & Basir, A. (2019). Major constraints for global rice production. In Advances in rice research for abiotic stress tolerance (pp. 1–22). Woodhead Publishing.

    Google Scholar 

  • FAO (2021) Available from: https://www.fao.org/faostat/en/#data/qcl/visualize

  • Fenn, K. M., Malhi, Y., & Morecroft, M. D. (2010). Soil CO2 efflux in a temperate deciduous forest: Environmental drivers and component contributions. Soil Biology and Biochemistry, 42(10), 1685–1693.

    CAS  Google Scholar 

  • Fernández-Baca, C. P., Rivers, A. R., Kim, W., Iwata, R., McClung, A. M., Roberts, D. P., Reddy, V. R., & Barnaby, J. Y. (2021). Changes in rhizosphere soil microbial communities across plant developmental stages of high and low methane emitting rice genotypes. Soil Biology and Biochemistry, 156, 108233.

    Google Scholar 

  • Fusi, A., Bacenetti, J., González-García, S., Vercesi, A., Bocchi, S., & Fiala, M. (2014). Environmental profile of paddy rice cultivation with different straw management. Science of the total environment, 494, 119–128.

    Google Scholar 

  • Gadal, N., Shrestha, J., Poudel, M. N., & Pokharel, B. (2019). A review on production status and growing environments of rice in Nepal and in the world. Archives of Agriculture and Environmental Science, 4(1), 83–87.

    Google Scholar 

  • Gami S, Ladha J, Pathak H, Shah M, Pasuquin E, Pandey S, Hobbs P, Joshy D, Mishra R (2001) Long-term changes in yield and soil fertility in a twenty-year rice-wheat experiment in Nepal. Biology and Fertility of Soils. 34(1):73-78.

    Google Scholar 

  • Geisseler, D., Lazicki, P. A., & Scow, K. M. (2016). Mineral nitrogen input decreases microbial biomass in soils under grasslands but not annual crops. Applied Soil Ecology, 106, 1e10.

    Google Scholar 

  • Ghimire, R., Adhikari, K. R., Chen, Z. S., Shah, S. C., & Dahal, K. R. (2012). Soil organic carbon sequestration as affected by tillage, crop residue, and nitrogen application in rice–wheat rotation system. Paddy and Water Environment, 10(2), 95–102.

    Google Scholar 

  • Ghimire, R., Norton, J. B., & Pendall, E. (2014). Alfalfa-grass biomass, soil organic carbon, and total nitrogen under different management approaches in an irrigated agroecosystem. Plant and Soil, 374, 173–184.

    CAS  Google Scholar 

  • Gogoi, B., Borah, N., Baishya, A., Dutta, S., Nath, D. J., Das, R., Bhattacharryya, D., Sharma, K. K., Mishra, G., & Francaviglia, R. (2021). Yield trends, soil carbon fractions and sequestration in a rice-rice system of North-East India: Effect of 32 years of INM practices. Field Crops Research, 272, 108289.

    Google Scholar 

  • Gogoi, N., Baruah, K. K., & Gupta, P. K. (2008). Selection of rice genotypes for lower methane emission. Agronomy for Sustainable Development, 28, 181–186.

    CAS  Google Scholar 

  • Grace, P. R., Antle, J., Aggarwal, P. K., Ogle, S., Paustian, K., & Basso, B. (2012). Soil carbon sequestration and associated economic costs for farming systems of the Indo-Gangetic Plain: A meta-analysis. Agriculture, Ecosystems & Environment, 146(1), 137–146.

    Google Scholar 

  • Gupta, P. K., Sharma, C., Bhattacharya, S., & Mitra, A. P. (2002). Scientific basis for establishing country greenhouse gas estimates for rice-based agriculture: An Indian case study. Nutrient Cycling in Agroecosystems, 64, 19–31.

    CAS  Google Scholar 

  • Gutierrez, J., Kim, S. Y., & Kim, P. J. (2013). Effect of rice cultivar on CH4 emissions and productivity in Korean paddy soil. Field Crops Research, 146, 16–24.

    Google Scholar 

  • Hokazono, S., & Hayashi, K. (2012). Variability in environmental impacts during conversion from conventional to organic farming: A comparison among three rice production systems in Japan. Journal of Cleaner Production, 28, 101–112.

    Google Scholar 

  • Howarth, R. W., Santoro, R., & Ingraffea, A. (2012). Venting and leaking of methane from shale gas development: response to Cathles et al. Climatic Change, 113(2), 537–549.

    CAS  Google Scholar 

  • Hu, Y., Wang, L., Chen, F., Ren, X., & Tan, Z. (2021). Soil carbon sequestration efficiency under continuous paddy rice cultivation and excessive nitrogen fertilization in South China. Soil and Tillage Research, 213, 105108.

    Google Scholar 

  • Hussain S, Khaliq A, Ali B, Hussain HA, Qadir T, Hussain S (2019) Temperature extremes: Impact on rice growth and development. In Plant abiotic stress tolerance pp. 153-171 Springer

  • Iqbal, J., Hu, R., Feng, M., Lin, S., Malghani, S., & Ali, I. M. (2010). Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: A case study at Three Gorges Reservoir Area, South China. Agriculture, Ecosystems & Environment, 137(3-4), 294–307.

    CAS  Google Scholar 

  • Jayadeva, H. M., PrabhakaraSetty, T. K., Gowda, R. C., Devendra, R., Mallikarjun, G. B., & Bandi, A. G. (2009). Methane emission as influenced by different crop establishment techniques and organic manures. Agricultural Science Digest, 29, 241–245.

    CAS  Google Scholar 

  • Karki, S., Adviento-Borbe, M. A., Massey, J. H., & Reba, M. L. (2021). Assessing seasonal methane and nitrous oxide emissions from furrow-irrigated rice with cover crops. Agriculture, 11(3), 261.

    CAS  Google Scholar 

  • Keiluweit, M., Wanzek, T., Kleber, M., Nico, P., & Fendorf, S. (2017). Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nature Communications, 8(1), 1771.

    Google Scholar 

  • Khalil, M. A., Rasmussen, R. A., Shearer, M. J., Chen, Z. L., Yao, H., & Yang, J. (1998). Emissions of methane, nitrous oxide, and other trace gases from rice fields in China. Journal of Geophysical Research: Atmospheres, 103(D19), 25241–25250.

    CAS  Google Scholar 

  • Kim, G. Y., Gutierrez, J., Jeong, H. C., Lee, J. S., Haque, M. M., & Kim, P. J. (2014). Effect of intermittent drainage on methane and nitrous oxide emissions under different fertilization in a temperate paddy soil during rice cultivation. Journal of the Korean Society for Applied Biological Chemistry, 57, 229–236.

    CAS  Google Scholar 

  • Kögel-Knabner, I., & Amelung, W. (2021). Soil organic matter in major pedogenic soil groups. Geoderma, 384, 114785.

    Google Scholar 

  • Kukal, S. S., & Benbi, D. K. (2009). Soil organic carbon sequestration in relation to organic and inorganic fertilization in rice–wheat and maize–wheat systems. Soil and Tillage Research, 102(1), 87–92.

    Google Scholar 

  • Kuzyakov, Y., & Jones, D. L. (2006). Glucose uptake by maize roots and its transformation in the rhizosphere. Soil Biology and Biochemistry, 38(5), 851–860.

    CAS  Google Scholar 

  • Lal, B., Gautam, P., Nayak, A. K., Panda, B. B., Bihari, P., Tripathi, R., Shahid, M., Guru, P. K., Chatterjee, D., Kumar, U., & Meena, B. P. (2019). Energy and carbon budgeting of tillage for environmentally clean and resilient soil health of rice-maize cropping system. Journal of Cleaner Production, 226, 815–830.

    CAS  Google Scholar 

  • Lal, R. (2004a). Soil carbon sequestration impacts on global climate change and food security. Science, 204, 1623–1627.

    Google Scholar 

  • Lal, R. (2004b). Soil carbon sequestration in India. Climatic Change, 65, 277–296.

    CAS  Google Scholar 

  • Lal, R. (2011). Sequestering carbon in soils of agro-ecosystems. Food Policy, 36, S33–S39.

    Google Scholar 

  • Lal, R. (2016). Soil health and carbon management. Food and Energy Security, 5(4), 212–222.

    Google Scholar 

  • Lal, R., Follett, R. F., Stewart, B. A., & Kimble, J. M. (2007). Soil carbon sequestration to mitigate climate change and advance food security. Soil Science, 172(12), 943–956.

    CAS  Google Scholar 

  • Layek, J., Narzari, R., Hazarika, S., Das, A., Rangappa, K., Devi, S., Balusamy, A., Saha, S., Mandal, S., Idapuganti, R. G., & Babu, S. (2022). Prospects of biochar for sustainable agriculture and carbon sequestration: An overview for Eastern Himalayas. Sustainability, 14(11), 6684.

    CAS  Google Scholar 

  • Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems—A review. Mitigation and Adaptation Strategies for Global Change, 11, 403–427.

    Google Scholar 

  • Leip, A., & Bocchi, S. (2007). Contribution of rice production to greenhouse emission in Europe. In Procedings of the Fourth Temperate Rice Conference, 25–28 June 2007 (pp. 32–33). Citeseer.

    Google Scholar 

  • Liu, S., Zhang, Y., Lin, F., Zhang, L., & Zou, J. (2014). Methane and nitrous oxide emissions from direct-seeded and seedling-transplanted rice paddies in southeast China. Plant and Soil, 374, 285–297.

    CAS  Google Scholar 

  • Liu, Y., Ge, T., van Groenigen, K. J., Yang, Y., Wang, P., Cheng, K., Zhu, Z., Wang, J., Li, Y., Guggenberger, G., & Sardans, J. (2021). Rice paddy soils are a quantitatively important carbon store according to a global synthesis. Communications Earth & Environment, 1, 1–9.

    Google Scholar 

  • Liu, Y., Zhou, Z., Zhang, X., Xu, X., Chen, H., & Xiong, Z. (2015). Net global warming potential and greenhouse gas intensity from the double rice system with integrated soil–crop system management: A three-year field study. Atmospheric Environment, 116, 92–101.

    CAS  Google Scholar 

  • Lu, Y., Wassmann, R., Neue, H. U., & Huang, C. (2000). Dynamics of dissolved organic carbon and methane emissions in a flooded rice soil. Soil Science Society of America Journal, 64(6), 2011–2017.

    CAS  Google Scholar 

  • Lu, Y. H., Watanabe, A., & Kimura, M. (2002). Input and distribution of photosynthesized carbon in a flooded rice soil. Global Biogeochemical Cycles, 16, 4.

    Google Scholar 

  • Mahmad-Toher, A. S., Govender, N., Dorairaj, D., & Wong, M. Y. (2022). Comparative evaluation on calcium silicate and rice husk ash amendment for silicon-based fertilization of Malaysian rice (Oryza sativa L.) varieties. Journal of Plant Nutrition, 45(9), 1336–1347.

    CAS  Google Scholar 

  • Majumder, B., Mandal, B., Bandyopadhyay, P. K., Gangopadhyay, A., Mani, P. K., Kundu, A. L., & Mazumdar, D. (2008). Organic amendments influence soil organic carbon pools and rice–wheat productivity. Soil Science Society of America Journal, 72(3), 775–785.

    CAS  Google Scholar 

  • Malla, G., Bhatia, A., Pathak, H., Prasad, S., Jain, N., & Singh, J. (2005). Mitigating nitrous oxide and methane emissions from soil in rice–wheat system of the Indo-Gangetic plain with nitrification and urease inhibitors. Chemosphere, 58(2), 141–147.

    CAS  Google Scholar 

  • Mandal, B., Majumder, B., Bandyopadhyay, P. K., Hazra, G. C., Gangopadhyay, A., Samantaray, R. N., Mishra, A. K., Chaudhury, J., Saha, M. N., & Kundu, S. (2007). The potential of cropping systems and soil amendments for carbon sequestration in soils under long-term experiments in subtropical India. Global Change Biology, 13(2), 357–369.

    Google Scholar 

  • Mandal, M., Kamp, P., & Singh, M. (2020). Effect of long-term manuring on carbon sequestration potential and dynamics of soil organic carbon labile pool under tropical rice-rice agro-ecosystem. Communications in Soil Science and Plant Analysis, 51(4), 468–480.

    CAS  Google Scholar 

  • Martínez-Eixarch, M., Alcaraz, C., Viñas, M., Noguerol, J., Aranda, X., Prenafeta-Boldú, F. X., Català-Forner, M., Fennessy, M. S., & Ibáñez, C. (2021). The main drivers of methane emissions differ in the growing and flooded fallow seasons in Mediterranean rice fields. Plant and Soil, 460, 211–227.

    Google Scholar 

  • Mathew, I., Shimelis, H., Mutema, M., Minasny, B., & Chaplot, V. (2020). Crops for increasing soil organic carbon stocks–A global meta analysis. Geoderma, 367, 114230.

    CAS  Google Scholar 

  • Mazumdar, S. P., Kundu, D. K., Nayak, A. K., & Ghosh, D. (2015). Soil aggregation and associated organic carbon as affected by long term application of fertilizer and organic manures under rice-wheat system in Middle Gangetic Plains of India. Journal of Agricultural Physics, 15(2), 113–121.

    Google Scholar 

  • McDaniel, M. D., Tiemann, L. K., & Grandy, A. S. (2014). Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecological Applications, 24(3), 560–570.

    CAS  Google Scholar 

  • Meijide, A., Manca, G., Goded, I., Magliulo, V., Di Tommasi, P., Seufert, G., & Cescatti, A. (2011). Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy. Biogeosciences, 8(12), 3809–3821.

    CAS  Google Scholar 

  • Mitra, S., Jain, M. C., Kumar, S., Bandyopadhyay, S. K., & Kalra, N. (1999). Effect of rice cultivars on methane emission. Agriculture, Ecosystems & Environment., 73(3), 177–183.

    CAS  Google Scholar 

  • Mohanty, S., Swain, C. K., Sethi, S. K., Dalai, P. C., Bhattachrayya, P., Kumar, A., Tripathi, R., Shahid, M., Panda, B. B., Kumar, U., & Lal, B. (2017). Crop establishment and nitrogen management affect greenhouse gas emission and biological activity in tropical rice production. Ecological Engineering, 104, 80–98.

    Google Scholar 

  • Nayak, A. K., Gangwar, B., Shukla, A. K., Mazumdar Sonali, P., Anjani, K., Raja, R., Anil, K., Vinod, K., Rai, P. K., & Udit, M. (2012). Long-term effect of different integrated nutrient management on soil organic carbon and its fractions and sustainability of rice–wheat system in Indo Gangetic Plains of India. Field Crops Research, 127, 129–139.

    Google Scholar 

  • Nayak, P., Patel, D., Ramakrishnan, B., Mishra, A. K., & Samantaray, R. N. (2009). Long-term application effects of chemical fertilizer and compost on soil carbon under intensive rice–rice cultivation. Nutrient Cycling in Agroecosystems, 83(3), 259–269.

    Google Scholar 

  • Oo, A. Z., Sudo, S., Inubushi, K., Mano, M., Yamamoto, A., Ono, K., Osawa, T., Hayashida, S., Patra, P. K., Terao, Y., & Elayakumar, P. (2018). Methane and nitrous oxide emissions from conventional and modified rice cultivation systems in South India. Agriculture, Ecosystems & Environment, 252, 148–158.

    CAS  Google Scholar 

  • O'Rourke, S. M., Angers, D. A., Holden, N. M., & McBratney, A. B. (2015). Soil organic carbon across scales. Global Change Biology, 21(10), 3561–3574.

    Google Scholar 

  • Ouyang, Z., Jackson, R. B., McNicol, G., Fluet-Chouinard, E., Runkle, B. R., Papale, D., Knox, S. H., Cooley, S., Delwiche, K. B., Feron, S., & Irvin, J. A. (2023). Paddy rice methane emissions across monsoon Asia. Remote Sensing of Environment, 284, 113335.

    Google Scholar 

  • Pandey, A., Dou, F., Morgan, C. L., Guo, J., Deng, J., & Schwab, P. (2021). Modeling organically fertilized flooded rice systems and its long-term effects on grain yield and methane emissions. Science of The Total Environment, 755, 142578.

    CAS  Google Scholar 

  • Pandey, D., Agrawal, M., & Bohra, J. S. (2012). Greenhouse gas emissions from rice crop with different tillage permutations in rice–wheat system. Agriculture, Ecosystems & Environment, 159, 133–144.

    CAS  Google Scholar 

  • Parthasarathi, T., Vanitha, K., Mohandass, S., & Vered, E. (2019). Mitigation of methane gas emission in rice by drip irrigation. F1000Research, 8.

  • Pathak, H. (2023). Impact, adaptation, and mitigation of climate change in Indian agriculture. Environmental Monitoring and Assessment, 195(1), 52.

    Google Scholar 

  • Pathak, H., Bhatia, A., & Jain, N. (2014). Greenhouse gas emission from Indian agriculture: Trends, mitigation and policy needs (p. 39). Indian Agricultural Research Institute.

    Google Scholar 

  • Pathak, H., Byjesh, K., Chakrabarti, B., & Aggarwal, P. K. (2011). Potential and cost of carbon sequestration in Indian agriculture: Estimates from long-term field experiments. Field Crops Research, 120(1), 102–111.

    Google Scholar 

  • Pathak, H., Li, C., & Wassmann, R. (2005). Greenhouse gas emissions from Indian rice fields: Calibration and upscaling using the DNDC model. Biogeosciences, 2(2), 113–123.

    CAS  Google Scholar 

  • Pathak, H., Prasad, S., Bhatia, A., Singh, S., Kumar, S., Singh, J., & Jain, M. C. (2003). Methane emission from rice–wheat cropping system in the Indo-Gangetic plain in relation to irrigation, farmyard manure and dicyandiamide application. Agriculture, Ecosystems & Environment, 97, 309–316.

    CAS  Google Scholar 

  • Peng, X., Yan, X., Zhou, H., Zhang, Y. Z., & Sun, H. (2015). Assessing the contributions of sesquioxides and soil organic matter to aggregation in an Ultisol under long-term fertilization. Soil and Tillage Research, 146, 89–98.

    Google Scholar 

  • Pereira, J. L., Carranca, C., Coutinho, J., & Trindade, H. (2020). The effect of soil type on gaseous emissions from flooded rice fields in Portugal. Journal of Soil Science and Plant Nutrition, 20, 1732–1740.

    CAS  Google Scholar 

  • Post, W. M., & Kwon, K. C. (2000). Soil carbon sequestration and land-use change: Processes and potential. Global Change Biology, 6(3), 317–327.

    Google Scholar 

  • Powlson, D. S., Stirling, C. M., Thierfelder, C., White, R. P., & Jat, M. L. (2016). Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems? Agriculture, Ecosystems & Environment, 220, 164–174.

    CAS  Google Scholar 

  • Pratiwi, E. P., & Shinogi, Y. (2016). Rice husk biochar application to paddy soil and its efects on soil physical properties, plant growth, and methane emission. Paddy and Water Environment, 14, 521–532.

    Google Scholar 

  • Purwanto, B. H., & Alam, S. (2020). Impact of intensive agricultural management on carbon and nitrogen dynamics in the humid tropics. Soil Science and Plant Nutrition, 66(1), 50–59.

    CAS  Google Scholar 

  • Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M. (2013). Climate change: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

    Google Scholar 

  • Qin, Y., Liu, S., Guo, Y., Liu, Q., & Zou, J. (2010). Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China. Biology and Fertility of Soils, 46, 825–834.

    CAS  Google Scholar 

  • Rajkishore, S. K. (2013). Carbon sequestration and greenhouse gas emission studies in SRI and conventional systems of rice cultivation. Tamil Nadu Agricultural university.

    Google Scholar 

  • Rani, V., Bhatia, A., & Kaushik, R. (2021). Inoculation of plant growth promoting-methane utilizing bacteria in different N-fertilizer regime influences methane emission and crop growth of flooded paddy. Science of The Total Environment, 775, 145826.

    CAS  Google Scholar 

  • Ratnayake, R. R., Perera, B. M., Rajapaksha, R. P., Ekanayake, E. M., Kumara, R. K., & Gunaratne, H. M. (2017). Soil carbon sequestration and nutrient status of tropical rice based cropping systems: Rice-rice, rice-soya, rice-onion and rice-tobacco in Sri Lanka. Catena, 150, 17–23.

    CAS  Google Scholar 

  • Regmi, A. P., Ladha, J. K., Pathak, H., Pasuquin, E., Bueno, C., Dawe, D., Hobbs, P. R., Joshy, D., Maskey, S. L., & Pandey, S. P. (2002). Yield and soil fertility trends in a 20-year rice–rice–wheat experiment in Nepal. Soil Science Society of America Journal, 66(3), 857–867.

    CAS  Google Scholar 

  • Ribas, A., Mattana, S., Llurba, R., Debouk, H., Sebastià, M. T., & Domene, X. (2019). Biochar application and summer temperatures reduce N2O and enhance CH4 emissions in a Mediterranean agroecosystem: Role of biologicallyinduced anoxic microsites. Science of the Total Environment, 685, 1075–86.

    CAS  Google Scholar 

  • Richards, M., & Sander, B. O. (2014). Alternate wetting and drying in irrigated rice: Implementation guidance for policymakers and investors. In Practice Brief Climate-Smart Agriculture. CCAFS, IRRI.

    Google Scholar 

  • Rosentreter, J. A., Borges, A. V., Deemer, B. R., Holgerson, M. A., Liu, S., Song, C., Melack, J., Raymond, P. A., Duarte, C. M., Allen, G. H., & Olefeldt, D. (2021). Half of global methane emissions come from highly variable aquatic ecosystem sources. Nature Geoscience, 14(4), 225–230.

    CAS  Google Scholar 

  • Rui, W., & Zhang, W. (2010). Effect size and duration of recommended management practices on carbon sequestration in paddy field in Yangtze Delta Plain of China: A meta-analysis. Agriculture, Ecosystems & Environment, 135(3), 199–205.

    CAS  Google Scholar 

  • Saha, M., Mia, S., Biswas, A. A., Sattar, M. A., & Dijkstra, F. A. (2021). Methane emission from different rice cultivation systems in Bangladesh: A model based approach. Research Square.

    Google Scholar 

  • Saha, S., Chatterjee, D., Swain, C. K., & Nayak, A. K. (2018). Methane emission from wetland rice agriculture-biogeochemistry and environmental controls in projected changing environment. In Advances in crop environment interaction (pp. 51–85). Springer.

    Google Scholar 

  • Sahrawat, K. L. (2004). Organic matter accumulation in submerged soils. Advances in Agronomy, 81, 169–201.

    CAS  Google Scholar 

  • Sanchis, E., Ferrer, M., Torres, A. G., Cambra-López, M., & Calvet, S. (2012). Effect of water and straw management practices on methane emissions from rice fields: A review through a meta-analysis. Environmental Engineering Science, 29, 1053–1062.

    CAS  Google Scholar 

  • Sander, B. O., Samson, M., & Buresh, R. J. (2014). Methane and nitrous oxide emissions from flooded rice fields as affected by water and straw management between rice crops. Geoderma, 235, 355–362.

    Google Scholar 

  • Sapkota, T. B., Jat, R. K., Singh, R. G., Jat, M. L., Stirling, C. M., Jat, M. K., Bijarniya, D., Kumar, M., Saharawat, Y. S., & Gupta, R. K. (2017). Soil organic carbon changes after seven years of conservation agriculture in a rice–wheat system of the eastern Indo-Gangetic Plains. Soil Use and Management, 33(1), 81–89.

    Google Scholar 

  • Sen, A. V., Singh, R. K., Yadaw, D. E., Kumari, P., Srivastava, V. K., Upadhyay, P. K., Sankar, A., Mishra, J., Das, A., & Waris, N. (2019). Effect of Trichoderma and hydrogel on growth, yield and yield attributes of direct seeded rice (Oryza sativa) under rainfed condition. Indian Journal of Agricultural Sciences, 89, 333–338.

    CAS  Google Scholar 

  • Sharma, B. D., Sidhu, G. S., Sarkar, D., & Kukal, S. S. (2012). Soil organic carbon, phosphorous, and potassium status in rice–wheat soils of different agro-climatic zones in Indo-Gangetic plains of India. Communications in Soil Science and Plant Analysis, 43(10), 1449–1467.

    CAS  Google Scholar 

  • Sharma, S. K., Singh, Y. V., Tyagi, S., & Bhatia, A. (2016). Influence of rice varieties, nitrogen management and planting methods on methane emission and water productivity. Paddy and Water Environment, 14, 325–333.

    Google Scholar 

  • Shin, Y. K., & Yun, S. H. (2000). Varietal differences in methane emission from Korean rice cultivars. Nutrient Cycling in Agroecosystems, 58, 315–319.

    CAS  Google Scholar 

  • Sivalingam, N. (2022). The Effect of different agronomic management practices to increase carbon sequestration in rice based cropping system: A little review. Research on Agricultural Sciences and Technology, 3(1), 1–4.

    Google Scholar 

  • Six, J., Feller, C., Denef, K., Ogle, S. M., de Moraes, J. C., & Albrecht, A. (2002). Soil organic matter, biota and aggregation in temperate and tropical soils-effects of no-tillage. Agronomie, 22, 755–775.

    Google Scholar 

  • Song, A., Ning, D., Fan, F., Li, Z., Provance-Bowley, M., & Liang, Y. (2015). The potential for carbon bio-sequestration in China’s paddy rice (Oryza sativa L.) as impacted by slag-based silicate fertilizer. Scientific Reports, 5(1), 1–2.

    CAS  Google Scholar 

  • Srinivasarao, C., Venkateswarlu, B., Lal, R., Singh, A. K., Vittal, K. P., Kundu, S., Singh, S. R., & Singh, S. P. (2012). Long-term effects of soil fertility management on carbon sequestration in a rice–lentil cropping system of the Indo-Gangetic Plains. Soil Science Society of America Journal, 76(1), 168–178.

    CAS  Google Scholar 

  • Stevens, G., Rhine, M., & Heiser, J. (2018). In F. Shah, Z. H. Khan, & A. Iqbal (Eds.), Rice production with furrow irrigation in the Mississippi River Delta Region of the USA (pp. 69–82). Rice Crop: Current Developments.

    Google Scholar 

  • Swain, C. K., Bhattacharyya, P., Nayak, A. K., Singh, N. R., Chatterjee, D., Dash, P. K., Neogi, S., & Pathak, H. (2018a). Temporal variation of energy fluxes during dry season in tropical lowland rice. Mapan, 33(3), 241–251.

    Google Scholar 

  • Swain, C. K., Bhattacharyya, P., Nayak, A. K., Singh, N. R., Neogi, S., Chatterjee, D., & Pathak, H. (2018b). Dynamics of net ecosystem methane exchanges on temporal scale in tropical lowland rice. Atmospheric Environment, 191, 291–301.

    CAS  Google Scholar 

  • Swain, C. K., Bhattacharyya, P., Singh, N. R., Neogi, S., Sahoo, R. K., Nayak, A. K., Zhang, G., & Leclerc, M. Y. (2016). Net ecosystem methane and carbon dioxide exchange in relation to heat and carbon balance in lowland tropical rice. Ecological Engineering, 95, 364–374.

    Google Scholar 

  • Swain, C. K., Nayak, A. K., Bhattacharyya, P., Chatterjee, D., Chatterjee, S., Tripathi, R., Singh, N. R., & Dhal, B. (2018). Greenhouse gas emissions and energy exchange in wet and dry season rice: Eddy covariance-based approach. Environmental Monitoring and Assessment, 190(7), 423.

    Google Scholar 

  • Tong, C., Xiao, H., Tang, G., Wang, H., Huang, T., Xia, H., Keith, S. J., Li, Y., Liu, S., & Wu, J. (2009). Long-term fertilizer effects on organic carbon and total nitrogen and coupling relationships of C and N in paddy soils in subtropical China. Soil and Tillage Research, 106(1), 8–14.

    Google Scholar 

  • Tubiello, F. N., Salvatore, M., Rossi, S., Ferrara, A., Fitton, N., & Smith, P. (2013). The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters, 8(1), 015009.

    Google Scholar 

  • Valkama, E., Kunypiyaeva, G., Zhapayev, R., Karabayev, M., Zhusupbekov, E., Perego, A., Schillaci, C., Sacco, D., Moretti, B., Grignani, C., & Acutis, M. (2020). Can conservation agriculture increase soil carbon sequestration? A modelling approach. Geoderma, 369, 114298.

    CAS  Google Scholar 

  • Virto, I., Gartzia-Bengoetxea, N., & Fernández-Ugalde, O. (2011). Role of organic matter and carbonates in soil aggregation estimated using laser diffractometry. Pedosphere, 21(5), 566–572.

    CAS  Google Scholar 

  • Wagai, R., & Mayer, L. M. (2007). Sorptive stabilization of organic matter in soils by hydrous iron oxides. Geochimica et Cosmochimica Acta, 71(1), 25–35.

    CAS  Google Scholar 

  • Wang, Q., Huang, Q., Zhang, L., Zhang, J., Shen, Q., & Ran, W. (2012). The effects of compost in a rice–wheat cropping system on aggregate size, carbon and nitrogen content of the size–density fraction and chemical composition of soil organic matter, as shown by 13C CP NMR spectroscopy. Soil use and management, 28(3), 337–46.

    Google Scholar 

  • Wang, H., Zhang, J., Wu, K., & Ni, F. (2017). Measuring the rhizodeposition of carbon by rice: An approach based on carbon flux observations. Soil Science and Plant Nutrition, 63(5), 499–506.

    CAS  Google Scholar 

  • Wassmann, R., Neue, H. U., Lantin, R. S., Makarim, K., Chareonsilp, N., Buendia, L. V., & Rennenberg, H. (2000). Characterization of methane emissions from rice fields in Asia. II. Differences among irrigated, rainfed, and deepwater rice. In Methane Emissions from Major Rice Ecosystems in Asia (pp. 13–22). Springer.

    Google Scholar 

  • Wei, L., Ge, T., Zhu, Z., Luo, Y., Yang, Y., Xiao, M., Yan, Z., Li, Y., Wu, J., & Kuzyakov, Y. (2021). Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers. Geoderma, 398, 115121.

    CAS  Google Scholar 

  • Weller, S., Kraus, D., Ayag, K. R., Wassmann, R., Alberto, M. C., Butterbach-Bahl, K., & Kiese, R. (2015). Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems. Nutrient Cycling in Agroecosystems, 101, 37–53.

    CAS  Google Scholar 

  • Were, D., Kansiime, F., Fetahi, T., Cooper, A., & Jjuuko, C. (2019). Carbon sequestration by wetlands: A critical review of enhancement measures for climate change mitigation. Earth Systems and Environment, 3(2), 327–340.

    Google Scholar 

  • West TO, & Post, W. M. (2002). Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Science Society of America Journal, 66, 1930–1946.

    Google Scholar 

  • Whiticar, M. J. (2020). The biogeochemical methane cycle. In Hydrocarbons, oils and lipids: Diversity, origin, chemistry and fate (pp. 669–746). Springer.

    Google Scholar 

  • Xu, S., Shi, X., Zhao, Y., Yu, D., Li, C., Wang, S., Tan, M., & Sun, W. (2011). Carbon sequestration potential of recommended management practices for paddy soils of China, 1980–2050. Geoderma, 166(1), 206–213.

    CAS  Google Scholar 

  • Xu, Y., Ge, J., Tian, S., Li, S., Nguy-Robertson, A. L., Zhan, M., & Cao, C. (2015). Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China. Science of the Total Environment, 505, 1043–1052.

    CAS  Google Scholar 

  • Yadav, G. S., Das, A., Lal, R., Babu, S., Datta, M., Meena, R. S., Patil, S. B., & Singh, R. (2019). Impact of no-till and mulching on soil carbon sequestration under rice (Oryza sativa L.)-rapeseed (Brassica campestris L. var. rapeseed) cropping system in hilly agro-ecosystem of the Eastern Himalayas, India. Agriculture, Ecosystems & Environment, 275, 81–92.

    Google Scholar 

  • Yadav, G. S., Lal, R., Meena, R. S., Babu, S., Das, A., Bhowmik, S. N., Datta, M., Layak, J., & Saha, P. (2019). Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in north eastern region of India. Ecological Indicators, 105, 303–315.

    CAS  Google Scholar 

  • Yadav, R. K., Yadav, M. R., Kumar, R., Parihar, C. M., Yadav, N., Bajiya, R., et al. (2017). Role of biochar in mitigation of climate change through carbon sequestration. International Journal of Current Microbiology and Applied Sciences, 6, 859–866.

    CAS  Google Scholar 

  • Yadav, S., Kumar, R., Chandra, M. S., Singh, S., Yadav, R. B., & Kumar, M. (2020). Soil organic carbon sequestration and carbon pools in rice based cropping systems in Indo-Gangetic Plains: An overview. International Research Journal of. Pure and Applied Chemistry, 21(24), 122–136.

    Google Scholar 

  • Yagi, K., Tsuruta, H., & Minami, K. (1997). Possible options for mitigating methane emission from rice cultivation. Nutrient Cycling in Agroecosystems, 49, 213–20.

    CAS  Google Scholar 

  • Yan, X., Akiyama, H., Yagi, K., & Akimoto, H. (2009). Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Global Biogeochemical Cycles, 23(2).

  • Yan, X., Ohara, T., & Akimoto, H. (2003). Development of region-specific emission factors and estimation of methane emission from rice fields in the East, Southeast and South Asian countries. Global Change Biology, 9(2), 237–254.

    Google Scholar 

  • Yuan, H., Ge, T., Wu, X., Liu, S., Tong, C., Qin, H., Wu, M., Wei, W., & Wu, J. (2012). Long-term field fertilization alters the diversity of autotrophic bacteria based on the ribulose-1, 5-biphosphate carboxylase/oxygenase (RubisCO) large-subunit genes in paddy soil. Applied Microbiology and Biotechnology, 95(4), 1061–1071.

    CAS  Google Scholar 

  • Zhang, G., Ma, J., Yang, Y., Yu, H., Song, K., Dong, Y., Lv, S., & Xu, H. (2018). Achieving low methane and nitrous oxide emissions with high economic incomes in a rice-based cropping system. Agricultural and Forest Meteorology, 259, 95–106.

    Google Scholar 

  • Zhang, W., Xu, M., Wang, X., Huang, Q., Nie, J., & Li, Z. (2012). Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China. Journal of Soils and Sediments, 12(4), 457–470.

    Google Scholar 

  • Zhang, X., Zhou, S., Bi, J., Sun, H., Wang, C., & Zhang, J. (2021). Drought-resistance rice variety with water-saving management reduces greenhouse gas emissions from paddies while maintaining rice yields. Agriculture, Ecosystems & Environment, 320, 107592.

    CAS  Google Scholar 

  • Zheng, X. H., Wang, M. X., Wang, Y. S., Shen, R., Shangguan, X., Heyer, J., Kogge, M., Papen, H., Jin, J., & Li, L. (1997). CH4 and N2O emissions from rice paddy fields in southeast China. Scientia Atmospherica Sinica, 21, 231–237.

    Google Scholar 

  • Zhu, Z., Zeng, G., Ge, T., Hu, Y., Tong, C., Shibistova, O., He, X., Wang, J., Guggenberger, G., & Wu, J. (2016). Fate of rice shoot and root residues, rhizodeposits, and microbe-assimilated carbon in paddy soil–part 1: Decomposition and priming effect. Biogeosciences, 13(15), 4481–4489.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Saikat Ranjan Das completed the formal analysis, collected the data, and wrote the main manuscript text;

Bitish Kumar Nayak helped to write the main manuscript text;

Souvik Dey prepared Table 3;

Suman Sarkar prepared Figs. 1 and 2;

Dibyendu Chatterjee conceptualized, provided resources, and edited the main manuscript;

Saurav Saha conceptualized and edited the main manuscript;

Dibyendu Sarkar provided resources and edited the main manuscript;

Abhijit Pradhan prepared Tables 1 and 2;

Sanjoy Saha supervised and edited the main manuscript;

Amaresh Kumar Nayak overall supervised and edited the main manuscript.

Corresponding author

Correspondence to Dibyendu Chatterjee.

Ethics declarations

Ethics approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S.R., Nayak, B.K., Dey, S. et al. Potential soil organic carbon sequestration vis-a-vis methane emission in lowland rice agroecosystem. Environ Monit Assess 195, 1099 (2023). https://doi.org/10.1007/s10661-023-11673-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11673-0

Keywords

Navigation