Skip to main content

Advertisement

Log in

Mapping and identification of potential groundwater development zones of an alluvial aquifer in parts of Ghaggar and Upper Yamuna basins in India

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Using an integrated analytical hierarchy process, remote sensing and geographic information system techniques, the current study aims to map and identify the potential groundwater zones of Kurukshetra District of Haryana, which is located in the Ghaggar and Upper Yamuna Basins in India. This is done in the context of a significant change in the use of groundwater pattern, with respect to its continuously increasing demand due to the growing population, expansion of area under irrigation and related economic factors. The amount and quality of groundwater are anticipated to be impacted by anthropogenic activities as well as natural factors such as geomorphology, soil type, lithology and rainfall variance owing to a changing climatic scenario. The potential index of groundwater for this study was calculated by using nine important factors, including geomorphology, rainfall, soil type, depth to groundwater level, lithology, land use land cover, normalized difference vegetation index, cumulative sand thickness and elevation. The integration of multiple thematic layers was accomplished using the overlay weighted method to generate a potential groundwater zonation map and the accuracy of the resulting map was validated against a groundwater resource potential map. Statistical measures demonstrate an 82% agreement between the two maps, indicating a high level of concurrence. Accordingly, three groundwater zones of good, average and bad potential have been identified in the study area. In the current study, a process that combines weighted ranking with spatial data transformation and harmonization has been developed to obtain information for accurate decision-making. The results accruing from this research have significant ramifications for creating regional sustainable groundwater management plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be provided on request.

References

  • Agarwal, E., Agarwal, R., Garg, R. D., & Garg, P. K. (2013). Delineation of groundwater potential zone: An AHP/ANP approach. Journal of Earth System Science, 122(3), 887–898.

    Article  Google Scholar 

  • Agarwal, R., & Garg, P. K. (2016). Remote sensing and GIS based groundwater potential & recharge zones mapping using multi-criteria decision making technique. Water Resour. Manag., 30(1), 243–260.

    Article  Google Scholar 

  • Akther, H., Ahmed, M. S., & Rasheed, K. B. S. (2009). Spatial and temporal analysis of groundwater level fluctuation in Dhak, a city. Bangladesh. Asian Journal of Earth Sciences, 2(2), 49–57.

    Article  Google Scholar 

  • Al-Abadi, A. M., Al-Temmeme, A. A., & Al-Ghanimy, M. A. (2016). A GIS-based combining of frequency ratio and index of entropy approaches for mapping groundwater availability zones at BadraeAl Al-GharbieTeeb areas. Iraq. Sustain. Water Resour. Manag., 2(3), 265–283.

    Article  Google Scholar 

  • Alonso, J. A., & Lamata, M. T. (2006). Consistency in the analytic hierarchy process: A new approach. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 14(04), 445–459.

    Article  Google Scholar 

  • Aluko, O. E., & Igwe, O. (2017). An integrated geomatics approach to groundwater potential delineation in the Akoko-Edo Area. Nigeria. Environmental Earth Sciences, 76(6), 1–14.

    Google Scholar 

  • Arivalagan, S., Kiruthika, A. M., & Sureshbabu, S. (2014). Delineation of groundwater potential zones using RS and GIS techniques: A case study for Eastern part of Krishnagiri district, Tamil Nadu. International Journal of Advanced Research in Science, Engineering and Technology, 3, 51–59.

    Google Scholar 

  • Arulbalaji, P., Padmalal, D., & Sreelash, K. (2019). GIS and AHP techniques based delineation of groundwater potential zones: A case study from southern Western Ghats. India. Scientific Reports, 9(1), 1–17.

    CAS  Google Scholar 

  • Avand, M., Janizadeh, S., Bui, D. T., Pham, V. H., Phuong, T. T., & Ngo, and Viet-Ha Nhu. (2020). A tree-based intelligence ensemble approach for spatial prediction of potential groundwater. International Journal of Digital Earth, 13(12), 1408–1429.

    Article  Google Scholar 

  • Ayazi, M. H., Pirasteh, S., Arvin, A. K. P., Pradhan, B., Nikouravan, B., & Mansor, S. (2010). Disasters and risk reduction in groundwater: Zagros Mountain Southwest Iran using geoinformatics techniques. Disaster Adv, 3(1), 51–57.

    Google Scholar 

  • Bagyaraj, M., Ramkumar, T., Venkatramanan, S., & Gurugnanam, B. (2013). Application of remote sensing and GIS analysis for identifying groundwater potential zone in parts of Kodaikanal Taluk. South India. Frontiers of Earth Science, 7(1), 65–75.

    Article  Google Scholar 

  • Bahuguna, I. M., Nayak, S., Tamilarsan, V., & Moses, J. (2003). Groundwater prospective zones in basaltic terrain using remote sensing. J Indian Soc Remote Sens, 31(2), 107–118.

    Article  Google Scholar 

  • Bandyopadhyay, A., Nengzouzam, G., Singh, W. R., Hangsing, N., & Bhadra, A. (2018). Comparison of various re-analyses gridded data with observed data from meteorological stations over India. EPiC Series in Engineering, 3, 190–198.

    Article  Google Scholar 

  • Census of India. (2011). Retrieved May 4, 2019, from https://censusindia.gov.in/census.website/data/population-finder

  • CGWB. (1996). Development and augmentation of groundwater resources in NCT of Delhi, Report, Central Groundwater Board, Ministry of Water Resources, Government of India, New Delhi

  • CGWB. (2013). Central ground water board, Groundwater Information Booklet Kurukshetra district, Haryana.

  • CGWB. (2016). Aquifer mapping and management plan. Kurukshetra District Haryana. Retrieved June 17, 2022, from http://cgwb.gov.in/AQM/NAQUIM_REPORT/Haryan_NCR/Kurukshetra.pdf

  • CGWB. (2021). Central ground water board, Groundwater year book of Haryana state. Retrieved September 23, 2022, from http://cgwb.gov.in/Regions/NWR/Reports/GWYB%202020-21%20Haryana.pdf

  • Chakrabortty, R., Pal, S. C., Malik, S., & Das, B. (2018). Modeling and mapping of groundwater potentiality zones using AHP and GIS technique: A case study of Raniganj Block, Paschim Bardhaman, West Bengal. Modeling Earth Systems and Environment, 4(3), 1085–1110.

    Article  Google Scholar 

  • Chandio, I. A., Matori, A. N. B., WanYusof, K. B., Talpur, M. A. H., Balogun, A. L., & Lawal, D. U. (2013). GIS-based analytic hierarchy process as a multicriteria decision analysis instrument: A review. Arabian Journal of Geosciences, 6(8), 3059–3066.

    Article  Google Scholar 

  • Chatterjee, R. S., Pranjal, P., Jally, S., Kumar, B., Dadhwal, V. K., Srivastav, S. K., & Kumar, D. (2020). Potential groundwater recharge in north-western India vs spaceborne GRACE gravity anomaly based monsoonal groundwater storage change for evaluation of groundwater potential and sustainability. Groundwater for Sustainable Development, 10, 100307.

    Article  Google Scholar 

  • Chatterjee, S., & Dutta, S. (2022). Assessment of groundwater potential zone for sustainable water resource management in south-western part of Birbhum District. West Bengal. Applied Water Science, 12(3), 1–16.

    Google Scholar 

  • Chenini, I., Mammou, A. B., & El May, M. (2010). Groundwater recharge zone mapping using GIS-based multi-criteria analysis: A case study in Central Tunisia (Maknassy Basin). Water Resources Management, 24(5), 921–939.

    Article  Google Scholar 

  • Chowdhury, A., Jha, M. K., & Chowdary, V. M. (2010). Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environmental Earth Sciences, 59(6), 1209–1222.

    Article  Google Scholar 

  • Das, B., & Pal, S. C. (2020). Assessment of groundwater vulnerability to over-exploitation using MCDA, AHP, fuzzy logic and novel ensemble models: A case study of Goghat-I and II blocks of West Bengal. India. Environmental Earth Sciences, 79(5), 1–16.

    Google Scholar 

  • Das, B., Pal, S. C., Malik, S., & Chakrabortty, R. (2019). Modeling groundwater potential zones of Puruliya district, West Bengal, India using remote sensing and GIS techniques. Geology, Ecology, and Landscapes, 3(3), 223–237.

    Article  Google Scholar 

  • Forootan, E., & Seyedi, F. (2021). GIS-based multi-criteria decision making and entropy approaches for groundwater potential zones delineation. Earth Science Informatics, 14(1), 333–347.

    Article  Google Scholar 

  • Frei, C., & Schär, C. (1998). A precipitation climatology of the Alps from high-resolution rain-gauge observations. International Journal of Climatology: A Journal of the Royal Meteorological Society, 18(8), 873–900.

    Article  Google Scholar 

  • Ghorbani Nejad, S., Falah, F., Daneshfar, M., Haghizadeh, A., & Rahmati, O. (2017). Delineation of groundwater potential zones using remote sensing and GIS-based data-driven models. Geocarto International, 32(2), 167–187.

    Google Scholar 

  • Ghosh, D., Mandal, M., Karmakar, M., Banerjee, M., & Mandal, D. (2020a). a) Application of geospatial technology for delineating groundwater potential zones in the Gandheswari watershed West Bengal. Sustain Water Res Manage, 6, 14. https://doi.org/10.1007/s40899-020-00372-0

    Article  Google Scholar 

  • Ghosh, A., Adhikary, P. P., Bera, B., Bhunia, G. S., & Shit, P. K. (2022). Assessment of groundwater potential zone using MCDA and AHP techniques: Case study from a tropical river basin of India. Applied Water Science, 12(3), 1–22.

    Article  Google Scholar 

  • Ghosh, D., Mandal, M., Banerjee, M., & Karmakar, M. (2020b). Impact of hydro-geological environment on availability of groundwater using analytical hierarchy process (AHP) and geospatial techniques: A study from the upper Kangsabati river basin. Groundwater for sustainable development, 11, 100419.

  • Gnanachandrasamy, G., Zhou, Y., Bagyaraj, M., Venkatramanan, S., Ramkumar, T., & Wang, S. (2018). Remote sensing and GIS based groundwater potential zone mapping in Ariyalur District, Tamil Nadu. Journal of the Geological Society of India, 92(4), 484–490.

    Article  Google Scholar 

  • Geological Survey of India (GSI). Bhukosh. Retrieved October 10, 2022, from https://bhukosh.gsi.gov.in/Bhukosh/Public

  • Groundwater Resource Estimation Methodology. (1997). Report of the Groundwater Resource Estimation Committee, Ministry of Water Resources, Government of India, New Delhi, June 1997, 107. Retrieved June 17, 2022

  • Gumma, M. K., & Pavelic, P. (2013). Mapping of groundwater potential zones across Ghana using remote sensing, geographic information systems, and spatial modeling. Environmental Monitoring and Assessment, 185(4), 3561–3579.

    Article  Google Scholar 

  • Guru, B., Seshan, K., & Bera, S. (2017). Frequency ratio model for groundwater potential mapping and its sustainable management in cold desert. India. Journal of King Saud University-Science, 29(3), 333–347.

    Article  Google Scholar 

  • Hachem, A. M., Ali, E., El Ouali Abdelhadi, E. H. A., & Said, K. (2015). Using remote sensing and GIS-multicriteria decision analysis for Groundwater potential mapping in the middle atlas plateaus, Morocco. Research Journal of Recent Sciences ISSN, 2277, 2502.

    Google Scholar 

  • Halder, B., Bandyopadhyay, J., & Banik, P. (2020). Assessment of hospital sites’ suitability by spatial information technologies using AHP and GIS-based multi-criteria approach of Rajpur-Sonarpur Municipality. Modeling Earth Systems and Environment, 6, 2581–2596.

    Article  Google Scholar 

  • Hoque, M. A., Hoque, M. M., & Ahmed, K. M. (2007). Declining groundwater level and aquifer dewatering in Dhaka metropolitan area, Bangladesh: Causes and quantification. Hydrogeology Journal, 15(8), 1523–1534.

    Article  Google Scholar 

  • Ifediegwu, S. I., Nnebedum, D. O., & Nwatarali, A. N. (2019). Identification of groundwater potential zones in the hard and soft rock terrains of Kogi State, North Central Nigeria: An integrated GIS and remote sensing techniques. SN Appl Sci, 1, 1151. https://doi.org/10.1007/s42452-019-1181-1

    Article  Google Scholar 

  • Ifediegwu, S. I. (2022). Assessment of groundwater potential zones using GIS and AHP techniques: A case study of the Lafia district, Nasarawa State. Nigeria. Applied Water Science, 12(1), 1–17.

    Google Scholar 

  • IPCC. (2001). In: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A. (Eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

  • Jagadeeswara Rao, P., Harikrishna, P., & Suryaprakasa Rao, B. (2004). An integrated study on groundwater resource of Pedda Gedda watershed. J Ind Soc Remote Sens, 18(1&2), 9–14.

    Google Scholar 

  • Jasrotia, A. S., Kumar, A., & Singh, R. (2016). Integrated remote sensing and GIS approach for delineation of groundwater potential zones using aquifer parameters in Devak and Rui watershed of Jammu and Kashmir. India. Arabian Journal of Geosciences, 9(4), 1–15.

    Google Scholar 

  • Jha, M. K., Chowdary, V. M., & Chowdhury, A. (2010). Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeology Journal, 18(7), 1713–1728.

    Article  Google Scholar 

  • Jhariya, D. C., Kumar, T., Gobinath, M., Diwan, P., & Kishore, N. (2016). Assessment of groundwater potential zone using remote sensing, GIS and multi criteria decision analysis techniques. Journal of the Geological Society of India, 88(4), 481–492.

    Article  Google Scholar 

  • Kaur, L., & Rishi, M. S. (2018). Integrated geospatial, geostatistical, and remote-sensing approach to estimate groundwater level in North-western India. Environmental Earth Sciences, 77(23), 1–13.

    Article  Google Scholar 

  • Kaur, L., Rishi, M. S., & Chaudhary, B. S. (2022). Assessment of meteorological and agricultural droughts using remote sensing and their impact on groundwater in an agriculturally productive part of Northwest India. Agricultural Water Management, 274, 107956. https://doi.org/10.1016/j.agwat.2022.107956

  • Kaur, L., Rishi, M. S., Singh, G., & Thakur, S. N. (2020). Groundwater potential assessment of an alluvial aquifer in Yamuna sub-basin (Panipat region) using remote sensing and GIS techniques in conjunction with analytical hierarchy process (AHP) and catastrophe theory (CT). Ecological Indicators, 110, 105850.

    Article  Google Scholar 

  • Konikow, L. F., & Kendy, E. (2005). Groundwater depletion: A global problem. Hydrogeology Journal, 13(1), 317–320.

    Article  CAS  Google Scholar 

  • Krishnamurthy, J., Venkatesa Kumar, N., Jayaraman, V., & Manivel, M. (1996). An approach to demarcate ground water potential zones through remote sensing and a geographical information system. International Journal of Remote Sensing, 17(10), 1867–1884.

    Article  Google Scholar 

  • Kumar, P., Kumar, A., & Mittal, S. (2004). Total factor productivity of crop sector in the Indo-Gangetic Plain of India: Sustainability issues revisited. Indian Economic Review, 169–201.

  • Kumar, T., Gautam, A. K., & Kumar, T. (2014). Appraising the accuracy of GIS-based multi-criteria decision making technique for delineation of groundwater potential zones. Water Resources Management, 28, 4449–4466.

    Article  Google Scholar 

  • Kumari, S., Singh, K., Mehta, M., & Dahiya, M. (2009). Women involvement in paddy cultivation in Haryana state. Agricultural Science Digest, 29(4), 271–274.

    Google Scholar 

  • Kupwade, R. V., & Langade, A. D. (2013). Pre and post monsoon monitoring of ground water quality in region near Kupwad MIDC, Sangli, Maharashtra. International Journal of Chem Tech Research, 5(5), 291–294.

    Google Scholar 

  • Lee, S., & Lee, C. W. (2015). Application of decision-tree model to groundwater productivity-potential mapping. Sustainability, 7(10), 13416–13432.

    Article  Google Scholar 

  • Lee, S., Hong, S. M., & Jung, H. S. (2018). GIS-based groundwater potential mapping using artificial neural network and support vector machine models: The case of Boryeong city in Korea. Geocarto International, 33(8), 847–861.

    Article  Google Scholar 

  • Lyu, H. M., Zhou, W. H., Shen, S. L., & Zhou, A. N. (2020). Inundation risk assessment of metro system using AHP and TFN-AHP in Shenzhen. Sustainable Cities and Society, 56, 102103.

    Article  Google Scholar 

  • Machiwal, D., & Jha, M. K. (2014). Characterizing rainfall–groundwater dynamics in a hard-rock aquifer system using time series, geographic information system and geostatistical modelling. Hydrological Processes, 28(5), 2824–2843.

    Article  Google Scholar 

  • Machiwal, D., Jha, M. K., & Mal, B. C. (2011). Assessment of groundwater potential in a semiarid region of India using remote sensing, GIS and MCDM techniques. Water Resources Management, 25, 1359–1386. https://doi.org/10.1007/s11269-010-9749-y

    Article  Google Scholar 

  • Madrucci, V., Taioli, F., & de Araújo, C. C. (2008). Groundwater favorability map using GIS multicriteria data analysis on crystalline terrain, Sao Paulo State. Brazil. Journal of Hydrology, 357(3–4), 153–173.

    Article  Google Scholar 

  • Mahmoud, S. H., & Alazba, A. A. (2014). Identification of potential sites for groundwater recharge using a GIS-based decision support system in Jazan region-Saudi Arabia. Water Resources Management, 28(10), 3319–3340.

    Article  Google Scholar 

  • Makonyo, M., & Msabi, M. M. (2021). Identification of groundwater potential recharge zones using GIS-based multi-criteria decision analysis: A case study of semi-arid midlands Manyara fractured aquifer, North-Eastern Tanzania. Remote Sensing Applications: Society and Environment, 23, 100544.

    Article  Google Scholar 

  • Malczewski, J. (2006). GIS-based multicriteria decision analysis: A survey of the literature. International Journal of Geographical Information Science, 20(7), 703–726.

    Article  Google Scholar 

  • Mandal, U., Sahoo, S., Munusamy, S. B., Dhar, A., Panda, S. N., Kar, A., & Mishra, P. K. (2016). Delineation of groundwater potential zones of coastal groundwater basin using multi-criteria decision making technique. Water Resources Management, 30(12), 4293–4310.

    Article  Google Scholar 

  • Mende, A., Astorga, A., & Neumann, D. (2007). Strategy for groundwater management in developing countries: A case study in northern Costa Rica. Journal of Hydrology, 334(1–2), 109–124.

    Article  Google Scholar 

  • Milovanovic, M. (2007). Water quality assessment and determination of pollution sources along the Axios/Vardar River. Southeastern Europe. Desalination, 213(1–3), 159–173.

    CAS  Google Scholar 

  • Mogaji, K. A., Lim, H. S., & Abdullah, K. (2015). Regional prediction of groundwater potential mapping in a multifaceted geology terrain using GIS-based Dempster-Shafer model. Arabian Journal of Geosciences, 8(5), 3235–3258.

    Article  Google Scholar 

  • Moges, D. M., Bhat, H. G., & Thrivikramji, K. P. (2019). Investigation of groundwater resources in highland Ethiopia using a geospatial technology. Modeling Earth Systems and Environment, 5(4), 1333–1345.

    Article  Google Scholar 

  • Mondal, P., & Dalai, A. K. (Eds.). (2017). Sustainable utilization of natural resources. CRC Press.

  • Moodley, T., Seyam, M., Abunama, T., & Bux, F. (2022). Delineation of groundwater potential zones in KwaZulu-Natal, South Africa using remote sensing, GIS and AHP. Journal of African Earth Sciences, 193, 104571.

    Article  Google Scholar 

  • Morbidelli, R., Saltalippi, C., Flammini, A., Cifrodelli, M., Corradini, C., & Govindaraju, R. S. (2015). Infiltration on sloping surfaces: Laboratory experimental evidence and implications for infiltration modeling. Journal of Hydrology, 523, 79–85.

    Article  Google Scholar 

  • Mukherjee, P., Singh, C. K., & Mukherjee, S. (2012). Delineation of groundwater potential zones in arid region of India—A remote sensing and GIS approach. Water Resources Management, 26, 2643–2672.

    Article  Google Scholar 

  • Murmu, P., Kumar, M., Lal, D., Sonker, I., & Singh, S. K. (2019). Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand. India. Groundwater for Sustainable Development, 9, 100239.

    Article  Google Scholar 

  • Muthu, K., & Sudalaimuthu, K. (2021). Integration of Remote Sensing, Gis, and Ahp in Demarcating Groundwater Potential Zones in Pattukottai Taluk, Tamilnadu. India. Arab. J. Geosci., 14, 1–18.

    Google Scholar 

  • Nampak, H., Pradhan, B., & Abd Manap, M. (2014). Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. Journal of Hydrology, 513, 283–300.

    Article  Google Scholar 

  • NBSS & LUP - National Bureau of Soil Survey & Land Use Planning (2015). Haryana soils. Retrieved September 15, 2022, from https://nbsslup.icar.gov.in/

  • Pai D.S., Latha Sridhar, Rajeevan M., Sreejith O.P., Satbhai N.S. and Mukhopadhyay B., 2014: Development of a new high spatial resolution (0.25° X 0.25°)Long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region; MAUSAM, 65, 1(January 2014), pp1–18.

  • Pande, C. B., Khadri, S. F. R., Moharir, K. N., & Patode, R. S. (2018). Assessment of groundwater potential zonation of Mahesh River basin Akola and Buldhana districts, Maharashtra, India using remote sensing and GIS techniques. Sustainable Water Resources Management, 4(4), 965–979.

    Article  Google Scholar 

  • Pandey, S. K., & Tiwari, S. (2009). Physico-chemical analysis of ground water of selected area of Ghazipur city-A case study. Nature and Science, 7(1), 17–20.

    Google Scholar 

  • Patra, S., Mishra, P., & Mahapatra, S. C. (2018). Delineation of groundwater potential zone for sustainable development: A case study from Ganga Alluvial Plain covering Hooghly district of India using remote sensing, geographic information system and analytic hierarchy process. Journal of Cleaner Production, 172, 2485–2502.

    Article  Google Scholar 

  • Phien-wej, N., Giao, P. H., & Nutalaya, P. (2006). Land subsidence in Bangkok, Thailand. Engineering Geology, 82(4), 187–201.

    Article  Google Scholar 

  • Pourtaghi, Z. S., & Pourghasemi, H. R. (2014). GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province. Iran. Hydrogeology Journal, 22(3), 643–662.

    Article  Google Scholar 

  • Pradeep, G., & Krishan, G. (2022). Groundwater and agriculture potential mapping of Mewat District, Haryana. India. Discover Water, 2(1), 11.

    Article  Google Scholar 

  • Priya, U., Iqbal, M. A., Salam, M. A., Nur-E-Alam, M., Uddin, M. F., Islam, A. R. M. T., & Rak, A. E. (2022). Sustainable groundwater potential zoning with integrating GIS, remote sensing, and AHP model: A case from North-Central Bangladesh. Sustainability, 14(9), 5640.

  • Thapa, R., Gupta, S., Gupta, A., Reddy, D. V., & Kaur, H. (2018). Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin. Birbhum.

    Book  Google Scholar 

  • Radulović, M., Brdar, S., Mesaroš, M., Lukić, T., Savić, S., Basarin, B., & Pavić, D. (2022). Assessment of groundwater potential zones using GIS and fuzzy AHP techniques—A case study of the Titel Municipality (Northern Serbia). ISPRS International Journal of Geo-Information, 11(4), 257.

  • Rao, S. V. N., & Manju, S. (2007). Optimal pumping locations of skimming wells. Hydrological Sciences Journal, 52(2), 352–361.

    Article  Google Scholar 

  • Rather, A. F., Ahmed, R., Wani, G. F., Ahmad, S. T., Dar, T., Javaid, S., & Ahmed, P. (2022). Mapping of groundwater potential zones in Pohru Watershed of Jhelum Basin-Western Himalaya, India using integrated approach of remote sensing. GIS and AHP. Earth Science Informatics, 15(4), 2091–2107.

    Article  Google Scholar 

  • Rejith, R. G., Anirudhan, S., Sundararajan, M. (2019). Delineation of groundwater potential zones in hard rock terrain using integrated remote sensing, GIS and MCDM techniques: A case study from Vamanapuram River basin, Kerala, India. In GIS and Geostatistical Techniques for Groundwater Science; Elsevier: Amsterdam, The Netherlands,; pp. 349–364. ISBN 9780128154137.

  • Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature, 460(7258), 999–1002.

    Article  CAS  Google Scholar 

  • Roy, A., Keesari, T., Pant, D., Rai, G., Sinha, U. K., Mohokar, H., & Sharma, D. A. (2022a). Unravelling 30 ka recharge history of an intensely exploited multi-tier aquifer system in North West India through isotopic tracers–Implications on deep groundwater sustainability. Science of The Total Environment, 807, 151401.

  • Roy, S., Bose, A., & Mandal, G. (2022b). Modeling and mapping geospatial distribution of groundwater potential zones in Darjeeling Himalayan region of India using analytical hierarchy process and GIS technique. Modeling Earth Systems and Environment, 8(2), 1563–1584.

    Article  Google Scholar 

  • Rudolf, B., & Rubel, F. (2005). Global precipitation (Part 2/3). Landolt Börnstein, 6, 28.

    Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process: Planning, priority setting, resource allocation. McGraw-Hill International Book Co.

    Google Scholar 

  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98.

    Article  Google Scholar 

  • Saha, D., Dhar, Y. R., & Vittala, S. S. (2010). Delineation of groundwater development potential zones in parts of marginal Ganga Alluvial Plain in South Bihar. Eastern India. Environmental Monitoring and Assessment, 165(1), 179–191.

    Article  CAS  Google Scholar 

  • Sajil Kumar, P. J., Elango, L., & Schneider, M. (2022). GIS and AHP based groundwater potential zones delineation in Chennai River Basin (CRB). India. Sustainability, 14(3), 1830.

    Article  Google Scholar 

  • Kom, B., Gurugnanam, K.P., & Sunitha, V. (2022). Delineation of groundwater potential zones using GIS and AHP techniques in Coimbatore district, South India. International Journal of Energy and Water Resources, 1–25.

  • Saranya, T., & Saravanan, S. (2020). Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamil Nadu. India. Modeling Earth Systems and Environment, 6(2), 1105–1122.

    Article  Google Scholar 

  • Scanlon, B. R., Keese, K. E., Flint, A. L., Flint, L. E., Gaye, C. B., Edmunds, W. M., & Simmers, I. (2006). Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes: An International Journal, 20(15), 3335–3370.

    Article  CAS  Google Scholar 

  • Sedhuraman, M., Revathy, S. S., & Babu, S. S. (2014). Integration of geology and geomorphology for groundwater assessment using remote sensing and GIS techniques. International Journal of Innovative Research in Science, Engineering and Technology, 3(3), 71–85.

    Google Scholar 

  • Senanayake, I. P., Dissanayake, D. M. D. O. K., Mayadunna, B. B., & Weerasekera, W. L. (2016). An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geoscience Frontiers, 7(1), 115–124.

    Article  Google Scholar 

  • Senapati, U., & Das, T. K. (2022). GIS-based comparative assessment of groundwater potential zone using MIF and AHP techniques in Cooch Behar district, West Bengal. Applied Water Science, 12(3), 43.

    Article  Google Scholar 

  • Shekhar, S. (2006). An approach to interpretation of step drawdown tests. Hydrogeology Journal, 14(6), 1018–1027.

    Article  Google Scholar 

  • Shekhar, S., & Pandey, A. C. (2015). Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques. Geocarto International, 30(4), 402–421.

    Article  Google Scholar 

  • Shekhar, S., & Prasad, R. K. (2009). The groundwater in the Yamuna flood plain of Delhi (India) and the management options. Hydrogeology Journal, 17(7), 1557–1560.

    Article  Google Scholar 

  • Siddik, M. S., Tulip, S. S., Rahman, A., Islam, M. N., Haghighi, A. T., & Mustafa, S. M. T. (2022). The impact of land use and land cover change on groundwater recharge in northwestern Bangladesh. Journal of Environmental Management, 315, 115130.

    Article  Google Scholar 

  • Sikdar, P. K., Chakraborty, S., Adhya, E., & Paul, P. K. (2004). Land use/land cover changes and groundwater potential zoning in and around Raniganj coal mining area, Bardhaman District, West Bengal: A GIS and remote sensing approach. Journal of Spatial Hydrology, 4(2), 1–24.

    Google Scholar 

  • Singh, A. (2014). Groundwater resources management through the applications of simulation modeling: A review. Science of the Total Environment, 499, 414–423.

    Article  CAS  Google Scholar 

  • Singh, A., Panda, S. N., Kumar, K. S., & Sharma, C. S. (2013). Artificial groundwater recharge zones mapping using remote sensing and GIS: A case study in Indian Punjab. Environmental Management, 52, 61–71.

    Article  Google Scholar 

  • Singh, L. K., Jha, M. K., & Chowdary, V. M. (2018). Assessing the accuracy of GIS-based multi-criteria decision analysis approaches for mapping groundwater potential. Ecological Indicators, 91, 24–37.

    Article  Google Scholar 

  • Statistical Abstract of Haryana. (2013). Retrieved June 17, 2022, from esaharyana.gov.in/en-us/State-Statistical-Abstract-of-Haryana

  • Swain, A. K. (2015). Delineation of groundwater potential zones in Coimbatore district, Tamil Nadu, using Remote sensing and GIS techniques. Int J Eng Res Gen Sci, 3(6), 203–214.

    Google Scholar 

  • Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., & Treidel, H. (2013). Ground water and climate change. Nature Climate Change, 3(4), 322–329.

    Article  Google Scholar 

  • Thapa, R., Gupta, S., Guin, S., & Kaur, H. (2017). Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: A case study from Birbhum district. West Bengal. Applied Water Science, 7(7), 4117–4131.

    Article  Google Scholar 

  • Uc Castillo, J. L., Martínez Cruz, D. A., Ramos Leal, J. A., Tuxpan Vargas, J., Rodríguez Tapia, S. A., & Marín Celestino, A. E. (2022). Delineation of groundwater potential zones (GWPZs) in a semi-arid basin through remote sensing, GIS, and AHP approaches. Water, 14(13), 2138.

    Article  CAS  Google Scholar 

  • USGS- United States Geological Survey (.gov). (2020). EarthExplorer. Retrieved August 5, 2021, from https://earthexplorer.usgs.gov

  • Waikar, M. L., & Nilawar, A. P. (2014). Identification of groundwater potential zone using remote sensing and GIS technique. International Journal of Innovative Research in Science, Engineering and Technology, 3(5), 12163–12174.

    Google Scholar 

  • Wieland, M., & Pittore, M. (2017). A spatio-temporal building exposure database and information life-cycle management solution. ISPRS International Journal of Geo-Information, 6(4), 114.

    Article  Google Scholar 

  • Zaidi, F. K., Nazzal, Y., Ahmed, I., Naeem, M., & Jafri, M. K. (2015). Identification of potential artificial groundwater recharge zones in Northwestern Saudi Arabia using GIS and Boolean logic. Journal of African Earth Sciences, 111, 15.

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their gratitude to the Department of Environment Studies, Panjab University, Chandigarh, for providing necessary lab facilities.

Funding

First author is thankful to for providing UGC (SRF) Fellowship to conduct this work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Syed Nasir u din, Madhuri Sharma Rishi, Lakhvinder Kaur and Amrik Singh Ahluwalia; field investigation: Syed Nasir u din; methodology: Syed Nasir u din, Lakhvinder Kaur and Neelam Sidhu; formal analysis and software: Syed Nasir u din and Lakhvinder Kaur; writing original draft: Syed Nasir u din and Lakhvinder Kaur; writing, review and editing: Syed Nasir u din; Madhuri Sharma Rishi; Neelam Sidhu; final review: Madhuri Sharma Rishi and Amrik Singh Ahluwalia.

Corresponding author

Correspondence to Madhuri S. Rishi.

Ethics declarations

Ethics approval

This research does not involve human participants and/or animals and no ethical approval is required.

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

din, S.N.u., Rishi, M.S., Kaur, L. et al. Mapping and identification of potential groundwater development zones of an alluvial aquifer in parts of Ghaggar and Upper Yamuna basins in India. Environ Monit Assess 195, 973 (2023). https://doi.org/10.1007/s10661-023-11579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11579-x

Keywords

Navigation