Skip to main content

Advertisement

Log in

Identification for the species of aquatic higher plants in the Taihu Lake basin based on hyperspectral remote sensing

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Aquatic plants are crucial for aquatic ecosystems and their species and distribution reflect aquatic ecosystem health. Remote sensing technology has been used to monitor plant distributions over large scales. However, the fine identification of the species of aquatic higher plants is challenging due to large temporal-spatial changes in optical water body properties and small spectral differences among plant species. Here, an aquatic plant identification method was developed by constructing a decision tree file in the C4.5 algorithm based on the canopy spectra of eight plants in the Changguangxi Wetland water area from hyperspectral remote sensing technology. The method was used to monitor the distribution of different plants in the Changguangxi Wetland area and two other water areas. The results showed that the spectral characteristics of plants were enhanced by calculating their spectral index, thereby improving the comparability among different species. The total recognition accuracy of the constructed decision tree file for eight types of plants was 85.02%. Nymphaea tetragona, Pontederia cordata, and Nymphoides peltatum had the highest recognition accuracy and Eichhornia crassipes was the lowest. The specific species and distributions of aquatic plants were consistent with the water quality in the area. The results can provide a reference for the accurate identification of aquatic plants in the same type of water area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aasen, H., Burkart, A., Bolten, A., & Bareth, G. (2015). Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 245–259.

    Article  Google Scholar 

  • Aguirre-Rubi, J., Luna-Acosta, A., Ortiz-Zarragoitia, M., Zaldibar, B., Izagirre, U., Ahrens, M. J., Villamil, L., & Marigomez, I. (2018). Assessment of ecosystem health disturbance in mangrove-lined Caribbean coastal systems using the oyster Crassostrea rhizophorae as sentinel species. Science of the Total Environment, 618, 718–735.

    Article  CAS  Google Scholar 

  • Aguirre, A. A., & Lutz, P. (2004). Marine turtles as sentinels of ecosystem health: Is Fibropapillomatosis an indicator? EcoHealth, 1(3), 275–283.

    Google Scholar 

  • Al-lami, A. K., Abbood, R. A., Al Maliki, A. A., & Al-Ansari, N. (2021). Using vegetation indices for monitoring the spread of Nile Rose plant in the Tigris River within Wasit province, Iraq. Remote Sensing Applications: Society and Environment, 22, 100471.

    Article  Google Scholar 

  • Asner, G. P. (1998). Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment, 64, 234–253.

    Article  Google Scholar 

  • Atapaththu, K. S. S., Parveen, M., Asaeda, T., & Rashid, M. H. (2018). Growth and oxidative stress response of aquatic macrophyte Myriophyllum spicatum to sediment anoxia. Fundamental and Applied Limnology, 191(4), 289–298.

    Article  Google Scholar 

  • Bornette, G., & Puijalon, S. (2010). Response of aquatic plants to abiotic factors: A review. Aquatic Sciences, 73(1), 1–14.

    Article  Google Scholar 

  • Breine, J., Quataert, P., Stevens, M., Ollevier, F., Volckaert, F. A., Van den Bergh, E., & Maes, J. (2010). A zone-specific fish-based biotic index as a management tool for the Zeeschelde estuary (Belgium). Marine Pollution Bulletin, 60(7), 1099–1112.

    Article  CAS  Google Scholar 

  • Cao, Q., Yang, G., Wang, F., Chen, L., Xu, B., Zhao, C., Duan, D., Jiang, P., Xu, Z., & Yang, H. (2022). Discrimination of tea plant variety using in-situ multispectral imaging system and multi-feature analysis. Computers and Electronics in Agriculture, 202, 107360.

    Article  Google Scholar 

  • Chapman, P. M. (2015). Future challenges for marine pollution monitoring and assessment. Marine Pollution Bulletin, 95(1), 1–2.

    Article  CAS  Google Scholar 

  • Chen, L., & Shun, Y. (2018). Comparison of object-oriented romote sensing image classification based on different decision trees in forest area. Chinese Journal of Applied Ecology, 29(12), 3995–4003.

    Google Scholar 

  • Chen, Y., Qin, B., Teubner, K., & Dokulil, M. T. (2003). Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. Journal of Plankton Research, 25(4), 445–453.

    Article  Google Scholar 

  • Ciadamidaro, S., Mancini, L., & Rivosecchi, L. (2016). Black flies (Diptera, Simuliidae) as ecological indicators of stream ecosystem health in an urbanizing area (Rome, Italy). Annali Dellistituto Superiore Di Sanita, 52(2), 269–276.

    Google Scholar 

  • Cui, L., Zuo, X., Dou, Z., Huang, Y., Zhao, X., Zhai, X., Lei, Y., Li, J., Pan, X., & Li, W. (2021). Plant identification of Beijing Hanshiqiao wetland based on hyperspectral data. Spectroscopy Letters, 54(5), 381–394.

    Article  CAS  Google Scholar 

  • De Raadt, A., Warrens, M. J., Bosker, R. J., & Kiers, H. A. L. (2019). Kappa coefficients for missing data. Educational Psychological Measurement, 79(3), 558–576.

    Article  Google Scholar 

  • Deng, L., Sun, J., Chen, Y., Lu, H., Duan, F., Zhu, L., & Fan, T. (2021). M2H-Net: A reconstruction method for hyperspectral remotely sensed imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 323–348.

    Article  Google Scholar 

  • Dierssen, H. M., Ackleson, S. G., Joyce, K. E., Hestir, E. L., Castagna, A., Lavender, S., & McManus, M. A. (2021). Living up to the hype of hyperspectral aquatic remote sensing: Science, resources and outlook. Frontiers in Environmental Science, 9, 649528.

    Article  Google Scholar 

  • Duffy, J. E., Benedetti-Cecchi, L., Trinanes, J., Muller-Karger, F. E., Ambo-Rappe, R., Boström, C., Buschmann, A. H., Byrnes, J., Coles, R. G., Creed, J., Cullen-Unsworth, L. C., Diaz-Pulido, G., Duarte, C. M., Edgar, G. J., Fortes, M., Goni, G., Hu, C., Huang, X., Hurd, C. L., et al. (2019). Toward a coordinated global observing system for seagrasses and marine macroalgae. Frontiers in Marine Science, 6, 317.

    Article  Google Scholar 

  • Fares, A. L. B., Calvão, L. B., Torres, N. R., Gurgel, E. S. C., & Michelan, T. S. (2020). Environmental factors affect macrophyte diversity on Amazonian aquatic ecosystems inserted in an anthropogenic landscape. Ecological Indicators, 113, 106231.

    Article  Google Scholar 

  • Feng, B., Zhang, M., Chen, J., Xu, J., Xiao, B., Zhou, M., & Zhang, M. (2021). Reduction in the phytoplankton index of biotic integrity in riverine ecosystems driven by industrial activities, dam construction and mining: A case study in the Ganjiang River. China. Ecological Indicators, 120, 106907.

    Article  CAS  Google Scholar 

  • Goodwin, K., Caraco, N., & Cole, J. (2008). Temporal dynamics of dissolved oxygen in a floatingleaved macrophyte bed. Freshwater Biology, 53(8), 1632–1641.

    Article  CAS  Google Scholar 

  • Gu, X., Zhang, S., Bai, X., Hu, W., Hu, Y., & Wang, X. (2005). Evolution of community structure of aquatic macrophytes in East Taihu Lake and its wetlands. Acta Ecologica Sinica, 25(7), 1541–1548.

    Google Scholar 

  • Handley, R. J., & Davy, A. J. (2002). Seedling root establishment may limit Najas marina L. to sediments of low cohesive strength. Aquatic Botany, 73(2), 129–136.

    Article  Google Scholar 

  • Hestir, E. L., Khanna, S., Andrew, M. E., Santos, M. J., Viers, J. H., Greenberg, J. A., Rajapakse, S. S., & Ustin, S. L. (2008). Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem. Remote Sensing of Environment, 112(11), 4034–4047.

    Article  Google Scholar 

  • Hopper, J. V., Pratt, P. D., Reddy, A. M., McCue, K. F., Rivas, S. O., & Grosholz, E. D. (2021). Abiotic and biotic influences on the performance of two biological control agents, Neochetina bruchi and N. eichhorniae, in the Sacramento-San Joaquin River Delta, California (USA). Biological Control, 153, 104495.

    Article  CAS  Google Scholar 

  • Hou, Y., Kong, F., Li, Y., Xi, M., & Yu, Z. (2020). Key factors of the studies on benthic macroinvertebrate in coastal wetlands: Methods and biodiversity. Ecohydrology & Hydrobiology, 20(3), 424–436.

    Article  Google Scholar 

  • James, R. T., Havens, K., Zhu, G., & Qin, B. (2009). Comparative analysis of nutrients, chlorophyll and transparency in two large shallow lakes (Lake Taihu, P.R. China and Lake Okeechobee, USA). Hydrobiologia, 627(1), 211–231.

    Article  CAS  Google Scholar 

  • Jayaweera, M. W., & Kasturiarachchi, J. C. (2004). Removal of nitrogen and phosphorus from industrial wastewaters by phytoremediation using water hyacinth (Eichhornia crassipes (Mart.) Solms). Water Science and Technology, 50(6), 217–225.

    Article  CAS  Google Scholar 

  • Jenny, J.-P., Anneville, O., Arnaud, F., Baulaz, Y., Bouffard, D., Domaizon, I., Bocaniov, S. A., Chèvre, N., Dittrich, M., Dorioz, J.-M., Dunlop, E. S., Dur, G., Guillard, J., Guinaldo, T., Jacquet, S., Jamoneau, A., Jawed, Z., Jeppesen, E., Krantzberg, G., et al. (2020). Scientists’ warning to humanity: Rapid degradation of the world’s large lakes. Journal of Great Lakes Research, 46(4), 686–702.

    Article  Google Scholar 

  • Jiang, H., Zhao, D., Cai, Y., & An, S. (2012). A method for application of classification tree models to map aquatic vegetation using remotely sensed images from different sensors and dates. Sensors, 12(9), 12437–12454.

    Article  Google Scholar 

  • Jin, X., Yan, C., & Xu, Q. (2007). The community features of aquatic plants and influence factors of lakeside zone in the north of Lake Taihu. Joural of Lake Sciences, 19(2), 151–157.

    Article  Google Scholar 

  • Juttner, I., Chimonides, P. J., & Ormerod, S. J. (2010). Using diatoms as quality indicators for a newly-formed urban lake and its catchment. Environmental Monitoring and Assessment, 162(1-4), 47–65.

    Article  CAS  Google Scholar 

  • Khim, J. S., Wang, T., & Snyder, S. A. (2017). The Yellow Sea ecosystem: Pollution, ecosystem threats, and environmental health. Chemosphere, 182, 794–796.

    Article  CAS  Google Scholar 

  • Lacoul, P., & Freedman, B. (2006). Environmental influences on aquatic plants in freshwater ecosystems. Environmental Reviews, 14(2), 89–136.

    Article  Google Scholar 

  • Li, J., Wu, D., Wu, Y., Liu, H., Shen, Q., & Zhang, H. (2009). Identification of algae-bloom and aquatic macrophytes in Lake Taihu from in-situ measured spectra data. Journal of Lake Sciences, 21(2), 215–222.

    Article  CAS  Google Scholar 

  • Li, S., & Wang, X. (2002). The spectral features analysis and quantitative remote sensing advances of inland water quality parameters. Geography and Territorial Research, 18(2), 26–30.

    CAS  Google Scholar 

  • Li, W. (2014). Environmental opportunities and constraints in the reproduction and dispersal of aquatic plants. Aquatic Botany, 118, 62–70.

    Article  Google Scholar 

  • Liu, X. (2013). Effect of screening and water purification of salt tolerance emergent plants. Tianjin University.

    Google Scholar 

  • Liu, X., Liu, X., Wu, L., & Tian, Z. (2019). Diversity in phytoplankton communities: A field test of the intermediate disturbance hypothesis. Ecological Engineering, 129, 54–60.

    Article  Google Scholar 

  • Luo, J., Pu, R., Duan, H., Ma, R., Mao, Z., Zeng, Y., Huang, L., & Xiao, Q. (2020). Evaluating the influences of harvesting activity and eutrophication on loss of aquatic vegetations in Taihu Lake, China. International Journal of Applied Earth Observation and Geoinformation, 87, 102038.

    Article  Google Scholar 

  • Lv, N., & Wang, X. (2013). The application of ecological water filtration systems in urban wetland park design taking the landscape design of Changguangxi River National Urban Wetland Park as an example. Landscape Architecture, 5(5), 92–98.

    Google Scholar 

  • Martinho, F., Nyitrai, D., Crespo, D., & Pardal, M. A. (2015). Efficacy of single and multi-metric fish-based indices in tracking anthropogenic pressures in estuaries: An 8-year case study. Marine Pollution Bulletin, 101(1), 153–162.

    Article  CAS  Google Scholar 

  • McVea, C., & Boyd, C. E. (1975). Effects of waterhyacinth cover on water chemistry, phytoplankton, and fish in ponds. Journal of Environmental Quality, 4, 375–378.

    Article  CAS  Google Scholar 

  • Moiseenko, T. I., Voinov, A. A., Megorsky, V. V., Gashkina, N. A., Kudriavtseva, L. P., Vandish, O. I., Sharov, A. N., Sharova, Y., & Koroleva, I. N. (2006). Ecosystem and human health assessment to define environmental management strategies: The case of long-term human impacts on an Arctic lake. Science of Total Environment, 369(1-3), 1–20.

    Article  CAS  Google Scholar 

  • Nava, V., & Leoni, B. (2021). A critical review of interactions between microplastics, microalgae and aquatic ecosystem function. Water Research, 188, 116476.

    Article  CAS  Google Scholar 

  • NIGL. (1965). Preliminary report on comprehensive investigation of Taihu Lake. Science Press: Beijin.

    Google Scholar 

  • Oeding, S., & Taffs, K. H. (2015). Are diatoms a reliable and valuable bio-indicator to assess sub-tropical river ecosystem health? Hydrobiologia, 758(1), 151–169.

    Article  CAS  Google Scholar 

  • Paillisson, J.-M., & Marion, L. (2011). Water level fluctuations for managing excessive plant biomass in shallow lakes. Ecological Engineering, 37(2), 241–247.

    Article  Google Scholar 

  • Parwin, R., & Paul, K. K. (2019). Efficiency of Eichhornia crassipes in the treatment of raw kitchen wastewater. SN Applied Sciences, 1(4), 381.

    Article  CAS  Google Scholar 

  • Pimentel, D., Lach, L., Zuniga, R., & Morrison, D. (2000). Environmental and economic costs of nonindigenous species in the United States. BioScience, 50, 53–65.

    Article  Google Scholar 

  • Pu, R., Bell, S., & English, D. (2015). Developing hyperspectral vegetation indices for identifying seagrass species and cover classes. Journal of Coastal Research, 313, 595–615.

    Article  Google Scholar 

  • Rai, P. K., & Singh, J. S. (2020). Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecological Indicators, 111, 106020.

    Article  Google Scholar 

  • Reavie, E. D., Edlund, M. B., Andresen, N. A., Engstrom, D. R., Leavitt, P. R., Schottler, S., & Cai, M. (2017). Paleolimnology of the Lake of the Woods southern basin: Continued water quality degradation despite lower nutrient influx. Lake and Reservoir Management, 33(4), 369–385.

    Article  CAS  Google Scholar 

  • Rowan, G. S. L., Kalacska, M., Inamdar, D., Arroyo-Mora, J. P., & Soffer, R. (2021). Multi-scale spectral separability of submerged aquatic vegetation species in a freshwater ecosystem. Frontiers in Environmental Science, 9, 760372.

    Article  Google Scholar 

  • Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413, 591–596.

    Article  CAS  Google Scholar 

  • Scheffer, M., Nes, E. H., & v. (2007). Shallow lakes theory revisited: Various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia, 584(1), 455–466.

    Article  CAS  Google Scholar 

  • Schneider, S. (2007). Macrophyte trophic indicator values from a European perspective. Limnologica-Ecology and Management of Inland Waters, 37(4), 281–289.

    Article  Google Scholar 

  • Shackleton, R. T., Shackleton, C. M., & Kull, C. A. (2019). The role of invasive alien species in shaping local livelihoods and human well-being: A review. Journal of Environmental Management, 229, 145–157.

    Article  Google Scholar 

  • Shao, N., Yang, S., Sun, Y., Gai, Y., Zhao, C., Wang, F., Yin, X., & Dong, B. (2019). Assessing aquatic ecosystem health through the analysis of plankton biodiversity. Marine and Freshwater Research, 70(5), 647–655.

    Article  Google Scholar 

  • Sun, T., Zhao, Y., Liang, R., & Zhang, X. (2012). Study on the reflected and hyperspectral mixed-pixel character of aquatic plants and water. Spectroscopy and Spectral Analysis, 32(2), 449–452.

    Google Scholar 

  • Tabinda, A. B., Arif, R. A., Yasar, A., Baqir, M., Rasheed, R., Mahmood, A., & Iqbal, A. (2019). Treatment of textile effluents with Pistia stratiotes, Eichhornia crassipes and Oedogonium sp. International Journal of Phytoremediation, 21(10), 939–943.

    Article  CAS  Google Scholar 

  • Tagliabue, G., Boschetti, M., Bramati, G., Candiani, G., Colombo, R., Nutini, F., Pompilio, L., Rivera-Caicedo, J. P., Rossi, M., Rossini, M., Verrelst, J., & Panigada, C. (2022). Hybrid retrieval of crop traits from multi-temporal PRISMA hyperspectral imagery. ISPRS J Photogramm Remote Sens, 187, 362–377.

    Article  Google Scholar 

  • Tan, X., Sheldon, F., Bunn, S. E., & Zhang, Q. (2013). Using diatom indices for water quality assessment in a subtropical river, China. Environmental Science and Pollution Research International, 20(6), 4164–4175.

    Article  CAS  Google Scholar 

  • Tian, Y. Q., Yu, Q., Zimmerman, M. J., Flint, S., & Waldron, M. C. (2010). Differentiating aquatic plant communities in a eutrophic river using hyperspectral and multispectral remote sensing. Freshwater Biology, 55, 1658–1673.

    Google Scholar 

  • Vanbelle, S. (2019). Asymptotic variability of (multilevel) multirater kappa coefficients. Statistical Methods in Medical Research, 28(10-11), 3012–3026.

    Article  Google Scholar 

  • Vereecken, H., Baetens, J., Viaene, P., Mostaert, F., & Meire, P. (2006). Ecological management of aquatic plants: Effects in lowland streams. Hydrobiologia, 570(1), 205–210.

    Article  Google Scholar 

  • Villa, P., Bolpagni, R., Pinardi, M., & Toth, V. R. (2021). Leaf reflectance can surrogate foliar economics better than physiological traits across macrophyte species. Plant Methods, 17(1), 115.

    Article  Google Scholar 

  • Villamagna, A. M., & Murphy, B. R. (2010). Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): A review. Freshwater Biology, 55(2), 282–298.

    Article  Google Scholar 

  • Wang, R., Zhu, Y., Li, M., Sun, Y., Zhang, C., & Li, J. (2016). Comparative study of ground synchronous spectral calibration field under different terrain conditions. J Mineral Resources and Geology, 30(4), 662–668.

    Google Scholar 

  • Wang, X., Xu, Q., Xin, Y., Jin, X., Ma, G., & Li, J. (2007). Effects of macrophyte on lake ecosystem. Shandong Science, 20(2), 29-32.

  • Weilong, L., Weiping, H., Yonggen, C., Xiaohong, C., Zhixin, H., Yuwei, C., & Jiang, J. (2007). Temporal and spatial variation of aquatic macrophytes in West Taihu. Lake. Acta Ecologica Sinica, 27(1), 159–170.

    Google Scholar 

  • Wolf, K. L., Blahna, D. J., Brinkley, W., & Romolini, M. (2011). Environmental stewardship footprint research: Linking human agency and ecosystem health in the Puget Sound region. Urban Ecosystems, 16(1), 13–32.

    Article  Google Scholar 

  • Wu, X., Zhang, Z., & Jin, Y. (2019). Physiological mechanism of Eichhornia crassipes in inhibiting the growth of Microcytisaeruginosa. Russian Journal of Plant Physiology, 66(3), 433–439.

    Article  CAS  Google Scholar 

  • Yang, G., & Fang, S. (2016). Improving remote sensing image classification by exploiting adaptive features and hierarchical hybrid decision trees. Remote Sensing Letters, 8(2), 156–164.

    Article  Google Scholar 

  • Ye, C., Li, C., Yu, H., Song, X., Zou, G., & Liu, J. (2011). Study on ecological restoration in near-shore zone of a eutrophic lake, Wuli Bay. Taihu Lake. Ecological Engineering, 37(9), 1434–1437.

    Article  Google Scholar 

  • Ye, C., Yao, L., Deng, A., Liu, G., & Liu, W. (2018). Spatial and seasonal dynamics of water quality, sediment properties and submerged vegetation in a eutrophic lake after ten years of ecological restoration. Wetlands, 38(6), 1147–1157.

    Article  Google Scholar 

  • Yu, H., Wang, L., Liu, C., & Fan, S. (2018). Coverage of native plants is key factor influencing the invasibility of freshwater ecosystems by exotic plants in China. Frontiers in Plant Science, 9, 250.

    Article  Google Scholar 

  • Zeng, Q., Wei, Z., Yi, C., He, Y., & Luo, M. (2022). The effect of different coverage of aquatic plants on the phytoplankton and zooplankton community structures: A study based on a shallow macrophytic lake. Aquatic Ecology, 1–12.

  • Zhang, J., Xie, J., Li, Z., Zhang, X., Wang, G., Zhang, K., Liu, Y., & Xiao, G. (2021). Phytoplankton community structure in Baiyangdian Lake with different submerged macrophyte coverages. Journal of Hydroecology, 42(1), 75–83.

    Google Scholar 

  • Zhang, Y., Jeppesen, E., Liu, X., Qin, B., Shi, K., Zhou, Y., Thomaz, S. M., & Deng, J. (2017). Global loss of aquatic vegetation in lakes. Earth-Science Reviews, 173, 259–265.

    Article  CAS  Google Scholar 

  • Zhang, Z., Zhu, Z., Yuan, M., Li, M., You, G., Chen, L., & Zhu, Y. (2020). Predict sample’s line positions of absorption peaks in terahertz band with the forced radiation intensity of molecular electric dipoles. Optics Communications, 458, 124848.

    Article  CAS  Google Scholar 

  • Zhu, G. (2008). Eutrophic status and causing factors for a large, shallow and subtropicaI Lake Taihu, China. Journal of Lake Science, 20(1), 21–26.

    Article  CAS  Google Scholar 

  • Zhu, K., Wu, Y., Li, C., Xu, J., & Zhang, M. (2020). Ecosystem-based restoration to mitigate eutrophication: A case study in a shallow lake. Water, 12(8), 2141.

    Article  CAS  Google Scholar 

  • Zou, D., & Gao, K. (2009). Photosynthetic acclimation to different light levels in the brown marine macroalga, Hizikia fusiformis (Sargassaceae, Phaeophyta). Journal of Applied Phycology, 22(4), 395–404.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Water Pollution Control and Treatment Science and Technology Major Project of China (No. 2017ZX07204004) and the National Natural Science Foundation of China (21501068).

Author information

Authors and Affiliations

Authors

Contributions

Shichen Mu: formal analysis; methodology; data analysis; writing—original draft preparation. Kai You: methodology, data curation. Ting Song: methodology. Yajie Li: writing—review and editing. Lihong Wang: conceptualization; methodology; supervision; writing—review and editing. Junzhe Shi: supervision, funding acquisition.

Corresponding author

Correspondence to Lihong Wang.

Ethics declarations

Ethics approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, S., You, K., Song, T. et al. Identification for the species of aquatic higher plants in the Taihu Lake basin based on hyperspectral remote sensing. Environ Monit Assess 195, 989 (2023). https://doi.org/10.1007/s10661-023-11523-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11523-z

Keywords

Navigation