Skip to main content
Log in

A survey on constructed wetland publications in the past three decades

  • Review
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Decentralised wastewater treatment systems, such as constructed wetlands, are becoming increasingly popular these days because they are more economical and cost-effective than conventional plants. The primary objective of this review paper is to determine the number of studies that have been conducted on constructed wetlands, specifically ‘free water surface flow constructed wetlands’, ‘horizontal subsurface flow constructed wetlands’, ‘vertical subsurface flow constructed wetlands’, and ‘hybrid constructed wetlands’. In addition, the paper examines the status of research publications on constructed wetlands by country, author, and journal. Based on the review, it has been found that although constructed wetland technology is economical and cost-effective, it is still not among the top 10 effluent treatment methods. Compared to other constructed wetland systems, ‘hybrid constructed wetlands’ have received minimal attention. Based on the search results, 4639 documents published between 1989 and 2021 have been extracted from the online edition of SCI-EXPANDED, Web of Science. The documents associated with constructed wetlands are divided into eight main document types. Articles and proceedings papers are the most common document type, accounting for 93% of all publications, followed by reviews (4%), meeting abstracts (1.3%), corrections (0.56%), editorial materials (0.38%), news items (0.2%), letters (0.04%), and book reviews (0.02%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Not applicable.

References

  • Ajayi, T. O., & Ogunbayio, A. O. (2012). Achieving environmental sustainability in wastewater treatment by phytoremediation with water hyacinth (Eichhornia Crassipes). Journal of Sustain Development, 5(7), 80–90. https://doi.org/10.5539/jsd.v5n7p80

    Article  Google Scholar 

  • Akinbile, C. O., & Yusoff, M. S. (2012). Assessing water hyacinth (Eichhornia crassopes) and lettuce (Pistia stratiotes) effectiveness in aquaculture wastewater treatment. International Journal of Phytoremediation, 14(3), 201–211. https://doi.org/10.1080/15226514.2011.587482

    Article  CAS  Google Scholar 

  • Albuquerque, A., Oliveira, J., Semitela, S., & Amaral, L. (2009). Influence of bed media characteristics on ammonia and nitrate removal in shallow horizontal subsurface flow constructed wetlands. Bioresource Technology, 100(24), 6269–6277. Elsevier.

  • Antoniadis, A., Takavakoglou, V., Zalidis, G., Darakas, E., & Poulios, I. (2010). Municipal wastewater treatment by sequential combination of photocatalytic oxidation with constructed wetlands. Catalysis Today, 151(1–2), 114–118. Elsevier.

  • Aslam, M. M., Malik, M., Baig, M. A., Qazi, I. A., & Iqbal, J. (2007). Treatment performances of compost-based and gravel-based vertical flow wetlands operated identically for refinery wastewater treatment in Pakistan. Ecological Engineering, 30(1), 34–42. Elsevier.

  • Ausland, G., Stevik, T. K., Hanssen, J. F., Køhler, J. C., & Jenssen, P. D. (2002). Intermittent filtration of wastewater—Removal of fecal coliforms and fecal streptococci. Water Research, 36(14), 3507–3516. Elsevier.

  • Ayaz, S. Ç., Aktaş, Ö., Akça, L., & Fındık, N. (2015). Effluent quality and reuse potential of domestic wastewater treated in a pilot-scale hybrid constructed wetland system. Journal of Environmental Management, 156, 115–120. Elsevier.

  • Azeez, N. M., &  Sabbar, A. A. (2012). Efficiency of duckweed (Lemna minor L.) in phytotreatment of wastewater pollutants from Basrah oil refinery. Journal of Applied Phytotechnology in Environmental Sanitation, 1(4), 163–172.

  • Behrends, L., Houke, L., Bailey, E., Jansen, P., & Brown, D. (2001). Reciprocating constructed wetlands for treating industrial, municipal and agricultural wastewater. Water Science and Technology, 44(11–12), 399–405. IWA Publishing.

  • Benyamine, M., Bäckström, M., & Sandén, P. (2004). Multi-objective environmental management in constructed wetlands. Environmental Monitoring and Assessment, 90(1), 171–185. Springer.

  • Biljetina, R., Srivastava, V. J., Chynoweth, D. P., & Hayes, T. (1987). Anaerobic digestion of water hyacinth and sludge. Aquatic plants for water treatment and resource recovery. Magnolia Publishing, Inc.: Orlando, FL.

  • Blom, J. J., & Verhoeven, C. A. (2007). Vertical flow reed bed Leidsche Rijn: First results of the full scale pilot plant investigation. Royal Haskoning.

  • Bojcevska, H., & Tonderski, K. (2007). Impact of loads, season, and plant species on the performance of a tropical constructed wetland polishing effluent from sugar factory stabilization ponds. Ecological Engineering, 29(1), 66–76. Elsevier.

  • Boon, A. (1985). Report of a visit by members and staff of WRc to Germany (GFR) to investigate the root zone method for treatment of waste waters.

  • Boutin, C. (1987). Domestic wastewater treatment in tanks planted with rooted macrophytes: Case study; description of the system; design criteria; and efficiency. Water Science and Technology, 19(10), 29–40. IWA Publishing.

  • Brix, H. (1987). Treatment of wastewater in the rhizosphere of wetland plants–The root-zone method. Water Science and Technology, 19(1–2), 107–118. IWA Publishing.

  • Brix, H., Arias, C. A., & Johansen, N. H. (2003). Experiments in a two-stage constructed wetland system: Nitrification capacity and effects of recycling on nitrogen removal. Wetlands: Nutrients, Metals and Mass Cycling. Backhuys Publishers, Leiden, The Netherlands, 237–258.

  • Bulc, T. G., Ojstršek, A. & Vrhovšek, D. (2006). The use of constructed wetland for textile wastewater treatment.

  • Burka, U., & Lawrence, P. C. (1990). A new community approach to waste treatment with higher water plants. Constructed Wetlands in Water Pollution Control, 359–371. Elsevier.

  • Canak, S., Berezljev, L., Borojevic, K., Asotic, J., & Ketin, S. (2019). Bioremediation and ‘green chemistry’. Fresenius Environmental Bulletin, 28, 3056–3064.

    CAS  Google Scholar 

  • Carleton, J. N., Grizzard, T. J., Godrej, A. N., & Post, H. E. (2001). Factors affecting the performance of stormwater treatment wetlands. Water Research, 35(6), 1552–1562. Elsevier.

  • Caselles-Osorio, A., and J. García. 2007. Impact of different feeding strategies and plant presence on the performance of shallow horizontal subsurface-flow constructed wetlands. Science of the total Environment, 378 (3): 253–262. Elsevier.

  • Casierra-Martinez, H. A., Madera-Parra, C. A., Vargas-Ramírez, X. M., Caselles-Osorio, A., & Torres-López, W. A. (2020). Diclofenac and carbamazepine removal from domestic wastewater using a Constructed Wetland-Solar Photo-Fenton coupled system. Ecological Engineering, 153, 105699. Elsevier.

  • Chang, Y., Wu, S., Zhang, T., Mazur, R., Pang, C., & Dong, R. (2014). Dynamics of nitrogen transformation depending on different operational strategies in laboratory-scale tidal flow constructed wetlands. Science of the Total Environment, 487, 49–56. Elsevier.

  • Chiu, W.-T., & Ho, Y. S. (2007). Bibliometric analysis of tsunami research. Scientometrics, 73(1), 3–17. Akadémiai Kiadó, co-published with Springer Science+ Business Media BV.

  • Chong, H. L. H., Chia, P. S., & Ahmad, M. N. (2013). The adsorption of heavy metal by Bornean oil palm shell and its potential application as constructed wetland media. Bioresource Technology, 130, 181–186. Elsevier.

  • Ciupa, R. (1996). The experience in the operation of constructed wetlands in North-Eastern Poland. Proceedings of Fifth International Conference Wetland Systems for Water Pollution Control, IWA and Universität für Bodenkultur, Vienna, 6.

  • Čížková, H., Vymazal, J., Brix, H., Cooper, P. F., Green, M. B., & Haberl, R. (Eds.). (1998). Constructed wetlands for wastewater treatment in Europe.-Backhuys Publishers, Leiden, 366 pages. ISBN 90-73348-72-2. 1998. International Review of Hydrobiology, 83(5–6), 500.

  • Cooper, P. F., Job, G. D., Green, M. B., & Shutes, R. B. E. (1996). Reed beds and constructed wetlands for wastewater treatment. Water Research Centre Swindon.

  • Cooper, P., Smith, M., & Maynard, H. (1997). The design and performance of a nitrifying vertical-flow reed bed treatment system. Water Science and Technology, 35(5), 215–221. Elsevier.

  • Daud, M. K., Ali, S., Abbas, Z., Zaheer, I. E., Riaz, M. A., Malik, A., ... & Zhu, S. J. (2018). Potential of duckweed (Lemna minor) for the phytoremediation of landfill leachate. Journal of  Chemistry, 2018. https://doi.org/10.1155/2018/3951540.

  • Decamp, O., & Warren, A. (1998). Bacterivory in ciliates isolated from constructed wetlands (reed beds) used for wastewater treatment. Water Research, 32(7), 1989–1996. Elsevier.

  • Decamp, O., Warren, A., & Sanchez, R. (1999). The role of ciliated protozoa in subsurface flow wetlands and their potential as bioindicators. Water Science and Technology, 40(3), 91–98. Elsevier.

  • Dhir, B. (2013). Phytoremediation: Role of aquatic plants in environmental clean-up. Springer.

    Book  Google Scholar 

  • Ding, X., Xue, Y., Zhao, Y., Xiao, W., Liu, Y., & Liu, J. (2018). Effects of different covering systems and carbon nitrogen ratios on nitrogen removal in surface flow constructed wetlands. Journal of Cleaner Production, 172, 541–551. Elsevier.

  • Doherty, L., Zhao, Y., Zhao, X., Hu, Y., Hao, X., Xu, L., & Liu, R. (2015). A review of a recently emerged technology: Constructed wetland–microbial fuel cells. Water Research, 85, 38–45. Elsevier.

  • Drayer, A. N., & Richter, S. C. (2016). Physical wetland characteristics influence amphibian community composition differently in constructed wetlands and natural wetlands. Ecological Engineering, 93, 166–174. Elsevier.

  • EPA, U. (2000). Wastewater technology fact sheet wetlands: Subsurface flow.

  • Faulwetter, J. L., Gagnon, V., Sundberg, C., Chazarenc, F., Burr, M. D., Brisson, J., ... & Stein, O. R. (2009). Microbial processes influencing performance of treatment wetlands: A review. Ecological Engineering, 35(6), 987–1004. Elsevier.

  • Favas, P. J. C., & Pratas, J. (2013). Uptake of uranium by native aquatic plants: Potential for bioindication and phytoremediation. E3S Web of Conferences, 1, 2–4. https://doi.org/10.1051/e3sconf/20130113007.

  • Fu, G., Han, J., Yu, T., Huangshen, L., & Zhao, L. (2019a). The structure of denitrifying microbial communities in constructed mangrove wetlands in response to fluctuating salinities. Journal of  Environmental Management, 238, 1–9. Elsevier.

  • Fu, G., Han, J., Yu, T., Huangshen, L., & Zhao, L. (2019b). The structure of denitrifying microbial communities in constructed mangrove wetlands in response to fluctuating salinities. Journal of  Environmental Management, 238, 1–9. Elsevier.

  • Fu, G., Wu, J., Han, J., Zhao, L., Chan, G., & Leong, K. (2020). Effects of substrate type on denitrification efficiency and microbial community structure in constructed wetlands. Bioresource Technology, 307, 123222. Elsevier.

  • Gao, F., Liu, G., She, Z., Ji, J., Gao, M., Zhao, Y., ... & Jin, C. (2021). Effects of salinity on pollutant removal and bacterial community in a partially saturated vertical flow constructed wetland. Bioresource Technology, 329, 124890. Elsevier.

  • Garcia, J., Rousseau, D. P., Morato, J., Lesage, E. L. S., Matamoros, V., & Bayona, J. M. (2010). Contaminant removal processes in subsurface-flow constructed wetlands: A review. Critical Reviews in Environmental Science Technology, 40(7), 561–661. Taylor & Francis.

  • Ghosh, D., & Gopal, B. (2010). Effect of hydraulic retention time on the treatment of secondary effluent in a subsurface flow constructed wetland. Ecological Engineering, 36(8), 1044–1051. Elsevier.

  • Gill, L. W., Ring, P., Casey, B., Higgins, N. M., & Johnston, P. M. (2017). Long term heavy metal removal by a constructed wetland treating rainfall runoff from a motorway. Science of the Total Environment, 601, 32–44. Elsevier.

  • Giraldo, E., & Zárate, E. (2001). Removal of hydrogen sulphide BOD from brackish water using vertical flow wetlands in a Caribbean environment. Water Science and Technology, 44(11–12), 361–367. IWA Publishing.

  • Gorito, A. M., Ribeiro, A. R. L., Pereira, M. F. R., Almeida, C. M. R., & Silva, A. M. T. (2022). Advanced oxidation technologies and constructed wetlands in aquaculture farms: What do we know so far about micropollutant removal? Environmental Research, 204, 111955. Elsevier.

    Google Scholar 

  • Hadad, H. R., Maine, M. A., & Bonetto, C. A. (2006). Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment. Chemosphere, 63(10), 1744–1753. Elsevier.

  • Hammer, D. A. (2020). Constructed wetlands for wastewater treatment: Municipal, industrial and agricultural. CRC Press.

    Book  Google Scholar 

  • Headley, T. R., Davison, L., & Yeomans, A. (2004). Removal of ammonium-N from landfill leachate by vertical flow wetland: A pilot study. In Proceedings of 9th International Conference on Wetland Systems for Water Pollution Control (pp. 143–150). IWA Publishing.

  • Hernández-Crespo, C., Gargallo, S., Benedito-Durá, V., Nácher-Rodríguez, B., Rodrigo-Alacreu, M. A., & Martín, M. (2017). Performance of surface and subsurface flow constructed wetlands treating eutrophic waters. Science of the Total Environment, 595, 584–593. Elsevier.

  • Herrera-Melián, J. A., Martín-Rodríguez, A. J., Ortega-Méndez, A., Araña, J., Doña-Rodríguez, J. M., & Pérez-Peña, J. (2012). Degradation and detoxification of 4-nitrophenol by advanced oxidation technologies and bench-scale constructed wetlands. Journal of Environmental Management, 105, 53–60. Elsevier.

  • House, C. H., Broome, S. W., Frederick, D. J., & Rubin, A. R. (2000). Vertical flow-horizontal flow constructed wetlands combined treatment system design and performance. Proceeding in 7th International Conference Wetland Systems for Water Pollution Control, University of Florida, Gainesville and International Water Association, London, 1025–1033.

  • Ilyas, H., & Masih, I. (2017). The performance of the intensified constructed wetlands for organic matter and nitrogen removal: A review. Journal of Environmental Management, 198, 372–383. Elsevier.

  • Jing, S. R., Lin, Y. F., Lee, D. Y., & Wang, T. W. (2001). Nutrient removal from polluted river water by using constructed wetlands. Bioresource Technology, 76(2), 131–135. Elsevier.

  • Joseph, C. G., Puma, G. L., Bono, A., & Krishnaiah, D. (2009). Sonophotocatalysis in advanced oxidation process: A short review. Ultrasonics Sonochemistry, 16(5), 583–589. Elsevier.

  • Kadlec, R. H., & Knight, R. L. (1996). Treatment wetlands. Lewis Publ., Boca Raton. Treatment wetlands. Lewis Publication, Boca Raton.

  • Kadlec, R. H., & Wallace, S. (2008). Treatment wetlands. CRC Press.

    Book  Google Scholar 

  • Kadlec, R. H., & Wallace, S. D. (2009). Treatment wetlands. 2nd Edition. CRC Press. Lewis Publishers: New York.

  • Kantawanichkul, S., Neamkam, P., & Shutes, R. B. E. (2001). Nitrogen removal in a combined system: Vertical vegetated bed over horizontal flow sand bed. Water Science and Technology, 44(11–12), 137–142. IWA Publishing.

  • Kantawanichkul, S., Somprasert, S., Aekasin, U., & Shutes, R. B. E. (2003). Treatment of agricultural wastewater in two experimental combined constructed wetland systems in a tropical climate. Water Science and Technology, 48(5), 199–205. IWA publishing.

  • Kapellakis, I. E., Paranychianakis, N. V., Tsagarakis, K. P., & Angelakis, A. N. (2012). Treatment of olive mill wastewater with constructed wetlands. Water (Basel), 4(1), 260–271. Molecular Diversity Preservation International.

  • Kato, K., Inoue, T., Ietsugu, H., Koba, T., Sasaki, H., Miyaji, N., ... & Nagasawa, T. (2010). Design and performance of hybrid reed bed systems for treating high content wastewater in cold climate. 12th International Conference on Wetland Systems for Water Pollution Control.

  • Khajah, M., Bydalek, F., Babatunde, A. O., Al-Matouq, A., Wenk, J., & Webster, G. (2023). Nitrogen removal performance and bacterial community analysis of a multistage step-feeding tidal flow constructed wetland. Frontiers in Water, 5. Frontiers Media.

  • Kickuth, R. (1977). Degradation and incorporation of nutrients from rural wastewaters by plant rhizosphere under limnic conditions. Utilization of Manure by Land Spreading, 335–343. Commission of the European Communities London.

  • Kinsley, C. B., Crolla, A. M., Kuyucak, N., Zimmer, M., & Lafleche, A. (2007). Nitrogen dynamics in a constructed wetland system treating landfill leachate. Water Science and Technology, 56(3), 151–158. IWA Publishing.

  • Koottatep, T., Surinkul, N., Polprasert, C., Kamal, A. S. M., Koné, D., Montangero, A., ... & Strauss, M. (2005). Treatment of septage in constructed wetlands in tropical climate: Lessons learnt from seven years of operation. Water Science and Technology, 51(9), 119–126. IWA Publishing.

  • Kotti, I. P., Gikas, G. D., & Tsihrintzis, V. A. (2010). Effect of operational and design parameters on removal efficiency of pilot-scale FWS constructed wetlands and comparison with HSF systems. Ecological Engineering, 36(7), 862–875. Elsevier.

  • Kumar, M., & Singh, R. (2020). Installation of a bioelectrochemical system as a pre-cleaner in a constructed wetland with higher pollutant loading under continuous mode. Environmental Sciemce (Cambridge), 6(12), 3326–3340. Royal Society of Chemistry.

  • Laouali, G., Dumont, L., Radoux, M., & Vincent, G. (1996). General design and performance of reed and emergent hydrophyte beds for domestic wastewater treatment in Québec, Canada. Proceedings of Fifth International Conference Wetland Systems for Water Pollution Control, IWA and Universität für Bodenkultur, Vienna, 5.

  • Leverenz, H. L., Tchobanoglous, G., & Darby, J. L. (2009). Clogging in intermittently dosed sand filters used for wastewater treatment. Water Research, 43(3), 695–705. Elsevier.

  • Li, C., Wu, S., & Dong, R. (2015). Dynamics of organic matter, nitrogen and phosphorus removal and their interactions in a tidal operated constructed wetland. Journal of Environmental Management, 151, 310–316. Elsevier.

  • Li, H., Ye, J., & Xu, Z. (2008). Influence of alternate operation on clogging in a vertical-flow constructed wetland. Acta Scientiae Circumstantiae, 28(8), 1555–1560.

    CAS  Google Scholar 

  • Lienard, A., Boutin, C., & Esser, D. (1990). Domestic wastewater treatment with emergent hydrophyte beds in France. Constructed Wetlands in Water Pollution Control, 183–192. Elsevier.

  • Lin, Y. F., Jing, S. R., & Lee, D. Y. (2003). The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture. Environmental Pollution, 123(1), 107–113. Elsevier.

  • Lin, Y. F., Jing, S. R., Lee, D. Y., Chang, Y. F., Chen, Y. M., & Shih, K. C. (2005). Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate. Environmental Pollution, 134(3), 411–421. Elsevier.

  • Lin, Y. F., Jing, S. R., Lee, D. Y., & Wang, T. W. (2002). Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture, 209(1–4), 169–184. Elsevier.

  • Lindenblatt, C., & Horn, H. (2007). Planted soil filters with activated pretreatment for compost-place wastewater treatment. Ecohydrology & Hydrobiology, 7(3–4), 215–221. Elsevier.

  • Liu, M., Wu, S., Chen, L., & Dong, R. (2014). How substrate influences nitrogen transformations in tidal flow constructed wetlands treating high ammonium wastewater? Ecological Engineering, 73: 478–486. Elsevier.

    Google Scholar 

  • Mæhlum, T., Warner, W. S., Stålnacke, P.. & Jenssen, P. D. (2018). Leachate treatment in extended aeration lagoons and constructed wetlands in Norway. Constructed Wetlands for the Treatment of Landfill Leachates, 151–163. CRC Press.

  • Mander, Ü., Teiter, S., Kuusemets, V., Lõhmus, K., Oovel, M., Nurk, K., ... & Augustin, L. (2003). Nitrogen and phosphorus budgets in a horizontal subsurface flow wastewater treatment wetland. Proc. Internat. Conf. Constructed and Riverine Wetlands for Optimal Control of Wastewater at Catchment Scale, 136–141. University of Tartu, Institute of Geography, Tartu, Estonia, Publ. Instituti ….

  • Masi, F., Conte, G., Martinuzzi, N., & Pucci, B. (2002). Winery high organic content wastewaters treated by constructed wetlands in Mediterranean climate. Proceedings of the 8th International Conference on Wetland Systems for Water Pollution Control, 274–282. University of Dar-es-Salaam, Tanzania and IWA.

  • McGill, R., Basran, D., & Flindall, R., & Pries, J. (2000). Vertical-flow constructed wetland for the treatment of glycol-laden stormwater runoff at Lester B. Pearson International Airport. In Proceedings of the 7th International ….

  • McKinlay, R. G., & Kasperek, K. (1999). Observations on decontamination of herbicide-polluted water by marsh plant systems. Water Research, 33(2), 505–511. Elsevier.

  • Meng, P., Pei, H., Hu, W., Shao, Y., & Li, Z. (2014). How to increase microbial degradation in constructed wetlands: Influencing factors and improvement measures. Bioresource Technology, 157, 316–326. Elsevier.

  • Michael J. H. Jr. (2003). Nutrients in salmon hatchery wastewater and its removal through the use of a wetland constructed to treat off-line settling pond effluent. Aquaculture, 226(1–4), 213–225. Elsevier.

  • Mishra, S., Mohanty, M., Pradhan, C., Patra, H. K., Das, R., & Sahoo, S. (2013). Physico-chemical assessment of paper mill effluent and its heavy metal remediation using aquatic macrophytes - A case study at JK Paper mill, Rayagada, India. Environmental Monitoring and Assessment, 185(5), 4347–4359. https://doi.org/10.1007/s10661-012-2873-9

    Article  CAS  Google Scholar 

  • Novais, J., & Martins-Dias, S. (2003). Constructed wetlands for industrial wastewater treatment contaminated with nitroaromatic organic compounds and nitrate at very high concentrations. 1st International Seminar on The use of Aquatic Macrophytes for Wastewater Treatment in constructed wetlands, 277–288.

  • Nyakang’o, J. B., & Van Bruggen, J. J. A. (1999). Combination of a well functioning constructed wetland with a pleasing landscape design in Nairobi, Kenya. Water Science and Technology, 40(3), 249–256. Elsevier.

  • Obarska-Pempkowiak, H., Gajewska, M., & Wojciechowska, E. (2007). Application, design and operation of constructed wetland systems: Case studies of systems in the Gdańsk region, Poland. Ecohydrology & Hydrobiology, 7 (3–4), 303–309. Elsevier.

  • Öövel, M., Tooming, A.,Mauring, T., & Mander, Ü. (2007). Schoolhouse wastewater purification in a LWA-filled hybrid constructed wetland in Estonia. Ecological Engineering, 29(1), 17–26. Elsevier.

  • Parde, D., Patwa, A., Shukla, A., Vijay, R., Killedar, D. J., & Kumar, R. (2021). A review of constructed wetland on type, treatment and technology of wastewater. Environmental Technology and Innovation, 21, 101261. Elsevier.

  • Rai, P. K. (2008). Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. International Journal of Phytoremediation, 10(5), 430–439. Taylor & Francis.

  • Reddy, K. R., & D’angelo, E. M. (1990). Biomass yield and nutrient removal by water hyacinth (Eichhornia crassipes) as influenced by harvesting frequency. Biomass, 21(1), 27–42. Elsevier.

  • Reddy, K. R., & DeBusk, W. F. (1985). Growth characteristics of aquatic macrophytes cultured in nutrient-enriched water: II. Azolla, Duckweed, and Salvinia. Economic Botany, 39 (2), 200–208. Springer.

  • Reddy, K. R., & Sutton, D. L. (1984). Waterhyacinths for water quality improvement and biomass production. Journal of Environmental Quality, 13(1), 1–8. Wiley Online Library.

  • Reeb, G., & Werckmann, M. (2005). First performance data on the use of two pilot-constructed wetlands for highly loaded non-domestic sewage. Backhuys Publishers.

    Google Scholar 

  • Rivera, F., Warren, A., Ramirez, E., Decamp, O., Bonilla, P., Gallegos, E., ... & Sánchez, J. T. (1995). Removal of pathogens from wastewaters by the root zone method (RZM). Water Science and Technology, 32(3), 211–218. Elsevier.

  • Runes, H. B., Jenkins, J. J., Moore, J. A., Bottomley, P. J., & Wilson, B. D. (2003). Treatment of atrazine in nursery irrigation runoff by a constructed wetland. Water Research, 37(3), 539–550. Elsevier.

  • Saeed, T., & Sun, G. (2012). A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. Journal of  Environmental Management, 112, 429–448. Elsevier.

  • Saggaï, M. M., Ainouche, A., Nelson, M., Cattin, F., & El Amrani, A. (2017). Long-term investigation of constructed wetland wastewater treatment and reuse: Selection of adapted plant species for metaremediation. Journal of Environmental Management201, 120–128.

  • Saha, P., Shinde, O., & Sarkar, S. (2017). Phytoremediation of industrial mines wastewater using water hyacinth. International Journal of Phytoremediation, 19(1), 87–96. https://doi.org/10.1080/15226514.2016.1216078

    Article  CAS  Google Scholar 

  • Sakurai, K. S. I., Pompei, C. M. E., Tomita, I. N., Santos-Neto, A. J., & Silva, G. H. R. (2021). Hybrid constructed wetlands as post-treatment of blackwater: An assessment of the removal of antibiotics. Journal of Environmental Management278, 111552. Elsevier.

  • Seidel, K. (1965). Neue Wege zur Grundwasseranreicherung in Krefeld, Vol. II. Hydrobotanische Reinigungsmethode. GWF Wasser/Abwasser, 30, 831–833.

  • Seidel, K. (1976). Macrophytes and water purification. University of Pennsylvania Press.

    Book  Google Scholar 

  • Seidel, K. (1978). Gewasserreinigung durch hohere Pflanzen. Garten und Landschaft.

  • Shutes, R. B. E., Revitt, D. M., Mungur, A. S., & Scholes, L. N. L. (1997). The design of wetland systems for the treatment of urban run off. Water Science and Technology35(5), 19–25. Elsevier.

  • Singh, D., Gupta, R., & Tiwari, A. (2012). Potential of duckweed (Lemna minor) for removal of lead from wastewater by phytoremediation. Journal of Pharmacy Research, 5(3), 1578–1582.

    Google Scholar 

  • Srinivasan, D., & Unwin, J. P. (1995). Pulp and paper effluent management. Water Environment Research, 67(4), 531–544. JSTOR.

  • Stefanakis, A. I., Akratos, C. S., & Tsihrintzis, V. A. (2014). Modeling of vertical flow constructed wetlands. Vertical flow constructed wetlands: Eco-engineering systems for wastewater and sludge treatment (1st ed.). Elsevier Publishing.

    Google Scholar 

  • Tao, W., Hall, K., & Hall, E. (2007). Laboratory study on potential mechanisms for treatment of woodwaste leachate in surface flow constructed wetlands. Journal of Environmental Engineering and Science6(1), 85–94. NRC Research Press Ottawa, Canada.

  • Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (1991). Wastewater Engineering. Management, 7(1), 4.

    Google Scholar 

  • Tilley, D. R., Badrinarayanan, H., Rosati, R., & Son, J. (2002). Constructed wetlands as recirculation filters in large-scale shrimp aquaculture. Aquacultural Engineering26(2), 81–109. Elsevier.

  • Tsihrintzis, V. A., & Gikas, G. D. (2010). Constructed wetlands for wastewater and activated sludge treatment in north Greece: A review. Water Science and Technology, 61(10), 2653–2672. IWA Publishing.

  • Tuszyńska, A., & Obarska-Pempkowiak, H. (2008). Dependence between quality and removal effectiveness of organic matter in hybrid constructed wetlands. Bioresource Technology99(14), 6010–6016. Elsevier.

  • Ung, H. T. T., Leu, B. T., Tran, H. T. H., Nguyen, L. N., Nghiem, L. D., Hoang, N. B., ... & Duong, H. C. (2022). Combining flowform cascade with constructed wetland to enhance domestic wastewater treatment. Environmental Technology & Innovation27, 102537. Elsevier.

  • Urbanc-Bercic, O., & Bulc, T. (1995). Integrated constructed wetland for small communities. Water Science and Technology, 32(3), 41–47. Elsevier.

  • Van Eck, N. J., & Waltman, L. (2013). Vosviewer Manual. Leiden: Univeristeit Leiden, 1(1), 1–53.

    Google Scholar 

  • Vymazal, J. (1998). Removal mechanisms and types of constructed wetlands. Constructed wetlands for wastewater treatment in Europe, 17–66. Backhuys Publishers.

  • Vymazal, J. (2001). Types of constructed wetlands for wastewater treatment: Their potential for nutrient removal. Transformations of nutrients in natural and constructed wetlands. Backhuys Publishers: Leiden, The Netherlands.

  • Vymazal, J. (2005). Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecological Engineering, 25(5), 478–490. Elsevier.

  • Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380(1–3), 48–65. Elsevier.

  • Vymazal, J. (2008). Constructed wetlands, surface flow. S. E. Jørgensen and B. D. B. T.-E. of E. Fath, eds., 765–776. Oxford: Academic Press.

  • Vymazal, J. (2010). Constructed wetlands for wastewater treatment. Water (Basel), 2(3), 530–549. Molecular Diversity Preservation International.

  • Vymazal, J. (2013). The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of a recent development. Water Research, 47(14), 4795–4811. Elsevier.

  • Vymazal, J., Brix, H., Cooper, P., Green, M., & Haberl, R. (1998). Constructed wetlands for wastewater treatment in Europe: Backhuys Leiden. Water Environment Research, 67(5), 855–862.

    Google Scholar 

  • Vymazal, J. H. B. (2006). Removal mechanisms and types of constructed wetlands. (December 2013).

  • Wallace, S., Parkin, G., & Cross, C. (2001). Cold climate wetlands: Design and performance. Water Science and Technology, 44(11–12), 259–265. IWA Publishing.

  • Wang, J., Cai, X., Chen, Y., Yang, Y., Liang, M., Zhang, Y., Wang, Z., Li, Q., & Liao, X. (1994). Analysis of the configuration and the treatment effect of constructed wetland wastewater treatment system for different wastewaters in South China. Proceedings 4TH International Conference on Wetland Systems for Water Pollution Control. Guangzhou, China, 114–120.

  • Wang, R., Korboulewsky, N., Prudent, P., Domeizel, M., Rolando, C., & Bonin, G. (2010). Feasibility of using an organic substrate in a wetland system treating sewage sludge: Impact of plant species. Bioresource Technology101(1), 51–57. Elsevier.

  • Wood, A., & Hensman, L. C. (1989). Research to develop engineering guidelines for implementation of constructed wetlands for wastewater treatment in Southern Africa.

  • Yan, Y., & Xu, J. (2014). Improving winter performance of constructed wetlands for wastewater treatment in northern China: A review. Wetlands, 34, 243–253. Springer.

  • Yang, H., Chen, J., Yu, L., Li, W., Huang, X., Qin, Q., & Zhu, S. (2022). Performance optimization and microbial community evaluation for domestic wastewater treatment in a constructed wetland-microbial fuel cell. Environmental Research212, 113249. Elsevier.

  • Ye, Z. H., Lin, Z. Q., Whiting, S. N., De Souza, M. P., & Terry, N. (2003). Possible use of constructed wetland to remove selenocyanate, arsenic, and boron from electric utility wastewater. Chemosphere52(9), 1571–1579. Elsevier.

  • Zhang, H., Tang, W., Wang, W., Yin, W., Liu, H., Ma, X., ... & Zha, J. (2021). A review on China's constructed wetlands in recent three decades: Application and practice. Journal of Environmental Sciences104, 53–68. Elsevier.

  • Zhang, J., Huang, X., Liu, C., Shi, H., & Hu, H. (2005). Nitrogen removal enhanced by intermittent operation in a subsurface wastewater infiltration system. Ecological Engineering25(4), 419–428. Elsevier.

  • Zhang, Y., Liu, F., Lin, Y., Sun, L., Guo, X., Yang, S., & He, J. (2022). Enhanced Swine Wastewater Treatment by Constructed Wetland—Microbial Fuel Cell Systems. Water14(23), 3930. Multidisciplinary Digital Publishing Institute.

  • Zhao, L., Fu, G., Wu, J., Pang, W., & Hu, Z. (2021). Bioaugmented constructed wetlands for efficient saline wastewater treatment with multiple denitrification pathways. Bioresource Technology335, 125236. Elsevier.

  • Zhao, Y., Collum, S., Phelan, M., Goodbody, T., Doherty, L., & Hu, Y. (2013). Preliminary investigation of constructed wetland incorporating microbial fuel cell: batch and continuous flow trials. Chemical Engineering Journal229, 364–370. Elsevier.

  • Zhi, W., Yuan, L., Ji, G., & He, C. (2015). Enhanced long-term nitrogen removal and its quantitative molecular mechanism in tidal flow constructed wetlands. Environmental Science & Technology49(7), 4575–4583. ACS Publications.

  • Zhong, H., Hu, N., Wang, Q., Chen, Y., & Huang, L. (2022). How to select substrate for alleviating clogging in the subsurface flow constructed wetland? Science of the Total Environment, 154529. Elsevier.

    Google Scholar 

  • Ziarati, P., El-Esawi, M., Sawicka, B., Umachandran, K., Mahmoud, A. E. D., Hochwimmer, B., ... & Vambol, V. (2019). Investigation of prospects for phytoremediation treatment of soils contaminated with heavy metals. Journal of Medical Discovery, 4(2), 1–16. E-Discovery Publication Inc.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Suresh Kumar wrote the main manuscript text. Vikramaditya Sangwan reviewed and proofread the manuscript. Manoj Kumar prepared the figures and proofread the manuscript. Surinder Deswal reviewed and proofread the manuscript.

Corresponding author

Correspondence to Suresh Kumar.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Novelty statement: The main objective of this research is to review the different types of constructed wetlands such as free water surface, subsurface flow, horizontal subsurface flow, vertical subsurface flow, and hybrid CWs for wastewater treatment. These findings will help in evaluating constructed wetlands research and its evolution from 1989 to 2021. To achieve these objectives, a science mapping analysis is carried out by using VOSviewer software and Web of Science data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Sangwan, V., Kumar, M. et al. A survey on constructed wetland publications in the past three decades. Environ Monit Assess 195, 992 (2023). https://doi.org/10.1007/s10661-023-11516-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11516-y

Keywords

Navigation