Skip to main content

Advertisement

Log in

Assessing the efficacy of river bank filtration around a check dam in a non-perennial river for rural water supply in southern India

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Ideal locations for bank filtration wells were identified by assessing the efficiency of river bank filtration around a check dam in a non-perennial river located in southern India. The methodology of this study includes water sampling and water level measurements from existing wells, analysis of geochemical and biological parameters, pumping tests and borehole drilling. The conservative chloride and water level measurements indicate that production wells can be positioned up to 300 m from the check dam along the groundwater flow direction. It is recommended that if wells are not receiving 50% surface water contribution, then the production wells must be chosen within 110 m. In addition, the effectiveness of a river bank in improving water quality is evaluated by examining its hydraulic conductivity of 20 to 50 m/day (estimated using borehole data and pumping tests) and travel time and analysed water quality parameters. A significant reduction in microbiological load from surface water is evident even with a short travel time of 46 days. Substantial reduction in turbidity and improved geochemical characteristics were observed in wells located within the production zones which are supported by the Schoeller plot. The above results reveal that for the non-perennial river, in order to achieve maximum benefit through bank filtration, the same well cannot be used as a production well. Based on the water level in the check dam, the direction of groundwater flow and the percentage contribution of the river, it is necessary to shift the production well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

This work does not have any data and materials to share with the journal.

References

  • Anand, C., Akolkar, P., & Chakrabarti, R. (2006). Bacteriological water quality status of river Yamuna in Delhi. Journal of Environmental Biology, 27(1), 97–101.

    Google Scholar 

  • APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington D.C.: American Public Health Association (APHA).

    Google Scholar 

  • ASTM. (2001). Annual Book of ASTM Standards. West Conshohocken, PA 19428–2959.

  • Bartram, J., & Ballance, R. (1996). Water quality monitoring: a practical guide to the design and implementation of freshwater quality studies and monitoring programmes. CRC Press.

    Book  Google Scholar 

  • Beyer, W. (1964). Zur bestimmung der wasserdurchlässigkeit von kiesen und sanden aus der kornverteilungskurve. Wasserwirtschaft Wassertechnik, 14(6), 165–168.

    Google Scholar 

  • BIS. (2012). Indian standard drinking water specification. Second Revision ISO: 10500:2012, Bureau of Indian Standards, Drinking Water Sectional Committee, FAD 25. New Delhi: BIS.

  • Boving, T., Choudri, B. S., Cady, P., Davis, A., Patil, K., & Reddy, V. (2012). Acceptance of a riverbank filtration system in rural India. Journal of American Water Works Association (Special Issue), 33–41.

  • Boving, T. B., Patil, K., D’Souza, F., Barker, S. F., McGuinness, S. L., O’Toole, J., … & Leder, K. (2018). Performance of riverbank filtration under hydrogeologic conditions along the upper Krishna River in southern India. Water, 11(1). https://doi.org/10.3390/w11010012

  • Boving, T. B., Choudri, B. S., Cady, P., Cording, A., Patil, K., & Reddy, V. (2014). Hydraulic and hydrogeochemical characteristics of a riverbank filtration site in rural India. Water Environment Research, 86(7), 636–648.

    Article  CAS  Google Scholar 

  • Bradley, P. M., Barber, L. B., Duris, J. W., Foreman, W. T., Furlong, E. T., Hubbard, L. E., & Kolpin, D. W. (2014). Riverbank filtration potential of pharmaceuticals in a wastewater-impacted stream. Environmental Pollution, 193, 173–180. https://doi.org/10.1016/j.envpol.2014.06.028

    Article  CAS  Google Scholar 

  • Cady, P., Boving, T. B., Choudri, B. S., Cording, A., Patil, K., & Reddy, V. (2013). Attenuation of bacteria at a riverbank filtration site in rural India. Water Environment Research, 85(11), 2164–2174. https://doi.org/10.2175/106143013X13736496909428

    Article  CAS  Google Scholar 

  • Carman, P. C. (1937). Fluid flow through a granular bed. Transactions of the Institution of Chemical Engineers London, 15, 150–156.

    CAS  Google Scholar 

  • Carman, P. C. (1956). Flow of gases through porous media. London, UK: Butterworths.

    Google Scholar 

  • Cheng, C., & Chen, X. (2007). Evaluation of methods for determination of hydraulic properties in an aquifer-aquitard system hydrologically connected to a river. Hydrogeology Journal, 15(4), 669–678. https://doi.org/10.1007/s10040-006-0135-z

    Article  Google Scholar 

  • Chow, V. T. (1952). On the determination of transmissibility and storage coefficients from pumping test data. Eos, Transactions American Geophysical Union, 33(3), 397–404.

    Article  Google Scholar 

  • Dash, R. R., Mehrotra, I., Kumar, P., & Grischek, T. (2008). Lake bank filtration at Nainital, India: water-quality evaluation. Hydrogeology Journal, 16(6), 1089–1099.

    Article  CAS  Google Scholar 

  • Dash, R. R., Prakash, E. V. P. B., Kumar, P., Mehrotra, I., Sandhu, C., & Grischek, T. (2010). River bank filtration in Haridwar, India: removal of turbidity, organics and bacteria. Hydrogeology Journal, 18(4), 973–983.

    Article  Google Scholar 

  • Davis, S. N., Whittemore, D. O., & Fabryka-Martin, J. (1998). Uses of chloride/bromide ratios in studies of potable water. Ground Water, 36(2), 338–350.

    Article  CAS  Google Scholar 

  • Diem, S., Cirpka, O. A., & Schirmer, M. (2013). Modeling the dynamics of oxygen consumption upon riverbank filtration by a stochastic-convective approach. Journal of Hydrology, 505, 352–363. https://doi.org/10.1016/j.jhydrol.2013.10.015

    Article  CAS  Google Scholar 

  • Dillon, P. J., Miller, M., Fallowfield, H., & Hutson, J. (2002). The potential of riverbank filtration for drinking water supplies in relation to microsystin removal in brackish aquifers. Journal of Hydrology, 266(3–4), 209–221. https://doi.org/10.1016/S0022-1694(02)00166-X

    Article  CAS  Google Scholar 

  • Doussan, C., Poitevin, G., Ledoux, E., & Delay, M. (1997). River bank filtration: Modelling of the changes in water chemistry with emphasis on nitrogen species. Journal of Contaminant Hydrology, 25(1–2), 129–156. https://doi.org/10.1016/S0169-7722(96)00024-1

    Article  CAS  Google Scholar 

  • Essl, L., Starkl, M., Kimothi, P. C., Sandhu, C., & Grischek, T. (2014). Riverbank filtration and managed aquifer recharge as alternative water supply technologies for India: Strengths’weaknesses’opportunities’threats analysis. Water Science and Technology: Water Supply, 14(4), 690–697. https://doi.org/10.2166/ws.2014.026

    Article  Google Scholar 

  • Fritz, B., Sievers, J., Eichhorn, S., & Pekdeger, A. (2002). Geochemical and hydraulic investigations of river sediments in a bank filtration system. 4th International Symposium on Artificial Recharge of Groundwater (pp. 95–100). Adelaide: AA Balkema.

    Google Scholar 

  • Ghodeif, K., Grischek, T., Bartak, R., Wahaab, R., & Herlitzius, J. (2016). Potential of river bank filtration (RBF) in Egypt. Environmental Earth Sciences, 75(8), 671.

    Article  Google Scholar 

  • Ghodeif, K., Paufler, S., Grischek, T., Wahaab, R., Souaya, E., Bakr, M., & Abogabal, A. (2018). Riverbank filtration in Cairo, Egypt—part I: Installation of a new riverbank filtration site and first monitoring results. Environmental Earth Sciences, 77(7), 1–11. https://doi.org/10.1007/s12665-018-7450-2

    Article  CAS  Google Scholar 

  • Grischek, T., Schoenheinz, D., & Ray, C. (2003). Siting and design issues for riverbank filtration schemes. Riverbank filtration: improving source-water quality (pp. 291–302). Dordrecht: Springer. https://doi.org/10.1007/0-306-48154-5_15

    Chapter  Google Scholar 

  • Grünheid, S., Amy, G., & Jekel, M. (2005). Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge. Water Research, 39(14), 3219–3228. https://doi.org/10.1016/j.watres.2005.05.030

    Article  CAS  Google Scholar 

  • Hazen, H. A. (1892). The verification of weather forecasts. American Meteorological Journal. A Monthly Review of Meteorology and Allied Branches of Study (1884–1896), 8(9), 392.

  • Hiscock, K. M., & Grischek, T. (2002). Attenuation of groundwater pollution by bank filtration. Journal of Hydrology, 266(3–4), 139–144. https://doi.org/10.1016/S0022-1694(02)00158-0

    Article  CAS  Google Scholar 

  • Hu, B., Teng, Y., Zhai, Y., Zuo, R., Li, J., & Chen, H. (2016). Riverbank filtration in China: A review and perspective. Journal of Hydrology, 541(August), 914–927. https://doi.org/10.1016/j.jhydrol.2016.08.004

    Article  CAS  Google Scholar 

  • Huntscha, S., Rodriguez Velosa, D. M., Schroth, M. H., & Hollender, J. (2013). Degradation of polar organic micropollutants during riverbank filtration: Complementary results from spatiotemporal sampling and push-pull tests. Environmental Science and Technology, 47(20), 11512–11521. https://doi.org/10.1021/es401802z

    Article  CAS  Google Scholar 

  • Kovačević, S., Radišić, M., Laušević, M., & Dimkić, M. (2017). Occurrence and behavior of selected pharmaceuticals during riverbank filtration in the Republic of Serbia. Environmental Science and Pollution Research, 24(2), 2075–2088. https://doi.org/10.1007/s11356-016-7959-4

    Article  CAS  Google Scholar 

  • Kozeny, J. (1927). Uber kapillare Leitung des Wassers im Boden-Aufstieg, Versickerung und Anwendung auf die Bewasserung, Sitzungsberichte der Akademie der Wissenschaften Wien. Mathematisch Naturwissenschaftliche Abteilung, 136, 271-306.

  • Kumar, P., Mehrotra, I., Gupta, A., & Kumari, S. (2018). Riverbank filtration: a sustainable process to attenuate contaminants during drinking water production. Journal of Sustainable Development of Energy, Water and Environment Systems, 6(1), 150–161. https://doi.org/10.13044/j.sdewes.d5.0176

    Article  Google Scholar 

  • Massmann, G., Dünnbier, U., Heberer, T., & Taute, T. (2008). Behaviour and redox sensitivity of pharmaceutical residues during bank filtration–Investigation of residues of phenazone-type analgesics. Chemosphere, 71(8), 1476–1485.

    Article  CAS  Google Scholar 

  • Ministry of Water Resources (MoWR) & Government of India (GOI). (2008). National water mission under national action plan on climate change (pp. 1–471). (December).

  • Parimalarenganayaki, S., Brindha, K., Sankaran, K., & Elango, L. (2015). Effect of recharge from a check dam and river bank filtration on geochemical and microbial composition of groundwater. Arabian Journal of Geosciences, 8(10), 8069–8076. https://doi.org/10.1007/s12517-015-1825-4

    Article  CAS  Google Scholar 

  • Parimalarenganayaki, S., & Elango, L. (2015). Assessment of effect of recharge from a check dam as a method of managed aquifer recharge by hydrogeological investigations. Environmental Earth Sciences, 73(9), 5349–5361. https://doi.org/10.1007/s12665-014-3790-8

    Article  CAS  Google Scholar 

  • Purandara, B. K. (1999). Groundwater quality studies in the Belgaum district. cs/AR-2999–2000.2000. Available online: http://www.indiawaterportal.org/sites/indiawaterportal.org/files/Groundwater%20Qulaity%20Studies%20in%20Belgaum%20District%20_NIH_1999–2000.pdf (accessed on 12 December 2018)

  • Ray, C., Soong, T. W., Lian, Y. Q., & Roadcap, G. S. (2002). Effect of flood-induced chemical load on filtrate quality at bank filtration sites. Journal of Hydrology, 266(3–4), 235–258.

    Article  CAS  Google Scholar 

  • Sandhu, C., & Grischek, T. (2012). Riverbank filtration in India–using ecosystem services to safeguard human health. Water Science and Technology: Water Supply, 12(6), 783–790.

    Google Scholar 

  • Sandhu, C., Grischek, T., Kumar, P., & Ray, C. (2011). Potential for riverbank filtration in India. Clean Technologies and Environmental Policy, 13(2), 295–316.

    Article  Google Scholar 

  • Schmidt, C. K., Lange, F. T., Brauch, H. J.,Kühn, W. (2003). Experiences with riverbank filtration and infiltration in Germany. DVGW-Water Technology Center (TZW), 1–17. https://doi.org/10.1016/j.oooo.2013.06.024

  • Schubert, J. (2002). Hydraulic aspects of riverbank filtration—field studies. Journal of Hydrology, 266(3–4), 145–161. https://doi.org/10.1016/S0022-1694(02)00159-2

    Article  CAS  Google Scholar 

  • Slichter, C. S. (1899). Theoretical investigation of the motion of ground waters. The 19th Ann. Rep. US Geophys Survey., 304-319.

  • Sprenger, C., Lorenzen, G., Hülshoff, I., Grützmacher, G., Ronghang, M., & Pekdeger, A. (2011). Vulnerability of bank filtration systems to climate change. Science of the Total Environment, 409(4), 655–663. https://doi.org/10.1016/j.scitotenv.2010.11.002

    Article  CAS  Google Scholar 

  • Terzaghi, K., Peck, R., & Mesri, G. (1996). Soil mechanics in engineering practice. John Wiley & Sons.

    Google Scholar 

  • Thakur, A. K., Ojha, C. S. P., Singh, V. P., Gurjar, B. R., & Sandhu, C. (2013). Removal of pathogens by river bank filtration at Haridwar. India. Hydrological Processes, 27(11), 1535–1542. https://doi.org/10.1002/hyp.9301

    Article  CAS  Google Scholar 

  • Todd, D. (1980). Ground water hydrology (2nd ed.). Wiley.

    Google Scholar 

  • Tyagi, S., Dobhal, R., Kimothi, P. C., Adlakha, L. K., Singh, P., & Uniyal, D. P. (2013). Studies of river water quality using river bank filtration in Uttarakhand, India. Water Quality, Exposure and Health, 5(3), 139–148. https://doi.org/10.1007/s12403-013-0097-z

    Article  CAS  Google Scholar 

  • United Nations World Water Assessment. (2018). Nature-based solutions for water, world water development report.

  • Vuković, M., & Soro, A. (1992). Hydraulics of water wells: theory and application. Water Resources Publications.

    Google Scholar 

  • World bank. (2020). Water in agriculture. https://www.worldbank.org/en/topic/water-in-agriculture

  • World health Organisation (WHO). (2011). Guidelines for drinking-water quality, fourth ed.

  • Zunker, F. (1932). Zeitschrift fur Pflanzenerwehrung.Duengungund Bodenkunde A25:1.

Download references

Funding

The authors thank the Science and Engineering Research Board, Department of Science and Technology, New Delhi, India, for funding this research under the Early Career Research Scheme (Grant number ECR/2016/000840).

Author information

Authors and Affiliations

Authors

Contributions

R Anbuchezhian contributed in conception and design of study, acquisition of data, analysis and interpretation of data and drafting the manuscript. S Parimalarenganayaki contributed in revising the manuscript critically for important intellectual content and approval of the version of the manuscript to be published.

Corresponding author

Correspondence to Parimalarenganayaki S.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The manuscript is original. It has not been published previously by any of the author and even not under the consideration in any other journal at the time of submission.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajendiran, A., S, P. Assessing the efficacy of river bank filtration around a check dam in a non-perennial river for rural water supply in southern India. Environ Monit Assess 195, 883 (2023). https://doi.org/10.1007/s10661-023-11485-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11485-2

Keywords

Navigation