Skip to main content

Advertisement

Log in

From forest floor to tree top: Partitioning of biomass and carbon stock in multiple strata of forest vegetation in Western Himalaya

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The foremost role of forest vegetation in storing biomass and carbon (C) stock constitutes one of the main nature-based solutions to mitigate climate change. In this study, we aimed to quantify biomass and C stock partitioning in multiple vegetation strata (tree, shrub, herb, and ground floor layers) of major forest types in Jammu and Kashmir, Western Himalaya, India. We used a stratified random cluster sampling strategy to collect field data in 96 forest stands of 12 forest types (altitudinal range: 350 to 3450 m) in the study region. We evaluated the degree to which the carbon stock of the entire ecosystem was dependent on the multiple vegetation strata using the Pearson method. Across all the forest types, the average total ecosystem-level biomass was estimated to be 181.95 Mgha−1 (range: 60.64–528.98). Forest strata-wise, the maximum biomass of 172.92 Mgha−1 (range: 50.64-514.97) was found in the tree vegetation, followed by 5.58 Mgha−1 (range: 2.59–8.93) in understory vegetation (shrubs and herbaceous), and 3.44 Mgha−1 (range: 0.97 and 9.14) in the forest floor. The total ecosystem-level biomass showed a peak at mid-elevation coniferous forest types, whereas the lowest was observed in low-elevation broad leaved forest types. At the ecosystem-level, on average, the understory contributed 3% and the forest floor 2% to the total C stock across the forest types. The shrub layer contributed up to 80% of total understory C, with the herbaceous layer accounting for the remaining 20%. The ordination analysis clearly shows that anthropogenic and environmental variables significantly (p ≤ 0.002) influence the forest types’ C stock in the region. Our findings have significant implications for conserving natural forest ecosystems and restoring degraded forest  landscapes in this Himalayan region, which in turn can lead to better carbon sequestration and climate mitigation outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data have already been included in the manuscript.

References 

  • Ramachandra, T. V., Bharath, S., & Vinay, S. (2019). Visualisation of impacts due to the proposed developmental projects in the ecologically fragile regions-Kodagu district. Karnataka. Progress in Disaster Science, 3, 100038.

    Article  Google Scholar 

  • Adhikari, B. S., Rawat, Y. S., & Singh, S. P. (1995). Structure and function of high-altitude forests of central Himalaya I. Dry Matter Dynamics. Annals of Botany, 75(3), 237–248. https://doi.org/10.1006/anbo.1995.1017

    Article  Google Scholar 

  • Ameray, A., Bergeron, Y., Valeria, O., Montoro Girona, M., & Cavard, X. (2021). Forest Carbon Management: A Review of Silvicultural Practices and Management Strategies Across Boreal, Temperate and Tropical Forests. Current Forestry Reports, 7, 245–266. https://doi.org/10.1007/s40725-021-00151-w

    Article  Google Scholar 

  • Amir, M., Liu, X., Ahmad, A., Saeed, S., Mannan, A., & Muneer, M. A. (2018). Patterns of biomass and carbon allocation across chronosequence of chir pine (Pinus roxburghii) forest in Pakistan: Inventory-based estimate. Advances in Meteorology, 2018, 1–8. https://doi.org/10.1155/2018/3095891

    Article  Google Scholar 

  • Anderson, R. G., Canadell, J. G., Randerson, J. T., Jackson, R. B., Hungate, B. A., Baldocchi, D. D., Ban-Weiss, G. A., Bonan, G. B., Caldeira, K., Cao, L., & Diffenbaugh, N. S. (2011). Biophysical considerations in forestry for climate protection. Frontiers in Ecology and the Environment, 9(3), 174–182. https://doi.org/10.1890/090179

    Article  Google Scholar 

  • Baishya, R., & Barik, S. K. (2011). Estimation of tree biomass, carbon pool and net primary production of an old-growth Pinus kesiya Royle ex. Gordon forest in north-eastern India. Annals of Forest Science, 68, 727–736. https://doi.org/10.1007/s13595-011-0089-8

    Article  Google Scholar 

  • Banday, M., Bhardwaj, D. R., & Pala, N. A. (2018). Variation of stem density and vegetation carbon pool in subtropical forests of Northwestern Himalaya. Journal of Sustainable Forestry, 37(4), 389–402. https://doi.org/10.1080/10549811.2017.1416641

    Article  Google Scholar 

  • Bhat, J. A., Kumar, M., Negi, A. K., Todaria, N. P., Malik, Z. A., Pala, N. A., Kumar, A., & Shukla, G. (2020). Species diversity of woody vegetation along altitudinal gradient of the Western Himalayas. Global Ecology and Conservation, 24, 01302. https://doi.org/10.1016/j.gecco.2020.e01302

    Article  Google Scholar 

  • Bhatt, Y. D., Rawat, Y. S., & Singh, S. P. (1994). Changes in ecosystem functioning after replacement of forest by Lantana shrubland in Kumaun Himalaya. Journal of Vegetation Science, 5, 67–70. https://doi.org/10.2307/3235639

    Article  Google Scholar 

  • Brown, S. (2002). Measuring carbon in forests: Current status and future challenges. Environmental Pollution, 116(3), 363–372. https://doi.org/10.1016/S0269-7491(01)00212-3

    Article  CAS  Google Scholar 

  • Brown, S. L., Schroeder, P., & Kern, J. S. (1999). Spatial distribution of biomass in forests of the eastern USA. Forest Ecology and Management, 123(1), 81–90. https://doi.org/10.1016/S0378-1127(99)00017-1

    Article  Google Scholar 

  • Brown, S. (1997). Estimating biomass and biomass change of tropical forests: A primer (FAO Forestry paper 134). Food and Agriculture Organization, Rome, Italy, p. 55.

  • Bustamante, M. M., Roitman, I., Aide, T. M., Alencar, A., Anderson, L. O., Aragão, L., Asner, G. P., Barlow, J., Berenguer, E., Chambers, J., & Costa, M. H. (2016). Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Global Change Biology, 22(1), 92–109. https://doi.org/10.1111/gcb.13087

    Article  Google Scholar 

  • Cairns, M. A., Brown, S., Helmer, E. H., & Baumgardner, G. A. (1997). Root biomass allocation in the world’s upland forests. Oecologia, 111, 1–11. https://doi.org/10.1007/s004420050201

    Article  Google Scholar 

  • Cao, J., Wang, X., Tian, Y., Wen, Z., & Zha, T. (2012). Pattern of carbon allocation across three different stages of stand development of a Chinese pine (Pinus tabulaeformis) forest. Ecological Research, 27(5), 883–892. https://doi.org/10.1007/s11284-012-0965-1

    Article  Google Scholar 

  • Champion, H. G., & Seth, S. K. (1968). A revised survey of the forest types of India. New Delhi: Government of India Publications.

    Google Scholar 

  • Chapin, F. S., Matson, P. A., & Mooney, H. A. (2002). Principles of Terrestrial Ecosystem Ecology. New York, NY: Springer.

    Book  Google Scholar 

  • Dar, D. A., & Sahu, P. (2018). Assessment of biomass and carbon stock in temperate forests of Northern Kashmir Himalaya, India. Proceedings of the International Academy of Ecology and Environmental Sciences, 8(2), 139–150.

    CAS  Google Scholar 

  • Dar, J. A., & Sundarapandian, S. (2015). Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India. Environmental Monitoring and Assessment, 187, 1–17. https://doi.org/10.1007/s10661-015-4299-7

    Article  CAS  Google Scholar 

  • Dar, J. A., Rather, M. Y., Subashree, K., Sundarapandian, S., & Khan, M. L. (2017). Distribution patterns of tree, understorey, and detritus biomass in coniferous and broad-leaved forests of Western Himalaya. India. Journal of Sustainable Forestry, 36(8), 787–805. https://doi.org/10.1080/10549811.2017.1363055

    Article  Google Scholar 

  • De Frenne, P., Lenoir, J., Luoto, M., Scheffers, B. R., Zellweger, F., Aalto, J., Ashcroft, M. B., Christiansen, D. M., Decocq, G., De Pauw, K., & Govaert, S. (2021). Forest microclimates and climate change: Importance, drivers and future research agenda. Global Change Biology, 27(11), 2279–2297. https://doi.org/10.1111/gcb.15569

    Article  CAS  Google Scholar 

  • Di Sacco, A., Hardwick, K. A., Blakesley, D., Brancalion, P. H., Breman, E., CecilioRebola, L., Chomba, S., Dixon, K., Elliott, S., Ruyonga, G., & Shaw, K. (2021). Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Global Change Biology, 27(7), 1328–1348. https://doi.org/10.1111/gcb.15498

    Article  CAS  Google Scholar 

  • FAO. (2020). Global Forest Resources Assessment 2020 (Rome: FAO) (available at: https://doi.org/10.4060/ca8753en)

  • Farooq, T. H., Xincheng, X., Shakoor, A., Rashid, M. H. U., Bashir, M. F., Nawaz, M. F., Kumar, U., Shahzad, S. M. & Yan, W. (2022). Spatial distribution of carbon dynamics and nutrient enrichment capacity in different layers and tree tissues of Castanopsis eyeri natural forest ecosystem. Environmental Science and Pollution Research, 1– 13. https://doi.org/10.1007/s11356-021-16400-1

  • Gairola, S., Sharma, C. M., Ghildiyal, S. K. & Suyal, S. (2011). Live tree biomass and carbon variation along an altitudinal gradient in moist temperate valley slopes of the Garhwal Himalaya (India). Current Science, 100(12), 1862– 1870. https://www.jstor.org/stable/24077557

  • Garkoti, S. C. (2008). Estimates of biomass and primary productivity in a high-altitude maple forest of the west central Himalayas. Ecological Research, 23, 41–49. https://doi.org/10.1007/s11284-007-0355-2

    Article  Google Scholar 

  • Ge, R., He, H., Ren, X., Zhang, L., Yu, G., Smallman, T. L., Zhou, T., Yu, S. Y., Luo, Y., Xie, Z., & Wang, S. (2019). Underestimated ecosystem carbon turnover time and sequestration under the steady state assumption: A perspective from long-term data assimilation. Global Change Biology, 25(3), 938–953. https://doi.org/10.1111/gcb.14547

    Article  Google Scholar 

  • Gogoi, A., Ahirwal, J., & Sahoo, U. K. (2022). Evaluation of ecosystem carbon storage in major forest types of Eastern Himalaya: Implications for carbon sink management. Journal of Environmental Management, 302, 113972. https://doi.org/10.1016/j.jenvman.2021.113972

    Article  CAS  Google Scholar 

  • Haq, S. M., Rashid, I., Khuroo, A. A., Malik, Z. A., & Malik, A. H. (2019). Anthropogenic disturbances alter community structure in the forests of Kashmir Himalaya. Tropical Ecology, 60, 6–15. https://doi.org/10.1007/s42965-019-00001-8

    Article  Google Scholar 

  • Haq, S. M., Calixto, E. S., Rashid, I., Hussain Malik, A., Kumar, M., & Khuroo, A. A. (2022a). Anthropogenic pressure and tree carbon loss in the temperate forests of Kashmir Himalaya. Botany Letters, 169(3), 400–412. https://doi.org/10.1080/23818107.2022.2073259

    Article  CAS  Google Scholar 

  • Haq, S. M., Calixto, E. S., Rashid, I., Srivastava, G., & Khuroo, A. A. (2022b). Tree diversity, distribution and regeneration in major forest types along an extensive elevational gradient in Indian Himalaya: Implications for sustainable forest management. Forest Ecology and Management, 506, 119968. https://doi.org/10.1016/j.foreco.2021.119968

    Article  Google Scholar 

  • Haq, S. M., Rashid, I., Calixto, E. S., Ali, A., Kumar, M., Srivastava, G., Bussmann, R. W., & Khuroo, A. A. (2022c). Unravelling patterns of forest carbon stock along a wide elevational gradient in the Himalaya: Implications for climate change mitigation. Forest Ecology and Management, 521, 120442. https://doi.org/10.1016/j.foreco.2022.120442

    Article  Google Scholar 

  • Haq, S. M., Khuroo, A. A., Malik, A. H., Rashid, I., Ahmad, R., Hamid, M. & Dar, G. H. (2020). Forest ecosystems of Jammu and Kashmir state. In Biodiversity of the Himalaya: Jammu and Kashmir State, 191–208. https://doi.org/10.1007/978-981-32-9174-4_8

  • Harris, N. L., Gibbs, D. A., Baccini, A., Birdsey, R. A., De Bruin, S., Farina, M., Fatoyinbo, L., Hansen, M. C., Herold, M., Houghton, R. A., & Potapov, P. V. (2021). Global maps of twenty-first century forest carbon fluxes. Nature Climate Change, 11(3), 234–240. https://doi.org/10.1038/s41558-020-00976-6

    Article  Google Scholar 

  • IPCC, C.C. (2007). The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 (2007), 113–119.

  • Johnson, M.G. and Kern, J.S. (2002). Quantifying the organic carbon held in forested soils of the United States and Puerto Rico. In The potential of US forest soils to sequester carbon and mitigate the greenhouse effect (pp. 47–72). CRC press. https://doi.org/10.1201/9781420032277

  • Kaushal, S., & Baishya, R. (2021). Stand structure and species diversity regulate biomass carbon stock under major Central Himalayan forest types of India. Ecological Processes, 10, 1–18. https://doi.org/10.1186/s13717-021-00283-8

    Article  Google Scholar 

  • Khan, V. A., Haq, S. M., Yaqoob, U., Bashir, F., & Hassan, M. (2022). Carbon Stock Availability in Forests of the Zabarwan Mountain Range in Kashmir Himalaya. Proceedings of the National Academy of Sciences, India Section b: Biological Sciences, 92(4), 861–867. https://doi.org/10.1007/s40011-022-01381-z

    Article  CAS  Google Scholar 

  • Kothandaraman, S., Dar, J. A., Sundarapandian, S., Dayanandan, S., & Khan, M. L. (2020). Ecosystem-level carbon storage and its links to diversity, structural and environmental drivers in tropical forests of Western Ghats. India. Scientific Reports, 10(1), 13444. https://doi.org/10.1038/s41598-020-70313-6

    Article  CAS  Google Scholar 

  • Kumar, A., & Sharma, M. P. (2015). Estimation of carbon stocks of Balganga Reserved Forest, Uttarakhand, India. Forest Science and Technology, 11, 177–181. https://doi.org/10.1080/21580103.2014.990060

    Article  Google Scholar 

  • Kumar, J. N., Sajish, P. R., Kumar, R. N., & Patel, K. (2011). Biomass and net primary productivity in three different aged Butea forest ecosystems in Western India. Rajasthan. Our Nature, 9(1), 73–82. https://doi.org/10.3126/on.v9i1.5736

    Article  Google Scholar 

  • Kumar, A., Kumar, M., Pandey, R., ZhiGuo, Y., & Cabral-Pinto, M. (2021a). Forest soil nutrient stocks along altitudinal range of Uttarakhand Himalayas: An aid to naturebased climate solutions. Catena, 207, 105667. https://doi.org/10.1016/j.catena.2021.105667

    Article  CAS  Google Scholar 

  • Kumar, M., Kumar, A., Kumar, R., Konsam, B., Pala, N. A., & Bhat, J. A. (2021b). Carbon stock potential in Pinus roxburghii forests of Indian Himalayan regions. Environment, Development and Sustainability, 23, 12463–12478. https://doi.org/10.1007/s10668-020-01178-y

    Article  Google Scholar 

  • Kumari, R., Kumar, A., Saikia, P. & Khan, M.L. (2022). Vulnerability Assessment of the Indian Himalayan Forests in Terms of Biomass Production and Carbon Sequestration Potential in Changing Climatic Conditions. In Handbook of Climate Change Mitigation and Adaptation (pp. 147–161). Cham: Springer International Publishing.

  • Lal, B., & Lodhiyal, L. S. (2015). Vegetation structure, biomass and carbon content in Pinus roxburghii Sarg. Dominant forests of Kumaun Himalaya. Environment & We: An International Journal of Science & Technology, 10, 117–124.

    Google Scholar 

  • Liu, X., Trogisch, S., He, J. S., Niklaus, P. A., Bruelheide, H., Tang, Z., Erfmeier, A., Scherer-Lorenzen, M., Pietsch, K. A., Yang, B., & Kühn, P. (2018). Tree species richness increases ecosystem carbon storage in subtropical forests. Proceedings of the Royal Society B, 285(1885), 20181240. https://doi.org/10.1098/rspb.2018.1240

    Article  CAS  Google Scholar 

  • Lodhiyal, N., & Lodhiyal, L. S. (2003). Biomass and net primary productivity of Bhabar Shisham forests in central Himalaya, India. Forest Ecology and Management, 176(1–3), 217–235. https://doi.org/10.1016/S0378-1127(02)00267-0

    Article  Google Scholar 

  • Ma, W., Liu, Z., Wang, Z., Wang, W., Liang, C., Tang, Y., He, J. S., & Fang, J. (2010). Climate change alters interannual variation of grassland aboveground productivity: Evidence from a 22-year measurement series in the Inner Mongolian grassland. Journal of Plant Research, 123, 509–517. https://doi.org/10.1007/s10265-009-0302-0

    Article  Google Scholar 

  • Mandal, G., & Joshi, S. P. (2015). Estimation of above-ground biomass and carbon stock of an invasive woody shrub in the subtropical deciduous forests of Doon Valley, western Himalaya, India. Journal of Forestry Research, 26, 291–305. https://doi.org/10.1007/s11676-015-0038-8

    Article  CAS  Google Scholar 

  • Mannan, A., Zhongke, F., Khan, T. U., Saeed, S., Amir, M., Khan, M. A., & Badshah, M. T. (2019). Variation in tree biomass and carbon stocks with respect to altitudinal gradient in the Himalayan forests of Northern Pakistan. Journal of Pure and Applied Agriculture, 4(1), 21–28.

    Google Scholar 

  • Mannan, A., Yongxiang, F., Khan, T. U., Nizami, S. M., Mukete, B., Ahmad, A., Amara, U., Liu, J., & Wali Muhammad, M. (2021). Urban growth patterns and forest carbon dynamics in the metropolitan twin cities of Islamabad and Rawalpindi, Pakistan. Sustainability, 13(22), 12842. https://doi.org/10.3390/su132212842

    Article  Google Scholar 

  • Nath, S., Nath, A. J., Sileshi, G. W., & Das, A. K. (2017). Biomass stocks and carbon storage in Barringtonia acutangula floodplain forests in North East India. Biomass and Bioenergy, 98, 37–42. https://doi.org/10.1016/j.biombioe.2017.01.014

    Article  Google Scholar 

  • Nizami, S. M., Mirza, S. N., Livesley, S., Arndt, S., Fox, J. C., Khan, I. A., & Mahmood, T. (2009). Estimating carbon stocks in sub-tropical pine (Pinus roxburghii) forests of Pakistan. Pakistan Journal of Agricultural Sciences, 46(4), 266–270.

    Google Scholar 

  • Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., & Ciais, P. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988–993. https://doi.org/10.1126/science.1201609

    Article  CAS  Google Scholar 

  • Peichl, M., & Arain, M. A. (2006). Above and belowground ecosystem biomass in an age sequence of temperate pine plantation forests. Agricultural and Forest Meteorology, 140, 51–63. https://doi.org/10.1016/j.agrformet.2006.08.004

    Article  Google Scholar 

  • Perugini, L., Pellis, G., Grassi, G., Ciais, P., Dolman, H., House, J. I., Peters, G. P., Smith, P., Günther, D., & Peylin, P. (2021). Emerging reporting and verification needs under the Paris Agreement: How can the research community effectively contribute? Environmental Science & Policy, 122, 116–126. https://doi.org/10.1016/j.envsci.2021.04.012

    Article  Google Scholar 

  • Rana, S., Bargali, K., & Bargali, S. S. (2015). Assessment of plant diversity, regeneration status, biomass and carbon stock in a Central Himalayan cypress forest. International Journal of Biodiversity and Conservation, 7(6), 321–329. https://doi.org/10.5897/IJBC2015.0855

    Article  Google Scholar 

  • Rawat, M., Arunachalam, K., Arunachalam, A., Alatalo, J., & Pandey, R. (2019). Associations of plant functional diversity with carbon accumulation in a temperate forest ecosystem in the Indian Himalayas. Ecological Indicators, 98, 861–868. https://doi.org/10.1016/j.ecolind.2018.12.005

    Article  Google Scholar 

  • Sajad, S., Haq, S. M., Yaqoob, U., Calixto, E. S., & Hassan, M. (2021). Tree composition and standing biomass in forests of the northern part of Kashmir Himalaya. Vegetos, 34(4), 857–866. https://doi.org/10.1007/s42535-021-00234-w

    Article  Google Scholar 

  • Scheller, R. M., Spencer, W. D., Rustigian-Romsos, H., Syphard, A. D., Ward, B. C., & Strittholt, J. R. (2011). Using stochastic simulation to evaluate competing risks of wildfires and fuels management on an isolated forest carnivore. Landscape Ecology, 26, 1491–1504. https://doi.org/10.1007/s10980-011-9663-6

    Article  Google Scholar 

  • Scott, C. E., Monks, S. A., Spracklen, D. V., Arnold, S. R., Forster, P. M., Rap, A., Äijälä, M., Artaxo, P., Carslaw, K. S., Chipperfield, M. P., & Ehn, M. (2018). Impact on short-lived climate forcers increases projected warming due to deforestation. Nature Communications, 9(1), 157. https://doi.org/10.1038/s41467-017-02412-4

    Article  CAS  Google Scholar 

  • Shafiq, M. U., Ramzan, S., Ahmed, P., Mahmood, R., & Dimri, A. P. (2019). Assessment of present and future climate change over Kashmir Himalayas, India. Theoretical and Applied Climatology, 137, 3183–3195.

    Article  Google Scholar 

  • Sharma, C. M., Baduni, N. P., Gairola, S., Ghildiyal, S. K., & Suyal, S. (2010). Tree diversity and carbon stocks of some major forest types of Garhwal Himalaya, India. Forest Ecology and Management, 260(12), 2170–2179. https://doi.org/10.1016/j.foreco.2010.09.014

    Article  Google Scholar 

  • Sheikh, M. A., Kumar, M., Todaria, N. P., & Pandey, R. (2020). Biomass and soil carbon along altitudinal gradients in temperate Cedrus deodara forests in Central Himalaya, India: Implications for climate change mitigation. Ecological Indicators, 111, 106025. https://doi.org/10.1016/j.ecolind.2019.106025

    Article  CAS  Google Scholar 

  • Sheikh, M. A., Kumar, M., Todaria, N. P., Bhat, J. A., Kumar, A., & Pandey, R. (2021). Contribution of Cedrus deodara forests for climate mitigation along altitudinal gradient in Garhwal Himalaya, India. Mitigation and Adaptation Strategies for Global Change, 26, 1–19. https://doi.org/10.1007/s11027-021-09941-w

    Article  Google Scholar 

  • Shukla, G., & Chakravarty, S. (2018). Biomass, primary nutrient and carbon stock in a Sub-Himalayan Forest of West Bengal, India. Journal of Forest and Environmental Science, 34(1), 12–23.

    Google Scholar 

  • Son, Y., Hwang, J. W., Kim, Z. S., Lee, W. K., & Kim, J. S. (2001). Allometry and biomass of Korean pine (Pinus koraiensis) in central Korea. Bioresource Technology, 78(3), 251–255. https://doi.org/10.1016/S0960-8524(01)00012-8

    Article  CAS  Google Scholar 

  • Stegen, J. C., Swenson, N. G., Enquist, B. J., White, E. P., Phillips, O. L., Jørgensen, P. M., Weiser, M. D., Monteagudo Mendoza, A., & Núñez Vargas, P. (2011). Variation in above-ground forest biomass across broad climatic gradients. Global Ecology and Biogeography, 20(5), 744–754. https://doi.org/10.1111/j.1466-8238.2010.00645.x

    Article  Google Scholar 

  • Tang, G., & Li, K. (2013). Tree species controls on soil carbon sequestration and carbon stability following 20 years of afforestation in a valley-type savanna. Forest Ecology and Management, 291, 13–19. https://doi.org/10.1016/j.foreco.2012.12.001

    Article  Google Scholar 

  • Taylor, A. R., Wang, J. R., & Chen, H. Y. (2007). Carbon storage in a chronosequence of red spruce (Picea rubens) forests in central Nova Scotia, Canada. Canadian Journal of Forest Research, 37(11), 2260–2269. https://doi.org/10.1139/X07-080

    Article  CAS  Google Scholar 

  • TeerBraak, C. J. F. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 60–71.

    Google Scholar 

  • Ter Braak C. J. (1990). Update notes: Canoco, version 3.10.

  • UNFCCC. (2011). Report of the Conference of the Parties on its sixteenth session, held in Cancun from 29 November to 10 December 2010. Part one: Proceedings. United Nations Framework Convention for Climate Change. Conference of the Parties, Cancun, Mexico

  • Vaidya, P., Verma, K. S., Bhardwaj, S. K., Brahmi, M. K., Sharma, D. P., & Gupta, R. K. (2017). Allometric models for estimating tree biomass and soil carbon stocks of small scale plantations in subtropical-subtemperate regions of Western Himalayas. Indian Forester, 143(5), 411–416. https://doi.org/10.36808/if/2017/v143i5/114955

    Article  Google Scholar 

  • Vetter, S. (2005). Rangelands at equilibrium and non-equilibrium: Recent developments in the debate. Journal of Arid Environments, 62(2), 321–341. https://doi.org/10.1016/j.jaridenv.2004.11.015

    Article  Google Scholar 

  • Vieira, S., de Camargo, P. B., Selhorst, D., Da Silva, R., Hutyra, L., Chambers, J. Q., Brown, I. F., Higuchi, N., Dos Santos, J., Wofsy, S. C., & Trumbore, S. E. (2004). Forest structure and carbon dynamics in Amazonian tropical rain forests. Oecologia, 140, 468–479. https://doi.org/10.1007/s00442-004-1598-z

    Article  Google Scholar 

  • Wani, A. A., Joshi, P. K., & Singh, O. (2015). Estimating biomass and carbon mitigation of temperate coniferous forests using spectral modeling and field inventory data. Ecological Informatics, 25, 63–70. https://doi.org/10.1016/j.ecoinf.2014.12.003

    Article  Google Scholar 

  • Wedding, L. M., Moritsch, M., Verutes, G., Arkema, K., Hartge, E., Reiblich, J., Douglass, J., Taylor, S., & Strong, A. L. (2021). Incorporating blue carbon sequestration benefits into sub-national climate policies. Global Environmental Change, 69, 102206. https://doi.org/10.1016/j.gloenvcha.2020.102206

    Article  Google Scholar 

  • Wei, T., & Simko, V. (2017). R package “corrplot”: Visualization of a correlation matrix (Version 0.84).

  • Whittaker, R.H. & Woodwell, G.M. (1968). Dimension and production relations of trees and shrubs in the Brookhaven Forest, New York. The Journal of Ecology, 1– 25. https://doi.org/10.2307/2258063

  • Yanli, X., Chao, L., Zhichao, S., et al. (2019). Tree height explains stand volume of closed-canopy stands: Evidence from forest inventory data of China. Forest Ecology and Management, 438, 51–56. https://doi.org/10.1016/j.foreco.2019.01.054

    Article  Google Scholar 

  • Yuan, Z., Ali, A., Sanaei, A., Ruiz-Benito, P., Jucker, T., Fang, L., Bai, E., Ye, J., Lin, F., Fang, S., & Hao, Z. (2021). Few large trees, rather than plant diversity and composition, drive the aboveground biomass stock and dynamics of temperate forests in northeast China. Forest Ecology and Management, 481, 118698. https://doi.org/10.1016/j.foreco.2020.118698

    Article  Google Scholar 

  • Zhao, J., Kang, F., Wang, L., Yu, X., Zhao, W., Song, X., Zhang, Y., Chen, F., Sun, Y., He, T., & Han, H. (2014). Patterns of biomass and carbon distribution across a chronosequence of Chinese pine (Pinus tabulaeformis) forests. PLoSone, 9(4), e94966. https://doi.org/10.1371/journal.pone.0094966

    Article  CAS  Google Scholar 

  • Zhu, B., Wang, X., Fang, J., Piao, S., Shen, H., Zhao, S., & Peng, C. (2010). Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China. Journal of Plant Research, 123, 439–452. https://doi.org/10.1007/s10265-009-0301-1

    Article  Google Scholar 

Download references

Acknowledgements

SMH and AAK gratefully acknowledge the support provided by the research scholars and staff at the BIOTA Lab of the Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir throughout this investigation. The Principal Chief Conservator Forests, Government of Jammu and Kashmir, India is also duly acknowledged for permission and support during our fieldwork in the study area.

Funding

AAK expresses gratitude to the National Remote Sensing Centre (ISRO), Government of India, Hyderabad, for funding this study through the "Measurement of Vegetation and Biomass Parameters under Vegetation Carbon Pool”.

Author information

Authors and Affiliations

Authors

Contributions

SMH: Investigation, Methodology, Writing- Original draft preparation, Visualization, Data curation, Reviewing and Editing, Revision. IR: Supervision, Writing- Reviewing and Editing. MW: Software, Visualization, Writing- Reviewing and Editing. AAK: Conceptualization, Funding, Supervision, Methodology, Validation, Data curation, Writing—Original draft, Reviewing and Editing, Revision.

Corresponding author

Correspondence to Anzar Ahmad Khuroo.

Ethics declarations

All authors have read, understood, and have complied as applicable with the statement on "Ethical responsibilities of Authors" as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haq, S.M., Rashid, I., Waheed, M. et al. From forest floor to tree top: Partitioning of biomass and carbon stock in multiple strata of forest vegetation in Western Himalaya. Environ Monit Assess 195, 812 (2023). https://doi.org/10.1007/s10661-023-11376-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11376-6

Keywords

Navigation