Skip to main content

Advertisement

Log in

The problem of conserving an ecosystem that has not been completely delineated and mapped: the case of the Cocais Palm Forest

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Land cover changes threaten biodiversity and alter the geographic distribution of forests worldwide. Studies on this topic are important to establish conservation strategies and public policies. However, different studies may propose different spatial representations due to differences when identifying, classifying, and/or mapping the same vegetation formation, as observed for the Cocais Forest region. This palm-dominated ecosystem predominates the Brazilian mid-north region in an ecotone region with 3 of the 6 Brazilian biomes. In this study, we conducted a literature review of studies that delineated and mapped the Cocais Forest, aiming to compare different mapped regions and to establish a new distribution map integrating these spatial data. We found seven sources that revealed spatial divergences in identifying the spatial distribution of Cocais Forest, including its characteristics in terms of size and shape, which could affect the conservation, socioeconomic, and cultural policies and studies carried out on this emblematic vegetation formation and influence area. The delineation proposed by de Sousa Nascimento and Lima (Revista de Políticas Públicas 189–192, 2016) encompassed the largest area. In addition, there was a lack of consensus regarding the nomenclature for this ecosystem, and few works offered a detailed description of the mapping process. Despite the different spatial distributions found for the Cocais Forest, we succeeded in establishing a common area by overlapping individual maps, resulting in the identification of a core region exclusive located in the State of Maranhão.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Alencar, A. A. C., Shimbo, J. Z., Lenti, F., Marques, C. B., Zimbres, B., Rosa, M., Arruda, V., Castro, I., Ribeiro, J. P. F. M., Varela, V., Alencar, I., Piontekowski, V., Ribeiro, V., Bustamante, M. M. C., Sano, E. E., & Barroso, M. (2020). Mapping three decades of changes in the Brazilian savanna native vegetation using Landsat data processed in the Google Earth engine platform. Remote Sensing, 12(6), 924. https://doi.org/10.3390/rs12060924

    Article  Google Scholar 

  • Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J. H., Allard, G., Running, S. W., Semerci, A., & Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management., 259(4), 660–684. https://doi.org/10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  • Alves, D. B., & Alvarado, S. T. (2019). Variação espaço-temporal da ocorrência do Fogo nos biomas brasileiros com base na análise de produtos de sensoriamento remoto. Geografia, 44(2), 321–345. https://doi.org/10.5016/geografia.v44i2.15119

    Article  Google Scholar 

  • Antongiovanni, M., Venticinque, E. M., & Fonseca, C. R. (2018). Fragmentation patterns of the Caatinga drylands. Landscape Ecology, 33(8), 1353–1367. https://doi.org/10.1007/s10980-018-0672-6

    Article  Google Scholar 

  • Argibay, D. S., Sparacino, J., & Espindola, G. M. (2020). A long-term assessment of fire regimes in a Brazilian ecotone between seasonally dry tropical forests and savannah. Ecological Indicators, 113, 106151. https://doi.org/10.1016/j.ecolind.2020.106151

    Article  Google Scholar 

  • Arroyo‐Rodríguez, V., Fahrig, L., Tabarelli, M., Watling, J. I., Tischendorf, L., Benchimol, M., Cazetta, E., Faria, D., Leal, I. R., Melo, F. P. L., Morante-Filho, J. C., Santos, B. A., Arasa-Gisbert, R., Arce-Peña, N., Cervantes-López, M. J., Cudney-Valenzuela, S., Galán-Acedo, C., San-José, M., Vieira, I. C. G., Slik, J. W. F., … & Tscharntke, T. (2020). Designing optimal human‐modified landscapes for forest biodiversity conservation. Ecology letters, 23(9), 1404–1420. https://doi.org/10.1111/ele.13535.

  • Ayram, C. A. C., Mendoza, M. E., Etter, A., & Salicrup, D. R. P. (2015). Habitat connectivity in biodiversity conservation: A review of recent studies and applications. Progress in Physical Geography, 40(1), 7–37. https://doi.org/10.1177/0309133315598713

  • Barreal, J., & Jannes, G. (2020). Spatial and temporal wildfire decomposition as a tool for assessment and planning of an efficient forest policy in Galicia (Spain). Forests, 11(8), 811. https://doi.org/10.3390/f11080811

    Article  Google Scholar 

  • Barreto, H. N., Parise, C. K., & de Almeida Jr, E. B. (2019). The Cocais Forest landscape. In Salgado, A. A. R., Santos, L. J. C, & Paisani, J. L (Eds.), The Physical Geography of Brazil (pp. 151–167). Springer Nature.https://doi.org/10.1007/978-3-030-04333-9.

  • Barros, J. (2020, Mar 17). Aprovado projeto que institui o Zoneamento Ecológico-Econômico do Maranhão. Agência ALEMA. Assembleia Legislativa do Estado do Maranhão. Retrieved March 24, 2023, from http://www.al.ma.leg.br/noticias/39800

  • Batistella, M., Bolfe, E. L., Vicente, L. E., de Castro Victoria, D., & Araujo, L. S. (orgs.). (2013). Relatório do Diagnóstico do Macrozoneamento Ecológico-Econômico do Estado do Maranhão. Relatório Técnico, Campinas, Brazil: Embrapa Monitoramento por Satélite

  • Bontempo, E., Demirel, M. C., Corsini, C., Martins, F., & Valeriano, D. (2020, March). Classification System Drives Disagreement Among Brazilian Vegetation Maps at a Sample Area of the Semiarid Caatinga. In IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS) (pp. 499–504). Santiago, Chile: IEEE

  • Brand, U. (2012). Green economy–The next oxymoron? No lessons learned from failures of implementing sustainable development. GAIA, 21(1), 28–32. https://doi.org/10.14512/gaia.21.1.9

  • Bridgewater, S., Ratter, J. A., & Ribeiro, J. F. (2004). Biogeographic patterns, β-diversity and dominance in the Cerrado biome of Brazil. Biodiversity and Conservation, 13, 2295–2317. https://doi.org/10.1023/B:BIOC.0000047903.37608.4c

    Article  Google Scholar 

  • Brown, J. H., & Lomolino, M. V. (2006). Biogeografia (2nd ed.). Ribeirão Preto, Brazil, Funpec

  • Campos, J. L. A., da Silva, T. L. L., Albuquerque, U. P., Peroni, N., & Araújo, E. L. (2015). Knowledge, use, and management of the babaçu palm (Attalea speciosa Mart. Ex Spreng) in the Araripe Region (Northeastern Brazil). Economic Botany, 69(3), 240–250. https://doi.org/10.1007/s12231-015-9315-x

    Article  Google Scholar 

  • Celentano, D., Rousseau, G. X., Muniz, F. H., Varga, I. van D., Martinez, C., Carneiro, M. S., Miranda, M. V. C., Barros, M. N. R., Freitas, L., Narvaesi, I. S., Adami, M., Gomes, A. R., Rodrigues, J. C., & Martins, M. B. (2017). Towards zero deforestation and forest restoration in the Amazon region of Maranhão state, Brazil. Land Use Policy, 68, 692–698.https://doi.org/10.1016/j.landusepol.2017.07.041

  • Colten, C. E. (2018). Cartographic depictions of Louisiana land loss: A tool for sustainable policies. Sustainability, 10(3), 763. https://doi.org/10.3390/su10030763

    Article  Google Scholar 

  • Dadashpoor, H., Azizi, P., & Moghadasi, M. (2019). Land use change, urbanization, and change in landscape pattern in a metropolitan area. Science of the Total Environment, 655, 707–719. https://doi.org/10.1016/j.scitotenv.2018.11.267

    Article  CAS  Google Scholar 

  • de Almeida, A. S., Vieira, I. C. G., & Ferraz, S. F. B. (2019). Long-term assessment of oil palm expansion and landscape change in the eastern Brazilian Amazon. Land Use Policy, 90, 104321. https://doi.org/10.1016/j.landusepol.2019.104321

    Article  Google Scholar 

  • de Oliveira, J. A. P., Mukhi, U., Quental, C., & Fortes, P. J. O. C. (2022). Connecting businesses and biodiversity conservation through community organizing: The case of babassu breaker women in Brazil. Business Strategy and the Environment, 31(5), 2618–2634. https://doi.org/10.1002/bse.3134

    Article  Google Scholar 

  • de Sousa Nascimento, P., and Lima, L. A. P. (2016). Cartografia dos Babaçuais: a palmeira dos mapas. Revista de Políticas Públicas, (Special), 189–192. https://doi.org/10.18764/2178-2865.v20nEp189-192

  • Díaz-Yáñez, O., Mola-Yudego, B., Eriksen, R., & González- Olabarria, J. R. (2016). Assessment of the main natural disturbances on Norwegian forest based on 20 years of national inventory. PLoS One, 11(8), e0161361. https://doi.org/10.1371/journal.pone.0161361

    Article  CAS  Google Scholar 

  • Dorresteijn, I., Teixeira, L., Wehrden, H. V., Loos, J., Hanspach, J., Stein, J. A. R., & Fischer, J. (2015). Impact of land cover homogenization on the corncrake (Crex crex) in traditional farmland. Landscape Ecology, 30, 1483–1495. https://doi.org/10.1007/s10980-015-0203-7

    Article  Google Scholar 

  • Duarte, G. T., Santos, P. M., Cornelissen, T. G., Ribeiro, M. C., & Paglia, A. P. (2018). The effects of landscape pattern on ecosystem services: Meta-analysis of landscape services. Landscape Ecology, 33(8), 1247–1257. https://doi.org/10.1007/s10980-018-0673-5

    Article  Google Scholar 

  • Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34, 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419

    Article  Google Scholar 

  • Fahrig, L. (2013). Rethinking patch size and isolation effects: The habitat amount hypothesis. Journal of Biogeography, 40(9), 1649–1663. https://doi.org/10.1111/jbi.12130

    Article  Google Scholar 

  • Feng, Y., Liu, Y., & Tong, X. (2018). Spatiotemporal variation of landscape patterns and their spatial determinants in Shanghai, China. Ecological Indicators, 87, 22–32. https://doi.org/10.1016/j.ecolind.2017.12.034

    Article  Google Scholar 

  • Frederico, R. G., Reis, V. C. S., & Polaz, C. N. M. (2021). Conservação de Peixes de Riacho: Planejamento e políticas públicas. Oecologia Australis, 25(2), 546–564. https://doi.org/10.4257/oeco.2021.2502.20

    Article  Google Scholar 

  • Gignac, L. D., & Dale, M. R. (2007). Effects of size, shape, and edge on vegetation in remnants of the upland boreal mixed-wood forest in agro-environments of Alberta, Canada. Canadian Journal of Botany, 85(3), 273–284. https://doi.org/10.1139/B07-018

  • Godefroid, S., & Koedam, N. (2003). How important are large vs. small forest remnants for the conservation of the woodland flora in an urban context? Global Ecology Biogeography, 12(4), 287–298. https://doi.org/10.1046/j.1466-822X.2003.00035.x

    Article  Google Scholar 

  • Hartig, F., & Drechsler, M. (2009). Smart spatial incentives for market-based conservation. Biological Conservation, 142(4), 779–788. https://doi.org/10.1016/j.biocon.2008.12.014

    Article  Google Scholar 

  • Herold, M., Goldstein, N. C., & Clarke, K. C. (2003). The spatiotemporal form of urban growth: Measurement, analysis, and modeling. Remote Sensing Environment, 86(3), 286–302. https://doi.org/10.1016/S0034-4257(03)00075-0

    Article  Google Scholar 

  • Hou, L., Wub, F., & Xie, X. (2020). The spatial characteristics and relationships between landscape pattern and ecosystem service value along an urban-rural gradient in Xi’an city, China. Ecological Indicators, 108, 105720. https://doi.org/10.1016/j.ecolind.2019.105720

    Article  Google Scholar 

  • IBGE (Brazil). (1993). Mapa de Vegetação do Brasil (2nd ed.). Map 1:5,000,000. Rio de Janeiro, Brazil: IBGE

  • IBGE (Brazil). (2012). Manual Técnico da Vegetação Brasileira (2nd ed.). Série Manuais Técnicos em Geociências 1. Rio de Janeiro, Brazil: IBGE.

  • IBGE (Brazil). (2020a). Banco de Dados de Informações Ambientais: vegetação. Retrieved November 10, 2021, from https://bdiaweb.ibge.gov.br/#/consulta/vegetacao

  • IBGE (Brazil). (2020b). Malhas territoriais: malha municipal. Retrieved November 10, 2021, from https://www.ibge.gov.br/geociencias/organizacao-do-territorio/malhas-territoriais/15774-malhas.html?=&t=downloads

  • IMESC. (2018). Regiões de Desenvolvimento do Estado do Maranhão Proposta Avançada. São Luís. Retrieved November 10, 2021, from https://seplan.ma.gov.br/files/2013/02/Proposta-IMESC_22-Regi%C3%B5es-de-Desenvolvimento-do-Estado-do-Maranh%C3%A3o-2018.pdf

  • IMESC. (2021). Diagnóstico Situacional Regionalizado do Estado do Maranhão. São Luís. Retrieved November 11, 2021, from http://imesc.ma.gov.br/src/upload/docs/COMPLETA-PPA.pdf

  • Jackson, N. D., & Fahrig, L. (2015). Habitat amount, not habitat configuration, best predicts population genetic structure in fragmented landscapes. Landscape Ecology, 31(5), 951–968. https://doi.org/10.1007/s10980-015-0313-2

    Article  Google Scholar 

  • Jain, P., Khare, S., Sylvain, J. D., Raymond, P., & Rossi, S. (2021). Predicting the location of maple habitat under warming scenarios in two regions at the northern range in Canada. Forest Science, 67(4), 446–456. https://doi.org/10.1093/forsci/fxab021

    Article  Google Scholar 

  • Jia, Y., Tang, L., Xu, M., & Yang, X. (2019). Landscape pattern indices for evaluating urban spatial morphology–A case study of Chinese cities. Ecological indicators, 99, 27–37. https://doi.org/10.1016/j.ecolind.2018.12.007

  • Kupfer, J. A. (2012). Landscape ecology and biogeography: Rethinking landscape metrics in a post-FRAGSTATS landscape. Progress in Physical Geography, 36(3), 400–420. https://doi.org/10.1177/0309133312439

    Article  Google Scholar 

  • LAPIG. (2019). Ecorregiões do Cerrado. Plataforma Deforestation Polygon Assessment Tool. Federal University of Goiás, Goiânia, BR. Retrieved November 10, 2021, from https://cerradodpat.ufg.br/#/plataforma

  • László, E., György, K. D., Zoltán, B., Bence, K., Csaba, N., János, K. P., & Csaba, T. (2018). Habitat heterogeneity as a key to high conservation value in forest-grassland mosaics. Biological Conservation, 226, 72–80. https://doi.org/10.1016/j.biocon.2018.07.029

    Article  Google Scholar 

  • LeFevre, M. E., Churchill, D. J., Larson, A. J., Jeronimo, S. M. A., Bass, L., Franklin, J. F., & Kane, V. R. (2020). Evaluating restoration treatment effectiveness through a comparison of residual composition, structure, and spatial pattern with historical reference sites. Forest Science, 66(5), 578–588. https://doi.org/10.1093/forsci/fxaa014

    Article  Google Scholar 

  • Luintel, H., Scheller, R. M., & Bluffstone, R. A. (2018). Assessments of biodiversity, carbon, and their relationships in Nepalese forest commons: Implications for global climate initiatives. Forest Science, 64(4), 418–428. https://doi.org/10.1093/forsci/fxx024

    Article  Google Scholar 

  • Ma, L., Bo, J., Li, X., Fang, F., & Cheng, W. (2019). Identifying key landscape pattern indices influencing the ecological security of inland river basin: The middle and lower reaches of Shule River Basin as an example. Science of the Total Environment, 674, 424–438. https://doi.org/10.1016/j.scitotenv.2019.04.107

    Article  CAS  Google Scholar 

  • Mandal, M., & Chatterjee, N. D. (2021). Spatial alteration of fragmented forest landscape for improving structural quality of habitat: A case study from Radhanagar Forest Range, Bankura District, West Bengal, India. Geology, Ecology, and Landscapes, 5(4), 252–259. https://doi.org/10.1080/24749508.2020.1720483

    Article  Google Scholar 

  • Marques, E. Q., Marimon-Junior, B. H., Marimon, B. S., Matricardi, E. A. T., Mews, H. A., & Colli, G. R. (2019). Redefining the Cerrado-Amazonia transition: Implications for conservation. Biodiversity and Conservation, 29(5), 1501–1517. https://doi.org/10.1007/s10531-019-01720-z

    Article  Google Scholar 

  • Milliken, W., Zappi, D., Sasaki, D., Hopkins, M., & Pennington, R. T. (2010). Amazon vegetation: How much don’t we know and how much does it matter? Kew Bulletin, 65(4), 691–709. https://doi.org/10.1007/s12225-010-9236-x

    Article  Google Scholar 

  • Mitja, D., Sirakov, N., dos Santos, A. M., González-Pérez, S., Macedo, D. J., Delaître, E., Demagistri, L., Loisel, P., de Souza Miranda, I., Rey-Valette, H., da Rocha, M. R. T., Fontez, B., & Libourel, T. (2019). Viability of the Babassu Palm Eco-socio-system in Brazil: The Challenges of Coviability. In Barrière, O., Behnassi, M., David, G., Douzal, V., Fargette, M., Libourel, T., Loireau, M., Pascal, L., Prost, C., Ravena-Cañete, V., Seyler, F., & Morand, S. (Eds.). Coviability of social and ecological systems: Reconnecting mankind to the biosphere in an era of global change (v. 2, pp. 257–284). Springer. https://doi.org/10.1007/978-3-319-78111-2

  • Mota-Vargas, C., Encarnación-Luévano, A., Ortega-Andrade, H. M., Prieto-Torres, D. A., Peña-Peniche, A., & Rojas-Soto, O. R. (2019). Una Breve Introducción a los Modelos de Nicho Ecológico. In Moreno, C. E. (Ed.). La Biodiversidad en un Mundo Cambiante: fundamentos teóricos y metodológicos para su estudio (pp. 39-63). Ciudad de México, Mexico: Universidad Autónoma del Estado de Hidalgo/Libermex.

  • Muradian, R., Corbera, E., Pascual, U., Kosoy, N., & May, P. H. (2010). Reconciling theory and practice: An alternative conceptual framework for understanding payments for environmental services. Ecological Economics, 69(6), 1202–1208. https://doi.org/10.1016/j.ecolecon.2009.11.006

    Article  Google Scholar 

  • Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., Börger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., de Palma, A., Díaz, S., Echeverria-Londoño, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., … & Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520, 45–50. https://doi.org/10.1038/nature14324

  • Nguyen, C., Latacz-Lohmann, U., Hanley, N., Schilizzi, S., & Iftekhar, S. (2022). Spatial coordination incentives for landscape-scale environmental management: A systematic review. Land Use Policy, 114, 105936. https://doi.org/10.1016/j.landusepol.2021.105936

    Article  Google Scholar 

  • Nguyen, K. A., & Liou, Y. A. (2019). Global mapping of eco-environmental vulnerability from human and nature disturbances. Science of The Total Environment, 664, 995–1004. https://doi.org/10.1016/j.scitotenv.2019.01.407

  • Nunes, L. A. P. L., Silva, D. I. B. D., Araújo, A. S. F. D., Leite, L. F. C., & Correia, M. E. F. (2012). Caracterização da fauna edáfica em sistemas de manejo para produção de forragens no estado do Piauí. Revista Ciência Agronômica, 43(1), 30–37.

    Google Scholar 

  • Ojha, S. K., Naka, K., & Dimov, L. D. (2020). Assessment of disturbances across forest inventory plots in the southeastern United States for the period 1995–2018. Forest Science, 66(2), 242–255. https://doi.org/10.1093/forsci/fxz072

    Article  Google Scholar 

  • Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D’Amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & Kassem, K. R. (2001). Terrestrial ecoregions of the world: A new map of life on earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience, 51(11), 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

    Article  Google Scholar 

  • Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., a. Mcguire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988-993.https://doi.org/10.1126/science.1201609

  • Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., Núñez, P. V., Vásquez, R. M., Laurance, S. G., Ferreira, L. V., Stern, M., Brown, S., & Grace, J. (1998). Changes in the carbon balance of tropical forests: Evidence from long-term plots. Science, 282(5388), 439–442. https://doi.org/10.1126/science.282.5388.439

    Article  CAS  Google Scholar 

  • Pickett, S. T. A., & Cadenasso, M. L. (1995). Landscape ecology: Spatial heterogeneity in ecological systems. Science, 269(5222), 331–334. https://doi.org/10.1126/science.269.5222.331

    Article  CAS  Google Scholar 

  • Pinheiro, C.U.B. (2011). Palmeiras do Maranhão: onde canta o sabiá. São Luís, Brazil, Aquarela

  • Porro, N., Veiga, I., & Mota, D. (2011). Traditional communities in the Brazilian Amazon and the emergence of new political identities: The struggle of the quebradeiras de coco babaçu—babassu breaker women. Journal of Cultural Geography, 28(1), 123–146. https://doi.org/10.1080/08873631.2011.548487

    Article  Google Scholar 

  • Porro, R., & Porro, N. S. M. (2015). Social identity, local knowledge and adaptive management by traditional communities of the babassu region in Maranhão. Ambiente & Sociedade, 18(1), 01–18, jan-mar. https://doi.org/10.1590/1809-4422ASOC507V1812015en

  • Project MapBiomas. (2021). Collection 7 of Brazilian Land Cover & Use Map Series. Retrieved November 09, 2022, from https://plataforma.brasil.mapbiomas.org

  • Ratnam, J., Tomlinson, K. W., Rasquinha, D. N., & Sankaran, M. (2016). Savannahs of Asia: Antiquity, biogeography, and an uncertain future. Philosophical Transactions of the Royal Society b: Biological Sciences, 371(1703), 20150305. https://doi.org/10.1098/rstb.2015.0305

    Article  CAS  Google Scholar 

  • Reis, V. R. R., Deon, D. S., Muniz, L. C., Garcia, U. S., de Lima Cantanhêde, I. S., de Moraes Rego, C. A. R., Costa, J. B., & de Oliveira Marques, E. (2018). Soil chemical attributes under crop-livestock-forest integration. Journal of Agricultural Science, 10(4), 370–380. https://doi.org/10.5539/jas.v10n4p370

    Article  Google Scholar 

  • Rezende, G. C., Sobral-Souza, T., & Culot, L. (2020). Integrating climate and landscape models to prioritize areas and conservation strategies for an endangered arboreal primate. American Journal of Primatology, 82(12), e23202. https://doi.org/10.1002/ajp.23202

    Article  Google Scholar 

  • Rocha, A. P. B., Dantas, E. M., Morais, I. R. D., & de Oliveira, M. S. (2011). Geografia do Nordeste (2nd ed.). Natal, Brazil, EDUFRN

  • Ruggiero, P. G., Metzger, J. P., Tambosi, L. R., & Nichols, E. (2019). Payment for ecosystem services programs in the Brazilian Atlantic Forest: Effective but not enough. Land Use Policy, 82, 283–291. https://doi.org/10.1016/j.landusepol.2018.11.054

    Article  Google Scholar 

  • Santos, J. P., Sobral-Souza, T., Brown, K. S., Vancine, M. H., Ribeiro, M. C., & Freitas, A. V. L. (2020). Effects of landscape modification on species richness patterns of fruit-feeding butterflies in Brazilian Atlantic Forest. Diversity and Distributions, 26(2), 196–208. https://doi.org/10.1111/ddi.13007

    Article  Google Scholar 

  • Sano, E. E., Rodrigues, A. A., Martins, E. S., Bettiol, G. M., Bustamante, M. M., Bezerra, A. S., Couto Jr,.A. F., Vasconcelos, V., Schüler, J., & Bolfe, E. L. (2019). Cerrado ecoregions: A spatial framework to assess and prioritize Brazilian savanna environmental diversity for conservation. Journal of Environmental Management, 232, 818–828. https://doi.org/10.1016/j.jenvman.2018.11.108

  • Santos-Filho, F. S., Almeida Júnior, E. B., & Soares, C. J. R. S. (2013). Cocais: zona ecotonal natural ou artificial?. Revista Equador, 2(1), 02–13. https://doi.org/10.26694/equador.v2i1.1043

  • Saraiva, R. V. C., Leonel, L, V., Dos Reis, F. F., Figueiredo, F. A. M. M. A., Reis, F. O., De Sousa, J. R. P., Muniz, F. H., & Ferraz, T. M. (2020). Cerrado physiognomies in Chapada das Mesas National Park (Maranhão, Brazil) revealed by patterns of floristic similarity and relationships in a transition zone. Annals of the Brazilian Academy of Sciences, 92(2), e20181109.https://doi.org/10.1590/0001-3765202020181109

  • SEATI. (2020). ZEE dos biomas Cerrado e Costeiro Maranhense será finalizado em novembro de 2021. Maranhão State Government. Retrieved March 24, 2023, from https://www3.ma.gov.br/agenciadenoticias/?p=291618

  • SEPLAN-PI. (2019). Mapa dos territórios de desenvolvimento. Retrieved May 24, 2022, from http://www.seplan.pi.gov.br/mapa_abril19.pdf

  • Silva, M. C. D., da Silva, L. M., Brandão, K. S., Souza, A. G., Cardoso, L. P., & dos Santos, A. O. (2013). Low temperature properties of winterized methyl babassu biodiesel. Journal of Thermal Analysis and Calorimetry, 115(1), 635–640. https://doi.org/10.1007/s10973-013-3263-4

    Article  CAS  Google Scholar 

  • Silva, P. S., Nogueira, J., Rodrigues, J. A., Santos, F. L. M., Pereira, J. M. C., DaCamara, C. C., & Daldegan, G. A. (2021). Putting fire on the map of Brazilian savanna ecoregions. Journal of Environmental Management, 296, 113098. https://doi.org/10.1016/j.jenvman.2021.113098Get

    Article  Google Scholar 

  • Silva-Junior, C. H., Alvarado, S. T., Celentano, D., Rousseau, G. X., Hernández, L. M., Ferraz, T. M., Silva, F. B., de Melo, M. H. F., Rodrigues, T. C. S., Viegas, J. C., Souza, U. D. V., Santos, A. L. S., & Bezerra, D. (2021). Northeast Brazil’s imperiled Cerrado. Science Advances, 372(6538), 139–140. https://doi.org/10.1126/science.abg0556

    Article  CAS  Google Scholar 

  • Silva-Junior, C. H., Buna, A. T. M., Bezerra, D. S., Costa, O. S., Jr., Santos, A. L., Basson, L. O. D., Santos, A. L. S., Alvarado, S. T., Almeida, C. T., Freire, A. T. G., Rousseau, G. X., Celentano, D., Silva, F. B., Pinheiro, M. S. S., Amaral, S., Kampel, M., Vedovato, L. B., Anderson, L. O., & Aragão, L. E. O. C. (2022). Forest fragmentation and fires in the eastern Brazilian Amazon–Maranhão State, Brazil. Fire, 5(3), 77. https://doi.org/10.3390/fire5030077

    Article  Google Scholar 

  • Silva-Junior, C. H., Celentano, D., Rousseau, G. X., de Moura, E. G., Varga, I. van D., Martinez, C., & Martins, M. B. (2020). Amazon forest on the edge of collapse in the Maranhão State, Brazil.Land Use Policy, 97, 104806.https://doi.org/10.1016/j.landusepol.2020.104806

  • Silvério, E., Duque-Lazo, J., Navarro-Cerrillo, R. M., Pereña, F., & Palacios-Rodríguez, G. (2019). Resilience or vulnerability of the rear-edge distributions of Pinus halepensis and Pinus pinaster plantations versus that of natural populations, under climate-change scenarios. Forest Science, 66(2), 178–190. https://doi.org/10.1093/forsci/fxz066

    Article  Google Scholar 

  • Siqueira, M. N., Castro, S. S., & Faria, K. M. S. (2013). Geografia e Ecologia da Paisagem: Pontos para discussão. Sociedade & Natureza, 25, 557–566. https://doi.org/10.1590/S1982-45132013000300009

    Article  Google Scholar 

  • Soares, C. J., Sampaio, M. B., Santos-Filho, F. S., Martins, F. R., & dos Santos, F. A. M. (2020). Patterns of species diversity in different spatial scales and spatial heterogeneity on beta diversity. Acta Botanica Brasilica, 34(1), 9–16. https://doi.org/10.1590/0102-33062019abb0054

    Article  Google Scholar 

  • Sousa-Baena, M. S., Garcia, L. C., & Peterson, A. T. (2014). Completeness of digital accessible knowledge of the plants of Brazil and priorities for survey and inventory. Diversity and Distributions, 20(4), 369–381. https://doi.org/10.1111/ddi.12136

    Article  Google Scholar 

  • Souza Jr, C. M., Shimbo, J. Z., Rosa, M. R., Parente, L. L., Alencar, A. A., Rudor, B. F. T., Hasenack, H., Matsumoto, M., Ferreira, L. G., Souza-Filho, P. W. M., de Oliveira, S. W., Rocha, W. F., Fonseca, A. V., Marques, C. B., Diniz, C. G., Costa, D., Monteiro, D., Rosa, E. R., Vélez-Martin, E., ... & Azevedo, T. (2020). Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and earth engine. Remote Sensing, 12(17), 2735. https://doi.org/10.3390/rs12172735

  • Souza-Filho, P. W. M., Giannini, T. C., Jaffé, R., Giulietti, A. M., Santos, D. C., Nascimento Jr, W. R., Guimarães, J.T.F., Costa, M. F., Imperatriz- Fonseca, V. L., & Siqueira, J. O. (2019). Mapping and quantification of ferruginous outcrop savannas in the Brazilian Amazon: A challenge for biodiversity conservation. PLoS One, 14(1), e0211095. https://doi.org/10.1371/journal.pone.0211095

  • Sposati, A. (2016). Financiamento e Política Pública de Assistência Social. Revista Parlamento e Sociedade, 4(7), 103–118.

    Google Scholar 

  • Syphard, A. D., & Keeley, J. E. (2020). Mapping fire regime ecoregions in California. International Journal of Wildland Fire, 29(7), 595–601. https://doi.org/10.1071/WF19136

    Article  Google Scholar 

  • Teixeira, M. A. (2008). Babassu-A new approach for an ancient Brazilian biomass. Biomass and Bioenergy, 32(9), 857–864. https://doi.org/10.1016/j.biombioe.2007.12.016

    Article  CAS  Google Scholar 

  • Torello-Raventos, M, Feldpausch, T. R., Veenendaal, E., Schrodt, F., Saiz, G., Domingues, T.F., Djagbletey, G., Ford, A., Kemp, J., Marimon, B. S., Marimon Junior, B. H., Lenza, E., Ratter, J. A., Maracahipes, L., Sasaki, D., Sonké, B., Zapfack, L., Taedoumg, H., Villarroel, D., … & Lloyd, J. (2013). On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions. Plant Ecology & Diversity, 6(1), 101–137. https://doi.org/10.1080/17550874.2012.762812

  • Tscharntke T, Tylianakis, J. M., Rand, T. A., Didham, R. K., Fahrig, L., Batáry, P., Bengtsson, J., Clough, Y., Crist, T. O., Dormann, C. F., Ewers, R. M., Fründ, J., Holt, R. D., Holzschuh, A., Klein, A. M., Kleijn, D., Kremen, C., Landis, D. A., Laurance, W., … & Westphal, C. (2012). Landscape moderation of biodiversity patterns and processes – Eight hypotheses. Biological Reviews, 87(3), 661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x

  • Turner, M. G., & Gardner, R. H. (2015). Landscape ecology in theory and practice (2nd ed.). Springer. https://doi.org/10.1007/978-1-4939-2794-4

  • Unger, D. R., Hung, I. K., & Kulhavy, D. L. (2014). Accuracy assessment of land cover maps of forests within an urban and rural environment. Forest Science, 60(3), 591–602. https://doi.org/10.5849/forsci.13-898

    Article  Google Scholar 

  • Uroy, L., Ernoult, A., & Mony, C. (2019). Effect of landscape connectivity on plant communities: a review of response patterns. Landscape ecology, 34, 203–225. https://doi.org/10.1007/s10980-019-00771-5

  • Vieira, V. C. B., Moreira, M. A., Dantas, F. R., Alencar, H. M. Q., Sousa, M. F. L. O., Rocha, M. E. S. (2017). Uso de imagens do RapidEye e técnicas de geoprocessamento para mapear o babaçu nas regiões central e norte do Piauí. 18º Simpósio Brasileiro de Sensoriamento Remoto (SBSR), INPE, 4227–4234. Retrieved March 24, 2023, from http://marte2.sid.inpe.br/col/sid.inpe.br/marte2/2017/10.27.13.44/doc/thisInformationItemHomePage.html

  • Wan, H. Y., Cushman, S. A., & Ganey, J. L. (2018). Habitat fragmentation reduces genetic diversity and connectivity of the Mexican spotted owl: A simulation study using empirical resistance models. Genes, 9(8), 403. https://doi.org/10.3390/genes9080403

    Article  CAS  Google Scholar 

  • Wang, K., Zhang, C., Chen, H., Yue, Y., Zhang, W., Zhang, M., Qi, X., & Fu, Z. (2019). Karst landscapes of China: Patterns, ecosystem processes and services. Landscape Ecology, 34(12), 2743–2763. https://doi.org/10.1007/s10980-019-00912-w

    Article  Google Scholar 

  • Wu, J., & Qi, Y. (2000). Dealing with scale in landscape analysis: An overview. Geographic Information Sciences, 6(1), 1–5. https://doi.org/10.1080/10824000009480528

    Article  Google Scholar 

  • WWF Brasil. (2004). Terrestrial ecoregions of the world. Retrieved November 10, 2021, from https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world

  • Yang, J., Guo, A., Li, Y., Zhang, Y., & Li, X. (2019). Simulation of landscape spatial layout evolution in rural-urban fringe areas: A case study of Ganjingzi District. Giscience & Remote Sensing, 56(3), 388–405. https://doi.org/10.1080/15481603.2018.1533680

    Article  Google Scholar 

  • ZEE/MA. (2021). Zonificação do Território do Zoneamento Ecológico Econômico do Maranhão. Etapa Bioma Cerrado e Sistema Costeiro. São Luís, Brazil: IMESC

  • Zhang, M., Wang, K., Liu, H., & Zhang, C. (2011). Responses of spatial-temporal variation of Karst ecosystem service values to landscape pattern in northwest of Guangxi. China. Chinese Geographical Science, 21(4), 446–453. https://doi.org/10.1007/s11769-011-0486-9

Download references

Acknowledgements

The authors would like to thank the Amazonian Network for Biodiversity and Biotechnology Graduate Program (BIONORTE), the Foundation for Research and Scientific Development of Maranhão (FAPEMA), the Brazilian National Research Council (CNPq), and the State University of Maranhão (UEMA), specially to the Laboratory of Environmental Sciences and Biodiversity (LCAB/UEMA), for the financial support for this study, and to the reviewers who provided their expertise in evaluating this manuscript.

Funding

This work was supported by the Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão—FAPEMA (grant number IECT-05539/18).

Author information

Authors and Affiliations

Authors

Contributions

Santos, D.P., was responsible for surveying the database and formatting the figures and tables. All authors participated in writing and revising the manuscript.

Corresponding author

Correspondence to Fábio Afonso Mazzei Moura de Assis Figueiredo.

Ethics declarations

Ethical approval

All authors have read and understood and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors. The authors approved the manuscript, and there are no ethical issues to declare.

Consent to participate

The authors have agreed on the manuscript, and there are no issues to disclose.

Consent for publication

The authors have no issues on this matter and agreed to publish the content of the paper.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 115 KB)

Supplementary file2 (PDF 95 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, D.P., Alvarado, S.T., de Almeida, E.B. et al. The problem of conserving an ecosystem that has not been completely delineated and mapped: the case of the Cocais Palm Forest. Environ Monit Assess 195, 784 (2023). https://doi.org/10.1007/s10661-023-11345-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11345-z

Keywords

Navigation