Skip to main content

Advertisement

Log in

Pedological data for the study of soils developed over a limestone bed in a humid tropical environment

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Lithological characteristics interact with other factors of soil formation to define soil genesis. This becomes more interesting as data on the mineral and elemental oxide components of soils developed from limestone are rarely available in the humid tropical environment. The present study investigated the elemental oxide content, forms of sesquioxides, and clay mineral species in some limestone soils. Soil samples were obtained from three (3) crestal soil profile pits and analyzed for elemental content by the use of an X-ray fluorescence spectrometer, and sesquioxide forms by inductively coupled plasma–mass spectrometer. Analyses were done in triplicates. The mineralogy of the clay fraction was determined on the A, B, and C horizon samples using an X-ray diffraction technique. The occurrence of SiO2 (203–277 g/kg), Al2O3 (65–105 g/kg), and Fe2O3 (14–95 g/kg) in substantial amounts over MnO2, ZrO2, and TiO2 with negligible quantities of CaO suggested comparatively more developed soils in the Agoi Ibami and Mfamosing tropical rainforests. Crystalline form of Fe was dominant over amorphous form, with indications of the co-migration of dithionite Fe with clay to the B horizons of the soils. Quartz, kaolinite, montmorillonite, and chlorite-vermiculite-montmorillonite interlayered minerals dominated the clay mineralogy of the studied soils. Mineral transformation places the soils at the transitory stage from the intermediate to the complete stage of soil development. The expanding clay minerals are most likely to increase plant nutrient adsorption and soil fertility status to accommodate the cultivation of a wider range of crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data used in the current study are available on reasonable request from the corresponding author.

References

  • Akpan-Idiok, A. U., & Ogbaji, P. O. (2013). Characterization and classification of Onwu River Floodplain soils in Cross River State. Nigeria. International Journal of Agricultural Research, 8(3), 107–1222.

    Article  Google Scholar 

  • Al-Farraj, A. S. (2011). Mineralogical composition of limestone rock and soil from Jubaila Formation. Asian Journal of Earth Sciences, 4(4): 203–213.

  • Al-Khirbash, S. A. (2016). Geology, mineralogy, and geochemistry of low grade Ni-lateritic soil (Oman Mountains, Oman). Chemie Der Erde, 76, 363–381.

    Article  CAS  Google Scholar 

  • Aparı´cio, P., & Ferrell Jr., R. E. (2001). An application of profile fitting and CLAYþþ for the quantitative representation (QR) of mixed-layer clay minerals. Clay Minerals, 36, 501–514.

    Article  Google Scholar 

  • Aubert, G., & Segalen, P. (1966). Project de classification des sols ferralliques. Cah. O.R.S.T.O.M. Sdr. Pddoi., 4, 97–112.

    Google Scholar 

  • Babechuk, M. G., Widdowson, M., & Kamber, B. S. (2014). Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chemical Geology, 363, 56–75.

  • Bautista, F., Palacio-Aponte, G., Quintana, P., & Zinck, J. A. (2011). Spatial distribution and development of soils in tropical karst areas from the Peninsula of Yucatan, Mexico. Geomorph, 135(314), 308–321.

    Article  Google Scholar 

  • Bish, D. L. (1994). Quantitative X-ray diffraction analysis of soils. In J. E. Amonette, L. W. Zelazny, & R. J. Luxmoore (Eds.), Quantitative methods in soil mineralogy (pp. 267–295). Soil Science Society of America.

    Google Scholar 

  • Bohn, H., McNeal, B., & O’Connor, G. (2001). Soil Chemistry (3rd ed.). Wiley Interscience.

    Google Scholar 

  • Brindley, G.W., & Brown, G. (1980). Crystal structures of clay minerals and their X-ray identification: London, Mineralogical Society, 495 p.

  • Burt, R., Wilson, M. A., Mays, M. D., & Lee, C. W. (2003). Major and trace elements of selected pedons in the USA. Journal of Environmental Quality, 32, 2109–2122. https://doi.org/10.2134/jeq2003.2109

    Article  CAS  Google Scholar 

  • Cabadas-Baez, H., Solleiro, E., Sedov, S., Pi Puig, T., & Gama-Castro, J. (2010). Pedosediments of karstic sinkholes in the eolianites of NE Yucatan: A record of late Quaternary soil development, geomorphic processes and landscape stability. Geomorph, 122, 323–337.

    Article  Google Scholar 

  • Chamayou, H., & Legros, J. P. (1989). Les bases physiques, chimiques et mineralogiques de la science du sol., presses universitaires de France.

  • Churchman, G.J., & Lowe, D. J. (2012). Alteration, formation and occurrence of minerals in soils. In: Huang, P.M., Li, Y., Sumner, M.E. (Eds.), Handbook of Soil Sciences, Properties and Processes, second ed. CRC Press, Boca Raton, pp. 20.1–20.72.

  • Cornell, R. M., & Schwertmann, U. (1979). Clays. Clay Minerals, 27, 402.

    Article  CAS  Google Scholar 

  • Curi, N., & Franzmeier, D. P. (1987). Effects of parent rocks on chemical and mineralogical properties of some oxisols in Brazil. SSSA Jour, 51, 153–158.

    CAS  Google Scholar 

  • Deepthy, R., & Balakrishnan, S. (2005). Climatic control on clay mineral formation: Evidence from weathering profiles developed on either side of the Western Ghats. Journal of Earth System Science, 114, 545–556.

    Article  CAS  Google Scholar 

  • Da Silva, G. A., Camelo, D. D., Correa, M. M., De Souza, V. S., & (Jnr.), V. S., Filho, M. R. R., & Filho, J. C. D. (2019). Pedogenesis on coastal tablelands area with low range altimetry in Paraiba State. Revista Caatinga, 32(2), 1983–2125.

    Article  Google Scholar 

  • Duiker, S. W., Rhoton, F. E., Torrent, J., Smeck, N. E., & Lal, R. (2003). Iron hydroxide crystallinity effects on soil aggregation. Soil Science Society of America Journal, 67, 606–611.

    Article  CAS  Google Scholar 

  • Dolui, A. K., & Bera, R. (2001). Relation between Fe forms and pedogenic processes in some Alfisols of Orissa, India. Agrochim. XLV: 161–170

  • Dolui, A. K., & Mondal, A. (2007). Influence of different forms of iron and aluminum on the nature of soil acidity of some inceptisols, alfisols, and ultisols. Communications in Soil Science and Plant Analysis, 38(1–2), 119–131.

  • Durn, G. (2003). Terra Rossa in the Mediterranean Region: Parent materials, composition and origin. Geologia Croatica, 56(1), 83–100.

    Article  CAS  Google Scholar 

  • Duzgoren-Aydin, N. S., Aydin, A., & Malpas, J. (2002). Re-assessment of chemical weathering indices: Case study on pyroclastic rocks of Hong Kong. Engineering Geology, 63(1–2), 99–119.

    Article  Google Scholar 

  • Egli, M., Wernli, M., Bruga, C., Kneisel, C., Mavris, C., Valboa, G., Mirabella, A., Plötze, M., & Haeberli, W. (2011). Fast but temporally scattered smectite-formation in the proglacial area Morteratsch: An evaluation using GIS. Geoder, 164, 11–21.

    Article  CAS  Google Scholar 

  • Emadi, M., Baghernejad, M., Mermarian, H., Saffari, M., & Fath, H. (2008). Genesis and clay mineralogical investigation of highly calcareous soils in semi-arid regions of Southern Iran. Journal of Applied Sciences, 8, 288–294. https://doi.org/10.3923/jas.2008.288.294

    Article  CAS  Google Scholar 

  • Fatoye, F. B., & Gideon, Y. B. (2013). Geology and occurrences of limestone and marble in Nigeria. Journal of Natural Sciences Research, 3(11).

  • Fernández-Caliani, J. C., Romero-Baena, A., González, I., & Galán, E. (2020). Geochemical anomalies of critical elements (Be Co, Hf, Sb, Sc, Ta, V, W, Y and REE) in soils of western Andalusia (Spain). Applied Clay Science, 191(2020), 105610.

    Article  Google Scholar 

  • Ferreira, E. P., Anjos, L. H. C., Pereira, M. G., Valladares, G. S., Silva, R. C., & Azevede, A. C. (2016). Genesis and classification of soils containing carbonate on the Apodi plateau, Brazil. Revista Brasileira de Ciência do Solo, 40, e0150036

  • Girao, R. O., Moreira, L. G., Girao, A. L., Romero, R. E., & Ferreira, T. O. (2014). Soil genesis and iron nodules in a karst environment of the Apodi plateau. Revista Ciencia Agronomica, 45(4), 683–695.

    Article  Google Scholar 

  • Hameed, A., Raja, P., Ali, M., Upreti, N., Kumar, N., Tripathi, J. K., & Srivastava, P. (2018). Micromorphology, clay mineralogy, and geochemistry of calcic-soils from western Thar Desert: Implications for origin of palygorskite and southwestern monsoonal fluctuations over the last 30 ka. CATENA, 163, 378–398.

    Article  CAS  Google Scholar 

  • Haynes, R. J. (2005). Labile organic matter fractions as central components of the quality of agricultural soils; An overview. Advances in Agronomy, 85, 221–268.

    Article  CAS  Google Scholar 

  • Hsu, P. H. (1989). Aluminum oxides and oxyhydroxides. In J. B. Dixon & S. B. Weed (Eds.), Minerals in soil environments (pp. 331–378). Soil Science Society of America.

    Google Scholar 

  • Intamo, P., Suddhiprakarn, A., Kheoruenromne, I., Tawornpruek, S., & Gilkes, R. J. (2014). Clay minerals and metals in soils on mineralized Limestone, Western Thailand. Australian Clay Minerals Society Conference-Perth. Pp. 7–10.

  • Irmak, S., Surucu, A. K., & Aydogdu, I. H. (2007). Effects of different parent material on the mineral characteristics of Soils in the arid Region of Turkey. Pakistan Journal of Biological Sciences, 10(4), 528–536.

    Article  CAS  Google Scholar 

  • Jafarzadeh, A. A., Garosi, U., Oustan, S., & Ahmadi, A. (2013). Soil erosion status in Iran and clay minerals influence on soils interrill erodibility factor a case study: dasht-e-tabriz.

  • Jonczak, J., Šimanský, V., & Polláková, N. (2015). Characteristics of iron and aluminium forms and quantification of soil forming processes in chernozems in Western Slovakia. Polish Journal of Soil Science, XLVIII/2 PL ISSN 0079–2985. https://doi.org/10.17951/pjss/2015.48.2.241

  • Juo, A. S. R., Moormann, F. R., & Maduakor, H. O. (1974). Forms and pedogenetic distribution of extractable iron and aluminum in selected soils of Nigeria. Geoder, 11, 167–179.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). CRC Press, Taylor & Francis Group, Boca Raton London New York. Pp. 505.

  • Kasanin-Grubin, M. (2013). Catena clay mineralogy as a crucial factor in badland hillslope processes. CATENA, 106, 54–67.

    Article  CAS  Google Scholar 

  • Kampf, N., & Curi, N. (2012). Formação e evolução do solo (pedogênese). In: Ker JC, Curi N, Schaefer CEGR, Vidal-Torrado P, (eds.) Pedologia: fundamentos. Viçosa, MG: Sociedade Brasileira de Ciência do Solo. 207–302.

  • Katsumi, M. (1989). Geochimica Et Cosmochimica Acta, 53, 2915–2924.

    Article  Google Scholar 

  • Kendrick, K. J., & Graham, R. C. (2004). Pedogenic silica accumulation in chronosequence soils, southern California. SSSA Journal, 68(4), 1295–1303.

    Article  CAS  Google Scholar 

  • Khresat, S. A., & Taimeh, A. Y. (1998). Properties and characterization of Vertisols developed on limestone in a semi-arid environment. Journal of Arid Environments, 40, 235–244. https://doi.org/10.1006/jare.1998.0445

    Article  Google Scholar 

  • Kowalska, J., Kajdas, B., & Zaleski, T. (2017). Variability of morphologicalk, physical and chemical properties of soils derived from carbonate –rich parent materials in the Pieniry mountains South Poland. Soil Ci. Annual, 68, 27–38.

    Article  CAS  Google Scholar 

  • Kowalska, J. B., Skiba, M., Maj-Szeliga, K., Mazurek, R., & Tomasz, Z. (2020). Does calcium carbonate influence clay mineral transformation in soils developed from slope deposits in Southern Poland? Journal of Soils and Sediments. https://doi.org/10.1007/s11368-020-02764-3

    Article  Google Scholar 

  • Krasilnikov, P., García-CalderóN., N. E., & Fuentes-Romero, E. (2007). Pedogenesis and slope processes in subtropical mountain areas, Sierra Sur de Oaxaca, Mexico. Revista Mexicana de Ciencias Geológicas, 24(3), 469–486.

  • Krekeler, M. P. S., Calkins, C., & Borkiewicz, O. J. (2010). Mineralogical and hydrogeologic properties of a partially unconsolidated Pleistocene limestone in the East central Yucatan: Implications for the development of subsurface flow constructed wetlands in the region. Carbonates and Evaporites, 25(1), 77–86.

    Article  CAS  Google Scholar 

  • Lazaratou, C. V., Panagiotaras, D., Panagopoulos, G., Pospíšil, M., & Papoulis, D. (2020). Ca treated Palygorskite and Halloysite clay minerals for Ferrous Iron (Fe2+) removal from water systems. Environmental Technology and Innovation, 2020(19), 100961.

    Article  Google Scholar 

  • Li, C., Li, Y., Cheng, H., Jiang, C., & Zheng, L. (2022). Remediation of soil mercury by modified vermiculite-montmorillonite and its effect on the growth of Brassica chinensis L. Molecules, 27, 5340. https://doi.org/10.3390/molecules27165340

    Article  CAS  Google Scholar 

  • Li, C., Zheng, L. G., Jiang, C. L., Chen, X., & Ding, S. S. (2021). Characteristics of leaching of heavy metals from low-sulfur coal gangue under different conditions. International Journal of Coal Science & Technology, 8, 780–789.

    Article  CAS  Google Scholar 

  • Lindsay, W. L. (1974). Role of chelation in micronutrient availability. In E. W. Carson (Ed.), The Plant Root and Its Environment (pp. 507–524). Charlottesville, VA: University Press of Virginia.

    Google Scholar 

  • Ma, J. F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50, 11–18.

    Article  CAS  Google Scholar 

  • Mahaney, W. C., Hancock, R. G., & Sanmugadas, K. (1991). Extractable Fe-Al and geochemistry of Late Pleistocene Paleosol in the Dalijia Shan, Western China. Journal of Southeast Asian Earth Sciences, 6, 75–82.

    Article  Google Scholar 

  • McKeague, J. A., & Day, J. H. (1966). Dithionite- and oxalate-extractable Fe and A1 as aids in differentiating various classes of soils. Canadian Journal of Soil Science, 46, 13–22.

    Article  CAS  Google Scholar 

  • Mehra, O. P., & Jackson, M. L. (1960). Iron oxide removal from soils and clays by dithionite citrate system buffered with sodium bicarbonate. Clays Clay Minerals, 7, 317–327.

    Article  Google Scholar 

  • Moreira, A., Franchini, J. C., Moraes, L. A. C., & Malavolta, E. (2000). Disponibilidade de nutrientes em Vertissolo calcário. Pesquisa Agropecuaria Brasileira, 35, 2107–2113. https://doi.org/10.1590/S0100-204X2000001000024

    Article  Google Scholar 

  • Mota, J. C. A., & Assis (Jnr.), R. N., Amaro, F. J., Romero, R. E., Mota, F. O. B., & Libardi, P. L. (2007). Atributos mineralógicos de três solos explorados com a cultura do melão na Chapada do Apodi – RN. Revista Brasileira de Ciência do Solo, 31, 445–454. https://doi.org/10.1590/S0100-06832007000300004

    Article  CAS  Google Scholar 

  • Mukaetov, D., Petkovski, D., & Andreevski, M. (2000). Contents of exchangeable ions of calcocambi soil and Terra Rossa on the Gallicica Mountain. In: Proc. Of the Symposium Soil and their Exploitation, MASA, Skopje, Pp. 83

  • Négrel, P., Ladenberger, A., Reimann, C., Birke, M., Demetriades, A., & Sadeghi, M. (2019). GEMAS: Geochemical background and mineral potential of emerging tech-critical elements in Europe revealed from low-sampling density geochemical mapping. Application of Geochimica, 111, 104425. https://doi.org/10.1016/j.apgeochem.2019.104425

  • Nesbitt, H. W., & Markovics, G. (1980). Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta, 44(11), 1659–1666.

  • Obi, J. C., Akinbola, G. E., & Anozie, H. F. (2009). Distribution of dithionite and oxalate-extractable iron oxides of a catena in the basement complex soils of Southwestern Nigeria. Nigeria Journal of Soil Science, 19, 100–108.

    Google Scholar 

  • Ofem, K. I., & Esu, I. E. (2015). Pedological study of soils developed on schist in Biase Local Government Area, Cross River State, Nigeria. Nigeria Journal of Soil Science, 25, 181–193.

    Google Scholar 

  • Ofem, K. I., Asadu, C. L. A., Ezeaku, P. I., Kingsley, J., Eyong, M. O., Katerina, V., Vaclav, T., Karel, N., Ondrej, D., & Vit, P. (2020). Genesis and classification of soils over limestone formations in a tropical humid region. Asian Journal of Scientific Research, 13, 228–243. https://doi.org/10.3923/ajsr.2020.228.243

    Article  CAS  Google Scholar 

  • Ofem, K. I., John, K., Pawlett, M., Eyong, M. O., Awaogu, C. E., Umeugokwe, P., Ambros-Igho, G., Ezeaku, P. I., & Asadu, C. L. A. (2021). Estimating soil organic matter: A case study of soil physical properties for environment-related issues in Southeast Nigeria. Earth Systems and Environment. https://doi.org/10.1007/s41748-021-00263-0

    Article  Google Scholar 

  • Omdi, F. E., Daoudia, L., & Fagel, N. (2018). Origin and distribution of clay minerals of soils in semi-arid zones: Example of Ksob watershed (Western High Atlas, Morocco). Applied Clay Science, 163, 81–91.

    Article  CAS  Google Scholar 

  • Osayande, P. E., Oviasogie, P. O., Aisueni, N. O., Stephen, O., Irhemu, P., & Ekebafe, M. O. (2013). Assessment of dithionite and oxalate extractable iron and aluminium oxides in soils supporting Raphia palms (Raphia spp.) at NIFOR Main Station. Nigeria Journal of Soil Science, 23(2), 1–10.

  • Owliaie, H. R., Abtahi, A., & Heck, R. J. (2006). Pedogenesis and clay mineralogical investigation of soils formed on gypsiferous and calcareous materials, on a transect, southwestern Iran. Geoderma, 134, 62–81. https://doi.org/10.1016/j.geoderma.2005.08.015

    Article  CAS  Google Scholar 

  • Pavitch, M. J. (1989). Regolith residence time and the concept of surface age of the piedmont ‘Peneplain.’ Geomorph, 2, 181–196.

    Article  Google Scholar 

  • Petar, R.., Zorica1, T., Jovica, V., Snežana, J., & Aleksandar, D. (2016). Mineral composition of soils formed on massive limestone of Pivska Planina, International Journal of Innovative Studies in Sciences and Engineering Technology, 2(7), 38-43

  • Ross, C. S., & Hendricks, S. (1945). Minerals of the montmorillonite group, their origin and relation to soils and clays. US Geological Survey Paper, 205(3), 23–79.

    Google Scholar 

  • Rozanov, A., Lessovaia, S., Louw, G., Polekhovsky, Y., & de Clercq, W. (2017). Soil clay mineralogy as a key to understanding planation and formation of MARK fluvial terraces in the South African. CATENA, 156, 375–438.

    Article  Google Scholar 

  • Sambo, E. E, Ufoegbune, G. C., Eruola, A. O., & Ojekunle, O. Z. (2016). Pattern of climate change in Cross River Basin of Nigeria: Implication to agriculture and food security Nigerian Meteorological Society (NMETS), “Climate variability and change: Impact, science, innovation and policy” at Federal College of Education Osiele, Abeokuta. 21 - 24 November, 2016.

  • Schaetzl, R. J., & Anderson, S. (2005). Soils: Genesis and geomorphology (p. 817). Cambridge University Press.

    Book  Google Scholar 

  • Schoeneberger, P. J., Wysocki, D. A., Benham, E. C., & Soil Survey Staff. (2012). Field book for describing and sampling soils, Version 3.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.

  • Schwertmann, U. (1993). Relations between iron oxide, soil colour, and soil formation. In: J. M. Bigham and E. J. Ciolkosz (editors). Soil colour. Soil Science Society of America Special Publications, 31, pp. 51–69.

  • Seal, A., Bera, R., Bhattacharyya, P., Mukhopadhyay, K., & Giri, R. (2006). Degree of soil development in some Alfisols of subtropical India with special reference to the nature and distribution of iron and aluminum. International Journal of Agricultural Research, 1, 305–311.

    Article  CAS  Google Scholar 

  • Sedov, S., Solleiro-Rebolledo, E., Fedick, S. L., Pi-puig, T., Vallejo-Gomez, E., & Flores-Delgadillo, M. (2008). Micromorphology of a soil Catena in Yucatan: Pedogenesis and geomorphological processes in a Tropical Karst Landscape. New trends in Soil Micromorphology, Spriger-Verlag Berlin Heidelberg, P. 19–37.

  • Sharma, S. S., Totawat, K. L., & Shyampura, R. L. (1996). Characterization and classification of Soils in a Toposequence over basaltic terrain. Journal of the Indian Society of Soil Science, 44, 470–475.

    Google Scholar 

  • Sherman, G. D., Matsusaka, Y., Ikawa, H., & Uehara, G. (1964). The role of amorphous fraction in the properties of tropical soils. Agrochimica, 7, 146–163.

    Google Scholar 

  • SilvaNeto, L. F. (2008). Oxidos de ferro em latossolos tropicais e subtropicais Brasileiros em plantio direto. Revista Brasileira De Ciencias Do Solo, 32(5), 1873–1881.

    Article  Google Scholar 

  • Six, J., Elliott, E. T., & Paustian, K. (2000). Soil structure and soil organic matter: II. A normalized stability index and the effect of mineralogy. Soil Science Society of America Journal, 64, 1042–1049.

    Article  CAS  Google Scholar 

  • Soil Survey Staff (SSS). (2014a). Kellogg soil survey laboratory methods manual. Soil Survey Investigations Report No. 42, Version 5.0. R. Burt and Soil Survey Staff (ed.). U.S Department of Agriculture, Natural Resources Conservation Service. P. 1001.

  • Soil Survey Staff (SSS). (2014b). Keys to soil taxonomy. 12th Edn., United State Department of Agriculture, Washington, DC., Pages: 360.

  • Spalevic, V., Lakicevic, M., Radanovic, D., Billi, P., Barovic, G., Vujacic, D., Sestras, P., & Darvishan, A. K. (2017). Ecological-economic (Eco-Eco) modelling in the river basins of mountaineous regions: Impact of land cover changes on sediment yield in the Velicka Rijeka in Montenegro. Not Bot Horti Agrobo, 45(2), 602.

    Article  Google Scholar 

  • Tan, K. H. (2011). Principles of soil chemistry (4th edn.). CRC press, pp. 362.

  • Tan, K. H., & Binger, A. (1986). Effect of humic acid on aluminum toxicity in corn plants. Soil Science, 141, 20–25.

    Article  CAS  Google Scholar 

  • Tardi, Y., & Nahon, D. B. (1985). Geochemistry of laterites; stability of Al-goethite, Al-hematite and Fe3+-kaolinite in bauxites and ferricretes, An approach to the mechanism of concretion formation. American Journal of Science, 285, 865–903.

    Article  Google Scholar 

  • Tejnecky, V., Samonil, P., Grygar, T. M., Vasat, R., Ash, C., Drahota, P., Sebek, O., Nemecek, K., & Drabek, O. (2015). Transformation of iron forms during pedogenesis after tree uprooting in a natural beech-dominated forest. CATENA, 132, 12–20.

    Article  CAS  Google Scholar 

  • Tsozue, D., Bitom, D., & Lucas, Y. (2009). Biogeochemistry of iron, aluminium and silicon in humid tropical mountainous soils (Bambouto mountain, west Cameroon). Open Journal of Geology, 3, 70–81.

    Article  Google Scholar 

  • Vodyanitskii, Y. N., & Vasil’ev, A. A., Lesovaia, S. N., Sataev, E. F., & Sivtsov, A. V. (2004). Formation of manganese oxides in soils. Eurasian Soil Science, 37(6), 572–584.

    Google Scholar 

  • Wagai, R., Kajiura, M., & Asano, M. (2020). Iron and aluminum association with microbially processed organic matter via meso-density aggregate formation across soils: Organo-metallic glue hypothesis. The Soil, 6, 597–627.

    Article  CAS  Google Scholar 

  • Wilson, S. G., Lambert, J., Nanzyo, M., & Dahlgren, R. A. (2017). Soil genesis and mineralogy across a volcanic lithosequence. Geoder, 285, 301–312.

    Article  CAS  Google Scholar 

  • Yakubu, M., & Ojanuga, A. G. (2013). Pedogenesis, weathering status and mineralogy of the soils on ironstone plateau (laterites), sokoto, Nigeria. Bayero Journal of Pure and Applied Sciences, 6(2), 93–100.

    Article  Google Scholar 

  • Young, J. L., & Aldag, R. W. (1982). Inorganic forms of nitrogen in soil. p. 43– 66. In F.J. Stevenson (ed.) Nitrogen in agricultural soils. Agronomy 22. ASA and SSSA, Madison, WI.

  • Yilmaz, K. (1990). Harra Ovasii Topraklarinin mineralojik Karakteristikleri. C.U. Yay. Doktora Tezi, Adana, Turkey, PP. 186

  • Yingbo, D., Weihong, Z., Hai, L., & Yueqing, Y. (2020). Preparation of Fe2O3-coated vermiculite composite by hydrophobic agglomeration and its application in As/Cd co-contaminated soil. Environmental Technology, 43(1), 83–94.

    Google Scholar 

  • Zango, Z. U., Garba, A., Garba, Z. N., Zango, M. U., Usman, F., & Lim, J. W. (2022). Montmorillonite for adsorption and catalytic elimination of pollutants from wastewater: A state-of-the-arts review. Sustainability, 14, 16441. https://doi.org/10.3390/su142416441

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The services of Christine Kimpton, and Nuannat Simmons of Soil Science Laboratory, Cranfield University, UK, and the Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences are acknowledged.

Funding

This work was supported by the Tertiary Education Trust Fund of Nigeria (grant number: TETFUND/DAST & D/ UNIV/ CALABAR/ ASTD/ 2017/ VOL. 1).

Author information

Authors and Affiliations

Authors

Contributions

Kokei Ikpi Ofem and Mark Pawlett designed and wrote the initial paper. Kingsley John and Victoria Francis Ediene analyzed the soil samples and did initial grammar check, while Victor Ikemefuna Ezeaku and Alungbe Moses Ede organized the data and references and prepared Fig. 1. Patrick K. Kefas and Kokei Ikpi Ofem were involved in field study and processing of soil samples. All authors reviewed the manuscript.

Corresponding author

Correspondence to Kokei Ikpi Ofem.

Ethics declarations

Ethics approval

All authors have read, understood, and complied as applicable with the statement on “Ethical responsibilities” as found in the instructions for Authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ofem, K.I., John, K., Ediene, V.F. et al. Pedological data for the study of soils developed over a limestone bed in a humid tropical environment. Environ Monit Assess 195, 628 (2023). https://doi.org/10.1007/s10661-023-11229-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11229-2

Keywords

Navigation