Skip to main content

Advertisement

Log in

Reformation of dairy effluent—a phycoremediation approach

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Microalgae are a unique renewable resource utilized since ages, serving as a reservoir for the production of various metabolites. In this study, dairy waste water (DWW) is used as the nutrient media for the cultivation of microalgae. This study focuses on the phycoremediation process of converting rich nutrients in the effluent into biomass and removing contaminants using microalgae. The specific growth rate reached the maximum of 0.55 day−1 in Desmococcus olivaceous, followed by 0.39 day−1 for Scenedesmus dimorphus, 0.23 day−1 in DCS (consortia composing all three strains in equal ratio), and lastly 0.22 day−1 in Chlorella vulgaris. The biomass productivity was 1.44 g L−1 day−1, 1.06 g L−1 day−1, 0.88 g L−1 day−1, and 0.65 g L−1 day−1 in D. olivaceous, S. dimorphus, C. vulgaris, and DCS, respectively. The COD and BOD removal percentage was 82.85% and 45.40% in D. olivaceous, 81.98% and 44.25% in C. vulgaris, 80.73% and 53.45% in S. dimorphus, and 80.10% and 43.10% in DCS, respectively. These results emphasize the promising role of algae in dairy effluent treatment, highlighting the effluent as a suitable medium for microalgae cultivation. It verifies the circular bio-economy concept where the treated wastewater is converted into value-added products.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

We have incorporated all the data associated with this manuscript.

References

  • Abatenh, E., Gizaw, B., Tsegaye, Z., & Wassie, M. (2017). The role of microorganisms in bioremediation-A review. Open Journal of Environmental Biology, 2(1), 038–046.

    Article  Google Scholar 

  • Amul - Milk. (2021). The inspiration behind a revolution. Retrieved August 21, 2021, from https://www.amuldairy.com/history.php/

  • APHA. (1998). Standard methods for the examination of water and wastewater. 20th edn. APHA, American Water Works Association, and Water Pollution Control Federation, Washington, DC, USA.

  • APHA. (2012). Standard methods for the examination of water and wastewater. Washington DC American Public Health Association.

  • Arora, V., & Khosla, B. (2021). Conventional and contemporary techniques for removal of heavy metals from soil. In Biodegradation technology of organic and inorganic pollutants. IntechOpen.

  • Asadi, P., Rad, H. A., & Qaderi, F. (2019). Comparison of Chlorella vulgaris and Chlorella sorokiniana pa.91 in post treatment of dairy wastewater treatment plant effluents. Environmental Science and Pollution Research, 26(28), 29473–29489. https://doi.org/10.1007/s11356-019-06051-8

    Article  CAS  Google Scholar 

  • Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–Classification based on site of application: Principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32(11), 1–18.

    Article  CAS  Google Scholar 

  • Balaji, S., Kalaivani, T., & Rajasekaran, C. (2014a). Biosorption of zinc and nickel and its effect on growth of different Spirulina strains. Clean - Soil, Air, Water, 42(4), 507–512. https://doi.org/10.1002/clen.201200340

    Article  CAS  Google Scholar 

  • Balaji, S., Kalaivani, T., Rajasekaran, C., Shalini, M., Siva, R., Singh, R. K., & Akthar, M. A. (2014b). Arthrospira (Spirulina) species as bioadsorbents for lead, chromium, and cadmium - A comparative study. Clean - Soil, Air, Water, 42(12), 1790–1797. https://doi.org/10.1002/clen.201300478

    Article  CAS  Google Scholar 

  • Barrera Bernal, C., Vázquez, G., Barceló Quintal, I., & Laure Bussy, A. (2008). Microalgal dynamics in batch reactors for municipal wastewater treatment containing dairy sewage water. Water, Air, and Soil Pollution, 190(1–4), 259–270. https://doi.org/10.1007/s11270-007-9598-3

    Article  CAS  Google Scholar 

  • Benemann, J. R., Tillett, D. M., & Weissman, J. C. (1987). Microalgae biotechnology. Trends in Biotechnology, 5(2), 47–53. https://doi.org/10.1016/0167-7799(87)90037-0

    Article  CAS  Google Scholar 

  • Chokshi, K., Pancha, I., Ghosh, A., & Mishra, S. (2016). Microalgal biomass generation by phycoremediation of dairy industry wastewater: An integrated approach towards sustainable biofuel production. Bioresource Technology, 221, 455–460. https://doi.org/10.1016/j.biortech.2016.09.070

    Article  CAS  Google Scholar 

  • Central Pollution Control Board, CPCB. (1995). Classification of inland surface waters (CPCB Standards). Water Quality Parivesh, 1(4), 6.

    Google Scholar 

  • Chen, H., Wang, J., Zheng, Y., Zhan, J., He, C., & Wang, Q. (2018). Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation. Applied Energy. https://doi.org/10.1016/j.apenergy.2017.11.058

    Article  Google Scholar 

  • Chinnasamy, S., Bhatnagar, A., Hunt, R. W., & Das, K. C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 101(9), 3097–3105. https://doi.org/10.1016/j.biortech.2009.12.026

    Article  CAS  Google Scholar 

  • Choi, Y. K., Jang, H. M., & Kan, E. (2018). Microalgal biomass and lipid production on dairy effluent using a novel microalga, Chlorella sp. isolated from dairy wastewater. Biotechnology and Bioprocess Engineering, 23(3), 333–340. https://doi.org/10.1007/s12257-018-0094-y

    Article  CAS  Google Scholar 

  • de Queiroz, R. D. C. S., Maranduba, H. L., Hafner, M. B., Rodrigues, L. B., & de Almeida Neto, J. A. (2020). Life cycle thinking applied to phytoremediation of dairy wastewater using aquatic macrophytes for treatment and biomass production. Journal of Cleaner Production, 267, 122006. https://doi.org/10.1016/j.jclepro.2020.122006

    Article  CAS  Google Scholar 

  • Do, J. M., Jo, S. W., Kim, I. S., Na, H., Lee, J. H., Kim, H. S., & Yoon, H. S. (2019). A feasibility study of wastewater treatment using domestic microalgae and analysis of biomass for potential applications. Water, 11(11), 2294.

    Article  CAS  Google Scholar 

  • Dominic, V. J., Murali, S., & Nisha, M. C. (2009). Phycoremediation efficiency of three micro algae Chlorella vulgaris, Synechocystis salina and Gloeocapsa gelatinosa. SB Academic Review, 16(1&2), 138–146.

    Google Scholar 

  • Enamala, M. K., Enamala, S., Chavali, M., Donepudi, J., Yadavalli, R., Kolapalli, B., Aradhyula, T. V., Velpuri, J., & Kuppam, C. (2018). Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renewable and Sustainable Energy Reviews, 94, 49–68. https://doi.org/10.1016/j.rser.2018.05.012

    Article  CAS  Google Scholar 

  • FAO. (2021). Dairy market review. Retrieved November 28, 2022, from https://www.fao.org/3/cc1189en/cc1189en.pdf

  • Feil, A. A., Schreiber, D., Haetinger, C., Haberkamp, Â. M., Kist, J. I., Rempel, C., Maehler, A. E., Gomes, M. C., & da Silva, G. R. (2020). Sustainability in the dairy industry: A systematic literature review. Environmental Science and Pollution Research, 27(27), 33527–33542. https://doi.org/10.1007/s11356-020-09316-9

    Article  Google Scholar 

  • Ghashghaie, M., Eslami, H., & Ostad-Ali-Askari, K. (2022). Applications of time series analysis to investigate components of Madiyan-rood river water quality. Applied Water Science, 12(8), 1–14.

    Article  Google Scholar 

  • Khemka, A., & Saraf, M. (2015). Phycoremediation of dairy wastewater coupled with biomass production using Leptolyngbya sp. Journal of Environmental Science and Water Resources, 4(3), 104–111.

    Google Scholar 

  • Kim, M. K., Park, J. W., Park, C. S., Kim, S. J., Jeune, K. H., Chang, M. U., & Acreman, J. (2007). Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater. Bioresource Technology, 98(11), 2220–2228. https://doi.org/10.1016/j.biortech.2006.08.031

    Article  CAS  Google Scholar 

  • Kothari, R., Pathak, V. V., Kumar, V., & Singh, D. P. (2012). Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water: An integrated approach for treatment and biofuel production. Bioresource Technology, 116, 466–470. https://doi.org/10.1016/j.biortech.2012.03.121

    Article  CAS  Google Scholar 

  • Kothari, R., Prasad, R., Kumar, V., & Singh, D. P. (2013). Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater. Bioresource Technology, 144, 499–503. https://doi.org/10.1016/j.biortech.2013.06.116

    Article  CAS  Google Scholar 

  • Kotteswari, M., Murugesan, S., & Ranjith Kumar, R. (2012). Phycoremediation of dairy effluent by using the microalgae Nostoc sp. International Journal of Environmental Research and Development, 2(1), 35–43. ISSN 2249-3131.

    Google Scholar 

  • Kumar, P. K., Krishna, S. V., Naidu, S. S., Verma, K., Bhagawan, D., & Himabindu, V. (2019). Biomass production from microalgae Chlorella grown in sewage, kitchen wastewater using industrial CO2 emissions: Comparative study. Carbon Resources Conversion, 2(2), 126–133. https://doi.org/10.1016/j.crcon.2019.06.002

    Article  CAS  Google Scholar 

  • Liu, C., Subashchandrabose, S., Ming, H., Xiao, B., Naidu, R., & Megharaj, M. (2016). Phycoremediation of dairy and winery wastewater using Diplosphaera sp. MM1. Journal of Applied Phycology, 28(6), 3331–3341. https://doi.org/10.1007/s10811-016-0894-4

    Article  CAS  Google Scholar 

  • Malla, F. A., Khan, S. A., Rashmi, Sharma, G. K., Gupta, N., & Abraham, G. (2015). Phycoremediation potential of Chlorella minutissima on primary and tertiary treated wastewater for nutrient removal and biodiesel production. Ecological Engineering, 75, 343–349. https://doi.org/10.1016/j.ecoleng.2014.11.038

    Article  Google Scholar 

  • Maurya, R., Paliwal, C., Ghosh, T., Pancha, I., Chokshi, K., Mitra, M., Ghosh, A., & Mishra, S. (2016). Applications of de-oiled microalgal biomass towards development of sustainable biorefinery. Bioresource Technology, 214, 787–796.

    Article  CAS  Google Scholar 

  • Moitra, M. (2021). Top 4 milk exporters in India 2022. Retrieved January 13, 2023. https://blog.exportsconnect.com/milk-exporters-india/

  • Murugesan, S. R., & Dhamotharan, J. K. (2007). Phycoremediation of oil refinery effulent using cyanobacterium. Ecology, Environment and Conservation, 13(4), 703–708.

    CAS  Google Scholar 

  • Nandini, N., Kumar, M., Sivasakthivel, S., & Vijay Kumar, M. (2013). Efficacy of microalgae on the removal of pollutants from wastewater. International Journal of Emerging Technologies in Computational and Applied Sciences, 1(3), 82–86.

    Google Scholar 

  • Nurdogan, Y., & Oswald, W. J. (1995). Enhanced nutrient removal in high-rate ponds. Water Science and Technology, 31(12), 33–43. https://doi.org/10.1016/0273-1223(95)00490-E

    Article  CAS  Google Scholar 

  • Ostad-Ali-As, K. (2022). Investigation of meteorological variables on runoff archetypal using SWAT: Basic concepts and fundamentals. Applied Water Science, 12(8), 1–18.

    Google Scholar 

  • Ostad-Ali-Askari, K. (2022). Management of risks substances and sustainable development. Applied Water Science, 12(4), 1–23.

    Article  Google Scholar 

  • Renuka, N., Sood, A., Prasanna, R., & Ahluwalia, A. S. (2015). Phycoremediation of wastewaters: A synergistic approach using microalgae for bioremediation and biomass generation. International Journal of Environmental Science and Technology, 12(4), 1443–1460. https://doi.org/10.1007/s13762-014-0700-2

    Article  CAS  Google Scholar 

  • Richards, R. G., & Mullins, B. J. (2013). Using microalgae for combined lipid production and heavy metal removal from leachate. Ecological Modelling, 249, 59–67. https://doi.org/10.1016/J.ECOLMODEL.2012.07.004

    Article  CAS  Google Scholar 

  • Sahrawat, K. L., & Prasad, R. (1975). A rapid method for determination of nitrate, nitrite, and ammoniacal nitrogen in soils. Plant and Soil, 42(1), 305–308. https://doi.org/10.1007/BF02186992

    Article  CAS  Google Scholar 

  • Saranya, D., & Shanthakumar, S. (2019). Green microalgae for combined sewage and tannery effluent treatment: Performance and lipid accumulation potential. Journal of Environmental Management, 241, 167–178. https://doi.org/10.1016/j.jenvman.2019.04.031

    Article  CAS  Google Scholar 

  • Sirisha, K., Suganya, B., Sivasubramanian, V., Bs, V., Swaminathan, D., Babu, A. C., & Meyyappan, N. (2017). Studies on the effect of pulsed magnetic field on the productivity of algae grown in dye industry effluent. Journal of Applied Biotechnology & Bioengineering, 3(5), 409–413.

    Google Scholar 

  • Swetha, C., Sirisha, K., Swaminathan, D., & Sivasubramanian, V. (2016). Study on the treatment of dairy effluent using Chlorella vulgaris and production of biofuel (algal treatment of dairy effluent). BioTechnology An Indian Journal, 21(1), 12–17.

    Google Scholar 

  • Umamaheswari, J., & Shanthakumar, S. (2016). Efficacy of microalgae for industrial wastewater treatment: A review on operating conditions, treatment efficiency and biomass productivity. Reviews in Environmental Science and Biotechnology, 15(2), 265–284. https://doi.org/10.1007/s11157-016-9397-7

    Article  CAS  Google Scholar 

  • Ummalyma, S. B., & Sukumaran, R. K. (2014). Cultivation of microalgae in dairy effluent for oil production and removal of organic pollution load. Bioresource Technology, 165, 295–301.

    Article  CAS  Google Scholar 

  • Wang, L., Li, Y., Chen, P., Min, M., Chen, Y., Zhu, J., & Ruan, R. R. (2010). Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresource Technology, 101(8), 2623–2628. https://doi.org/10.1016/j.biortech.2009.10.062

    Article  CAS  Google Scholar 

  • Wolf, A. M., & Baker, D. E. (1985). Comparisons of soil test phosphorus by Olsen, Bray P1, Mehlich I and Mehlich III methods. Communications in Soil Science and Plant Analysis, 16(5), 467–484. https://doi.org/10.1080/00103628509367620

    Article  CAS  Google Scholar 

  • Zhang, L., Cheng, J., Pei, H., Pan, J., Jiang, L., Hou, Q., & Han, F. (2018). Cultivation of microalgae using anaerobically digested effluent from kitchen waste as a nutrient source for biodiesel production. Renewable Energy, 115, 276–287.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the VIT management and the Dean SBST for providing the required facilities, infrastructure, support, and encouragement. A special acknowledgment to Bharathidasan University, Tiruchirappalli for providing us with the microalgal strains and helping with SEM analysis. The authors also acknowledge Mr. Arunram, Mr. Sasi Bhushan, Mr. Nagaraj, Mr. Manoj, and Ms. Chandra for their extended support in performing the experiments. The authors extend their gratitute to Prof. Michael Pillay, Erudite Scientific Editing & Science Writing Solutions, South Africa, for English correction and proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrasekaran Rajasekaran.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Phycoremediation technology is robust due to minimum automation, maintenance, and skilled human resources.

• Algae are eligible candidates for bioremediation due to the following factors: (a) oxygenation of the environment, (b) CO2 sequestration ability—a solution for the threat of global warming, and (c) removal of excess nutrients that lead to eutrophication.

• Promote and ensure the integration of algae-feed-fertilizer production with livestock raising in the nitrogen recycling systems lead industries towards zero-waste management.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nachiappan, K., Chandrasekaran, R. Reformation of dairy effluent—a phycoremediation approach. Environ Monit Assess 195, 405 (2023). https://doi.org/10.1007/s10661-023-10995-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-10995-3

Keywords

Navigation