Skip to main content

Advertisement

Log in

Multi-temporal variability forecast of particulate organic carbon in the Indonesian seas

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The current global condition characterized by high levels of CO2 is altering the carbon cycle and elemental biogeochemistry, resulting in subsequent global warming, climate change, ocean acidification, and the indirect response of deoxygenation. The features of Indonesia’s coastal ecosystems and continental shelf waters also contribute to spatio-temporal ocean carbon variability. For instance, the level of particulate organic carbon (POC) will change annually, and thus, over a decadal period, ocean dynamics may affect the temporal variability of POC. Motivated by such conditions, future forecasting is needed to envision the productivity of Indonesian seas by predicting vital parameters such as POC. This research aimed to forecast the temporal variability of POC in Indonesian waters. The Seasonal Autoregressive Integrated Moving Average (SARIMA) forecasting model was used by considering the lowest value of the Akaike information criterion (AIC) and the mean absolute percentage error/MAPE (threshold < 10%). Using the highest correlation coefficient (threshold: 0.75), we obtained the best fit for forecasting POC temporal variability. Hindcast POC data (2002–2020/2021) was used to train the forecasting model. The result shows that forecasting of POC temporal variability can be conducted up to 2030. The validity of prediction is ensured for less than 5 years forward after 2020 with correlation coefficients of 0.65 and 0.83 for seasonal and monthly POC, respectively. The hindcast and forecast estimates of POC in the Indonesian seas show a decreasing trend. The present study emphasizes the different forecasting results obtained using the different approaches of annual versus inter-annual variability. A sustained research effort is still required to assess POC forecasting for its potential benefits in marine system monitoring and assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Python code is available in the “Supplementary information.”

References

  • Antia, A. N., Koeve, W., Fischer, G., Blanz, T., Schulz-Bull, D., Scholten, J., Neuer, S., Kremling, K., Kuss, J., Peinert, R., Hebbeln, D., Bathmann, U., Conte, M., Fehner, U., & Zeitzschel, B. (2001). Basin-wide particulate carbon flux in the Atlantic Ocean: Regional export patterns and potential for atmospheric CO2 sequestration. Global Biogeochemical Cycles, 15(4), 845–862. https://doi.org/10.1029/2000GB001376

    Article  CAS  Google Scholar 

  • Avia, L. Q. (2019). Change in rainfall per-decades over Java Island, Indonesia. IOP Conference Series: Earth and Environmental Science, 374(1), 012037. https://doi.org/10.1088/1755-1315/374/1/012037

  • Azevedo, A., Malm, O., & Bisi, T. (2021). An upwelling area as a hotSpot for mercury biomonitoring in a climate change scenario : A case study with large demersal fishes from Southeast Atlantic (SE-Brazil). Chemosphere, 269, 128918 https://doi.org/10.1016/j.chemosphere.2020.128718

  • Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A., & Weber, T. (2019). Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature, 568(7752), 327–335. https://doi.org/10.1038/s41586-019-1098-2

  • Boyd, P. W., & Trull, T. W. (2007). Understanding the export of biogenic particles in oceanic waters: Is there consensus? Progress in Oceanography, 72(4), 276–312. https://doi.org/10.1016/J.POCEAN.2006.10.007

    Article  Google Scholar 

  • Branch, T. A., DeJoseph, B. M., Ray, L. J., & Wagner, C. A. (2013). Impacts of ocean acidification on marine seafood. Trends in Ecology & Evolution, 28(3), 178–186. https://doi.org/10.1016/j.tree.2012.10.001

    Article  Google Scholar 

  • Bromhead, D., Scholey, V., Nicol, S., Margulies, D., Wexler, J., Stein, M., Hoyle, S., Lennert-Cody, C., Williamson, J., Havenhand, J., Ilyina, T., & Lehodey, P. (2015). The potential impact of ocean acidification upon eggs and larvae of yellowfin tuna ( Thunnus albacares ). Deep Sea Research Part II: Topical Studies in Oceanography, 113, 268–279. https://doi.org/10.1016/j.dsr2.2014.03.019

    Article  CAS  Google Scholar 

  • Canadell, J. G., Le Quere, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., Conway, T. J., Gillett, N. P., Houghton, R. A., & Marland, G. (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences, 104(47), 18866–18870. https://doi.org/10.1073/pnas.0702737104

    Article  Google Scholar 

  • Chavez, F. P., Messié, M., & Pennington, J. T. (2010). Marine primary production in relation to climate variability and change. Annual Review of Marine Science, 3, 227–260. https://doi.org/10.1146/ANNUREV.MARINE.010908.163917

  • Chen, G., Han, W., Li, Y., & Wang, D. (2016). Interannual variability of equatorial Eastern Indian Ocean Upwelling: Local versus remote forcing. Journal of Physical Oceanography, 46(3), 789–807. https://doi.org/10.1175/JPO-D-15-0117.1

    Article  Google Scholar 

  • Chen, Y., & Tjandra, S. (2014). Daily collision prediction with SARIMAX and generalized linear models on the basis of temporal and weather variables. Transportation Research Record, 2432, 26–36. https://doi.org/10.3141/2432-04

    Article  Google Scholar 

  • Cisternas-Novoa, C., Lee, C., Tang, T., de Jesus, R., & Engel, A. (2019). Effects of higher CO2 and temperature on exopolymer particle content and physical properties of marine aggregates. Frontiers in Marine Science, 5(JAN). https://doi.org/10.3389/fmars.2018.00500

  • Close, H. G., & Henderson, L. C. (2020). Open-ocean minima in δ13C values of particulate organic carbon in the lower euphotic zone. Frontiers in Marine Science, 7, 739. https://doi.org/10.3389/FMARS.2020.540165/BIBTEX

    Article  Google Scholar 

  • Dahlman, A. (2009). Climate variability: Oceanic Niño Index (NOAA). Retrieved May 2021, from https://www.climate.gov/news-features/understanding-climate/climate-variability-oceanic-ni%C3%B1o-index

  • Doi, T., Behera, S. K., & Yamagata, T. (2020). Predictability of the super IOD Event in 2019 and its link with El Niño Modoki. Geophysical Research Letters, 47(7), e2019GL086713. https://doi.org/10.1029/2019GL086713

  • Ducklow, H. W., Erickson, M., Kelly, J., Montes-Hugo, M., Ribic, C. A., Smith, R. C., Stammerjohn, S. E., & Karl, D. M. (2008). Particle export from the upper ocean over the continental shelf of the West Antarctic Peninsula: A long-term record, 1992–2007. Deep-Sea Research Part II, 18–19(55), 2118–2131. https://doi.org/10.1016/J.DSR2.2008.04.028

    Article  Google Scholar 

  • Engel, A. (2002). Direct relationship between CO2 uptake and transparent exopolymer particles production in natural phytoplankton. Journal of Plankton Research, 24(1), 49–53. https://doi.org/10.1093/PLANKT/24.1.49

    Article  CAS  Google Scholar 

  • Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., & Zheng, B. (2022). Global Carbon Budget 2022. Earth System Science Data, 14(11), 4811–4900. https://doi.org/10.5194/essd-14-4811-2022

  • Friedrich, T., Timmermann, A., Abe-Ouchi, A., Bates, N. R., Chikamoto, M. O., Church, M. J., Dore, J. E., Gledhill, D. K., González-Dávila, M., Heinemann, M., Ilyina, T., Jungclaus, J. H., McLeod, E., Mouchet, A., & Santana-Casiano, J. M. (2012). Detecting regional anthropogenic trends in ocean acidification against natural variability. Nature Climate Change, 2(3), 167–171. https://doi.org/10.1038/nclimate1372

    Article  CAS  Google Scholar 

  • Gao, K., Zhang, Y., & Häder, D. P. (2018). Individual and interactive effects of ocean acidification, global warming, and UV radiation on phytoplankton. Journal of Applied Phycology, 30(2). https://doi.org/10.1007/s10811-017-1329-6

  • Gehlen, M., Barciela, R., Bertino, L., Brasseur, P., Butenschön, M., Chai, F., Crise, A., Drillet, Y., Ford, D., Lavoie, D., Lehodey, P., Perruche, C., Samuelsen, A., & Simon, E. (2015). Building the capacity for forecasting marine biogeochemistry and ecosystems: recent advances and future developments. Journal of Operational Oceanography, 8, s168–s187. https://doi.org/10.1080/1755876X.2015.1022350

  • Gordon, A. L., Sprintall, J., Van Aken, H. M., Susanto, D., Wijffels, S., Molcard, R., Field, A., Pranowo, W., & Wirasantosa, S. (2010). The Indonesian Throughflow during 2004–2006 as observed by the INSTANT program in modeling and observing the Indonesian Throughflow. Dynamics of Atmospheres and Oceans, 50, 115–128. https://doi.org/10.1016/j.dynatmoce.2009.12.002

    Article  Google Scholar 

  • Gustafsson, E., Omstedt, A., & Gustafsson, B. G. (2015). The air-water CO2 exchange of a coastal sea-A sensitivity study on factors that influence the absorption and outgassing of CO 2 in the Baltic Sea. Journal of Geophysical Research: Oceans, 120(8), 5342–5357. https://doi.org/10.1002/2015JC010832

    Article  Google Scholar 

  • Honjo, S., Manganini, S. J., Krishfield, R. A., & Francois, R. (2008). Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983. Progress in Oceanography, 76(3), 217–285. https://doi.org/10.1016/J.POCEAN.2007.11.003

    Article  Google Scholar 

  • Honjo, S., Eglinton, T. I., Taylor, C. D., Ulmer, K. M., Sievert, S. M., Bracher, A., German, C. R., Edgcomb, V., Francois, R., Deboraiglesias-Rodriguez, M., Van Mooy, B., & Repeta, D. J. (2014). The role of the biological pump in the global carbon cycle understanding an imperative for ocean science. Oceanography, 27(3), 10–16. https://doi.org/10.5670/OCEANOG.2014.78

    Article  Google Scholar 

  • Hyun, B., Kim, J. M., Jang, P. G., Jang, M. C., Choi, K. H., Lee, K., Yang, E. J., Noh, J. H., & Shin, K. (2020). The effects of ocean acidification and warming on growth of a natural community of coastal phytoplankton. Journal of Marine Science and Engineering, 8(10). https://doi.org/10.3390/jmse8100821

  • Iskandar, I., Rao, S. A., & Tozuka, T. (2009). Chlorophyll-a bloom along the southern coasts of Java and Sumatra during 2006. International Journal of Remote Sensing, 30(3), 663–671. https://doi.org/10.1080/01431160802372309

    Article  Google Scholar 

  • Iskandar, I., Sari, Q. W., Wahyudi, A. J., Afdal, A., & Mardiansyah, W. (2022). Vertical chlorophyll-a concentration profiles observed on the Western Coast of Northern Sumatera During the 2017 Northeast Monsoon. Science and Technology Indonesia, 7(1), 36–40. https://doi.org/10.26554/STI.2022.7.1.36-40

  • Kim, T., Shin, J. Y., Kim, H., Kim, S., & Heo, J. H. (2019). The use of large-scale climate indices in monthly reservoir inflow forecasting and its application on time series and artificial intelligence models. Water, 11(2), 374. https://doi.org/10.3390/W11020374

  • Koch, M., Bowes, G., Ross, C., & Zhang, X.-H. (2013). Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biology, 19(1), 103–132. https://doi.org/10.1111/j.1365-2486.2012.02791.x

    Article  Google Scholar 

  • Lannig, G., Eilers, S., Pörtner, H. O., Sokolova, I. M., & Bock, C. (2010). Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas—changes in metabolic pathways and thermal response. Marine Drugs, 8(8), 2318–2339. https://doi.org/10.3390/md8082318

    Article  CAS  Google Scholar 

  • Le, C., Lehrter, J. C., Hu, C., MacIntyre, H., & Beck, M. (2017). Satellite observation of particulate organic carbon dynamics in two river-dominated estuaries. Journal of Geophysical Research. Oceans, 122(1), 555–569. https://doi.org/10.1002/2016JC012275

    Article  CAS  Google Scholar 

  • Lee, T., Fournier, S., Gordon, A. L., & Sprintall, J. (2019). Maritime Continent water cycle regulates low-latitude chokepoint of global ocean circulation. Nature Communications, 10(1), 2103. https://doi.org/10.1038/s41467-019-10109-z

    Article  CAS  Google Scholar 

  • Li, H., & Ilyina, T. (2018). Current and future decadal trends in the oceanic carbon uptake are dominated by internal variability. Geophysical Research Letters, 45(2), 916–925. https://doi.org/10.1002/2017GL075370

    Article  CAS  Google Scholar 

  • Li, H., Ilyina, T., Müller, W. A., & Landschützer, P. (2019). Predicting the variable ocean carbon sink. Science Advances, 5(4). https://doi.org/10.1126/SCIADV.AAV6471/SUPPL_FILE/AAV6471_SM.PDF

  • Li, H., Ilyina, T., Müller, W. A., & Sienz, F. (2016). Decadal predictions of the North Atlantic CO2 uptake. Nature Communications, 7(1), 1–7. https://doi.org/10.1038/ncomms11076

    Article  CAS  Google Scholar 

  • Lim, H.-G., Dunne, J. P., Stock, C. A., & Kwon, M. (2022). Attribution and predictability of climate-driven variability in global ocean color. Journal of Geophysical Research: Oceans, 127(10), e2022JC019121. https://doi.org/10.1029/2022JC019121

  • Liu, D., Pan, D., Bai, Y., He, X., Wang, D., Wei, J. A., & Zhang, L. (2015). Remote sensing observation of particulate organic carbon in the Pearl River Estuary. Remote Sensing, 7(7), 8683–8704. https://doi.org/10.3390/RS70708683

    Article  Google Scholar 

  • Lovenduski, N. S., Yeager, S. G., Lindsay, K., & Long, M. C. (2019). Predicting near-term variability in ocean carbon uptake. Earth System Dynamics, 10(1), 45–57. https://doi.org/10.5194/ESD-10-45-2019

    Article  Google Scholar 

  • Ma, J., Song, J., Li, X., Wang, Q., Zhong, G., Yuan, H., Li, N., & Duan, L. (2021). The OMZ and its influence on POC in the Tropical Western Pacific Ocean: Based on the survey in March 2018. Frontiers in Earth Science, 9, 492. https://doi.org/10.3389/FEART.2021.632229/BIBTEX

    Article  Google Scholar 

  • McCreary, J. P., Murtugudde, R., Vialard, J., Vinayachandran, P. N., Wiggert, J. D., Hood, R. R., Shankar, D., & Shetye, S. (2009). Biophysical processes in the Indian Ocean. In Geophysical Monograph Series (pp. 9–32). https://doi.org/10.1029/2008GM000768

  • Monerie, P. A., Robson, J. I., Dunstone, N. J., & Turner, A. G. (2021). Skilful seasonal predictions of global monsoon summer precipitation with DePreSys3. Environmental Research Letters, 16(10), 104035. https://doi.org/10.1088/1748-9326/AC2A65

  • Nyadjro, E. S., & McPhaden, M. J. (2014). Variability of zonal currents in the eastern equatorial Indian Ocean on seasonal to interannual time scales. Journal of Geophysical Research: Oceans, 119(11), 7969–7986. https://doi.org/10.1002/2014JC010380

    Article  Google Scholar 

  • Pausch, F., Koch, F., Hassler, C., Bracher, A., Bischof, K., & Trimborn, S. (2022). Responses of a natural phytoplankton community from the drake passage to two predicted climate change scenarios. Frontiers in Marine Science, 9, 27. https://doi.org/10.3389/FMARS.2022.759501/BIBTEX

    Article  Google Scholar 

  • Pavia, F. J., Anderson, R. F., Lam, P. J., Cael, B. B., Vivancos, S. M., Fleisher, M. Q., Lu, Y., Zhang, P., Cheng, H., & Lawrence Edwards, R. (2019). Shallow particulate organic carbon regeneration in the South Pacific Ocean. Proceedings of the National Academy of Sciences of the United States of America, 116(20), 9753–9758. https://doi.org/10.1073/PNAS.1901863116/SUPPL_FILE/PNAS.1901863116.SD01.CSV

    Article  CAS  Google Scholar 

  • Peixeiro, M. (2022). Time series forecasting in python. Manning, 1–456. https://www.manning.com/books/time-series-forecasting-in-python-book

  • Polimene, L., Sailley, S., Clark, D., Mitra, A., & Allen, J. I. (2017). Biological or microbial carbon pump? The role of phytoplankton stoichiometry in ocean carbon sequestration. Journal of Plankton Research, 39(2), 180–186. https://doi.org/10.1093/PLANKT/FBW091

    Article  CAS  Google Scholar 

  • Raman, R. K., Mohanty, S. K., Bhatta, K. S., Karna, S. K., Sahoo, A. K., Mohanty, B. P., & Das, B. K. (2018). Time series forecasting model for fisheries in Chilika lagoon (a Ramsar site, 1981), Odisha, India: A case study. Wetlands Ecology and Management, 26(4), 677–687. https://doi.org/10.1007/S11273-018-9600-4/FIGURES/3

    Article  Google Scholar 

  • Sari, Q. W., Utari, P. A., Setiabudidaya, D., Yustian, I., Siswanto, E., & Iskandar, I. (2020). Surface chlorophyll-a variations in the Southeastern Tropical Indian Ocean during various types of the positive Indian Ocean Dipole Events. International Journal of Remote Sensing, 41(1), 171–184. https://doi.org/10.1080/01431161.2019.1637962

    Article  Google Scholar 

  • Sari, Q. W., Siswanto, E., Utari, P. A., Saputra, O. F., Lestiana, H., Holidi, S., & Yuniarti, I. I. (2022). Seasonal driven mechanism of the surface chlorophyll-a distribution along the Western Coast of Sumatra. Journal of Ecological Engineering, 23(11), 254–260. https://doi.org/10.12911/22998993/153995

  • Séférian, R., Berthet, S., & Chevallier, M. (2018). Assessing the decadal predictability of land and ocean carbon uptake. Geophysical Research Letters, 45(5), 2455–2466. https://doi.org/10.1002/2017GL076092

    Article  CAS  Google Scholar 

  • Simanjuntak, F., & Lin, T.-H. (2022). Monsoon effects on chlorophyll-a, sea surface temperature, and ekman dynamics variability along the Southern Coast of Lesser Sunda Islands and Its Relation to ENSO and IOD Based on Satellite Observations. Remote Sensing, 14(7), 1682. https://doi.org/10.3390/RS14071682

  • Sommer, U., Paul, C., & Moustaka-Gouni, M. (2015). Warming and ocean acidification effects on phytoplankton - From species shifts to size shifts within species in a mesocosm experiment. PLoS ONE, 10(5). https://doi.org/10.1371/journal.pone.0125239

  • Sprintall, J., Gordon, A. L., Koch-Larrouy, A., Lee, T., Potemra, J. T., Pujiana, K., & Wijffels, S. E. (2014). The Indonesian seas and their role in the coupled ocean–climate system. Nature Geoscience, 7(7), 487–492. https://doi.org/10.1038/ngeo2188

    Article  CAS  Google Scholar 

  • Sprintall, J., Gordon, A. L., Wijffels, S. E., Feng, M., Hu, S., Koch-Larrouy, A., & Setiawan, A. (2019). Detecting Change in the Indonesian Seas. Frontiers in Marine Science, 6, 257. https://doi.org/10.3389/fmars.2019.00257

  • St John Glew, K., Espinasse, B., Hunt, B. P. V., Pakhomov, E. A., Bury, S. J., Pinkerton, M., Nodder, S. D., Gutiérrez-Rodríguez, A., Safi, K., Brown, J. C. S., Graham, L., Dunbar, R. B., Mucciarone, D. A., Magozzi, S., Somes, C., & Trueman, C. N. (2021). Isoscape models of the Southern Ocean: predicting spatial and temporal variability in carbon and nitrogen isotope compositions of particulate organic matter. Global Biogeochemical Cycles, 35(9), e2020GB006901. https://doi.org/10.1029/2020GB006901

  • Strååt, K. D., Mörth, C. M., & Undeman, E. (2018). Future export of particulate and dissolved organic carbon from land to coastal zones of the Baltic Sea. Journal of Marine Systems, 177, 8–20. https://doi.org/10.1016/J.JMARSYS.2017.09.002

    Article  Google Scholar 

  • Stramski, D., Reynolds, R. A., Babin, M., Kaczmarek, S., Lewis, M. R., Röttgers, R., Sciandra, A., Stramska, M., Twardowski, M. S., Franz, B. A., & Claustre, H. (2008). Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans. Biogeosciences, 5(1), 171–201. https://doi.org/10.5194/BG-5-171-2008

    Article  CAS  Google Scholar 

  • Susanto, R. D., Gordon, A. L., & Zheng, Q. (2001). Upwelling along the coasts of Java and Sumatra and its relation to ENSO. Geophysical Research Letters, 28(8), 1599–1602. https://doi.org/10.1029/2000GL011844

    Article  Google Scholar 

  • Susanto, R. D., Ii, T. S. M., Marra, J., Susanto, R. D., Ii, T. S. M., & Marra, J. (2006). Ocean color variability in the Indonesian Seas during the SeaWiFS era. Geochemistry, Geophysics, Geosystems, 7(5), 5021. https://doi.org/10.1029/2005GC001009

    Article  Google Scholar 

  • Taufiqurrahman, E., Wahyudi, A. J., & Masumoto, Y. (2020). The Indonesian Throughflow and its Impact on Biogeochemistry in the Indonesian Seas. ASEAN Journal on Science and Technology for Development, 37(1):29–35. https://doi.org/10.29037/ajstd.596

  • Todd, S. E., Pufahl, P. K., Murphy, J. B., & Taylor, K. G. (2019). Sedimentology and oceanography of early Ordovician ironstone, Bell Island, Newfoundland: Ferrunginous seawater and upwelling in the Rheic Ocean. Sedimentary Geology, 379, 1–15. https://doi.org/10.1016/j.sedgeo.2018.10.007

    Article  CAS  Google Scholar 

  • Triana, K., & Wahyudi, A. J. (2021). POC Datasets 2002–2020 derived from MODIS Aqua (validated using in situ data). (RIN Dataverse, V4.) Retrieved July 21, 2021, from https://hdl.handle.net/20.500.12690/RIN/W5CLGZ

  • Triana, K., Wahyudi, A. J., Murakami-Sugihara, N., & Ogawa, H. (2021). Spatial and temporal variations in particulate organic carbon in Indonesian waters over two decades. Marine and Freshwater Research, 72(12), 1782–1797. https://doi.org/10.1071/MF20264

    Article  CAS  Google Scholar 

  • Triana, K., Wahyudi, A. J., Surinati, D., & Kartikoputro, E. (2023). Investigating ocean deoxygenation and the oxygen minimum zone in the Central Indo Pacific region based on the hindcast datasets. Environmental Monitoring and Assessment, 195(1), 28. https://doi.org/10.1007/S10661-022-10615-6

    Article  Google Scholar 

  • Turley, C., & Findlay, H. S. (2016). Ocean acidification. In Climate Change: Observed Impacts on Planet Earth: Second Edition. https://doi.org/10.1016/B978-0-444-63524-2.00018-X

    Article  Google Scholar 

  • Turner, J. T. (2015). Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Progress in Oceanography, 130, 205–248. https://doi.org/10.1016/J.POCEAN.2014.08.005

    Article  Google Scholar 

  • Vinayachandran, P. N. M., Masumoto, Y., Roberts, M. J., Huggett, J. A., Halo, I., Chatterjee, A., Amol, P., Gupta, G. V. M., Singh, A., Mukherjee, A., Prakash, S., Beckley, L. E., Raes, E. J., & Hood, R. (2021). Reviews and syntheses: Physical and biogeochemical processes associated with upwelling in the Indian Ocean. Biogeosciences, 18(22), 5967–6029. https://doi.org/10.5194/BG-18-5967-2021

    Article  Google Scholar 

  • Wahyudi, A. J., Iskandar, M. R., Meirinawati, H., Afdal, ., Vimono, I. B., Afianti, N. F., & Sidabutar, T. (2017). Organic matter and nutrient profile of the two-current-regulated-zone in the Southwestern Sumatran Waters (SSW). Marine Research in Indonesia. https://doi.org/10.14203/mri.v42i1.124

  • Wahyudi, A. J., Afdal, A., & Meirinawati, H. (2019a). Stable carbon isotope signature of particulate organic matter in the Southwestern Sumatran Waters of the Eastern Indian Ocean. ASEAN Journal on Science and Technology for Development, 36(2), 35–43. https://doi.org/10.29037/ajstd.555

  • Wahyudi, A. J., Meirinawati, H., Prayitno, H. B., Suratno, Surinati, D., & Hernawan, U. E. (2019b). The material origin of the particulate organic matter (POM) in the Eastern Indonesian waters. AIP Conference Proceedings, 2175(1), 020047. https://doi.org/10.1063/1.5134611

  • Wahyudi, A. J., Triana, K., Masumoto, Y., Rachman, A., Firdaus, M. R., Iskandar, I., & Meirinawati, H. (2023). Carbon and nutrient enrichment potential of South Java upwelling area as detected using hindcast biogeochemistry variables. Regional Studies in Marine Science, 59, 102802. https://doi.org/10.1016/J.RSMA.2022.102802

  • Wang, W., Luo, C., Sheng, L., Zhao, C., Zhou, Y., & Chen, Y. (2021). Effects of biomass burning on chlorophyll-a concentration and particulate organic carbon in the subarctic North Pacific Ocean based on satellite observations and WRF-Chem model simulations: A case study. Atmospheric Research, 254, 105526. https://doi.org/10.1016/J.ATMOSRES.2021.105526

  • Wang, X., Slawinska, J., & Giannakis, D. (2020). Extended-range statistical ENSO prediction through operator-theoretic techniques for nonlinear dynamics. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-59128-7

  • Wiggert, J. D., Vialard, J., & Behrenfeld, M. J. (2009). Basin-wide modification of dynamical and biogeochemical processes by the positive phase of the Indian Ocean Dipole During the SeaWiFS Era. Geophysical Monograph Series, 185, 385–407. https://doi.org/10.1029/2008GM000776

    Article  CAS  Google Scholar 

  • Wirasatriya, A., Sugianto, D. N., Maslukah, L., Ahkam, M. F., Wulandari, S. Y., & Helmi, M. (2020). Carbon dioxide flux in the Java Sea estimated from satellite measurements. Remote Sensing Applications: Society and Environment, 20, 100376. https://doi.org/10.1016/j.rsase.2020.100376

  • Wynn-Edwards, C. A., Shadwick, E. H., Davies, D. M., Bray, S. G., Jansen, P., Trinh, R., & Trull, T. W. (2020). Particle Fluxes at the Australian Southern Ocean Time Series (SOTS) Achieve Organic Carbon Sequestration at Rates Close to the Global Median, Are Dominated by Biogenic Carbonates, and Show No Temporal Trends Over 20-Years. Frontiers in Earth Science, 8, 329. https://doi.org/10.3389/FEART.2020.00329/BIBTEX

    Article  Google Scholar 

  • Yu, W., Hood, R., D'Adamo, N., McPhaden, M., et al. (2016). Eastern Indian Ocean Upwelling Research Initiative (EIOURI) Science Plan: The EIOURI Science Plan. http://hdl.handle.net/1834/9673

  • Yu, Y., Xing, X., Liu, H., Yuan, Y., Wang, Y., & Chai, F. (2019). The variability of chlorophyll-a and its relationship with dynamic factors in the basin of the South China Sea. Journal of Marine Systems, 200, 103230. https://doi.org/10.1016/J.JMARSYS.2019.103230

  • Yuan, R., Rodrigues, J. F. D., Wang, J., Tukker, A., & Behrens, P. (2022). A global overview of developments of urban and rural household GHG footprints from 2005 to 2015. Science of The Total Environment, 806, 150695. https://doi.org/10.1016/j.scitotenv.2021.150695

  • Zeebe, R. E., & Wolf-Gladrow, D. A. (2001). CO2 in seawater: Equilibrium (p. 346). Kinetics. Isotopes. Elsevier Science.

    Google Scholar 

  • Zhao, S., Jin, F. F., & Stuecker, M. F. (2019). Improved Predictability of the Indian Ocean Dipole Using Seasonally Modulated ENSO Forcing Forecasts. Geophysical Research Letters, 46(16). https://doi.org/10.1029/2019GL084196

  • Zhong, J., Guo, Y., Liang, Z., Huang, Q., Lu, H., Pan, J., Li, P., Jin, P., & Xia, J. (2021). Adaptation of a marine diatom to ocean acidification and warming reveals constraints and trade-offs. Science of the Total Environment, 771. https://doi.org/10.1016/j.scitotenv.2021.145167

  • Zondervan, I., Rost, B., & Riebesell, U. (2002). Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths. Journal of Experimental Marine Biology and Ecology, 272(1), 55–70. https://doi.org/10.1016/S0022-0981(02)00037-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Monthly POC values were obtained from NASA Ocean Color modeled data collected by the moderate-resolution imaging spectroradiometer (MODIS) of the Aqua-EOS PM (Aqua) Level 3 satellite (https://oceancolor.gsfc.nasa.gov/atbd/poc/).

Funding

The study was funded by the National Research and Innovation Agency of the Republic of Indonesia.

Author information

Authors and Affiliations

Authors

Contributions

A’an J. Wahyudi (as the primary contributor): Conceptualization, methodology, validation (analysis result), formal analysis, investigation, data curation, writing (original draft), writing (review and editing), visualization. Febty Febriani: Methodology, validation (model), investigation, data curation, writing—review and editing. Karlina Triana: Validation (data), resources, data curation, writing—review and editing. All authors read and accepted the final form of the manuscript.

Corresponding author

Correspondence to A’an Johan Wahyudi.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors warrant that the manuscript has not been published before, is not presently being considered for publication elsewhere, does not infringe any intellectual property right of any person and its use under the license in this journal will not infringe any intellectual property right of any person, does not contain any subject matter that contravenes any laws (including defamatory material and misleading and deceptive material), and meets ethical standards applicable to the research discipline.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 470 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahyudi, A.J., Febriani, F. & Triana, K. Multi-temporal variability forecast of particulate organic carbon in the Indonesian seas. Environ Monit Assess 195, 388 (2023). https://doi.org/10.1007/s10661-023-10981-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-10981-9

Keywords

Navigation