Skip to main content

Advertisement

Log in

Hydrodynamic release of Pb, Zn, and Cd from impermeable tailings as deduced from physical parameters evolution and multivariate statistical analysis: case study of Jbel Ressas mine waste (North Tunisia)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Tailings are one of the largest pollutant sources in the world. The wind and water leaching were often considered the main distribution tool of their pollutants. However, the carbonate crust precipitation has negated the trace toxic element (TTE) release. To identify the release mode of Pb, Zn, and Cd from mine wastes, the hydrodynamic evolution of waste piles was considered. The macroscopic and microscopic observation, the grain sizes, cohesion particles, density, hydraulic conductivity, and Pb, Zn, and Cd concentrations performed from eight drill cores of the two waste dumps and the principal component and the hierarchical cluster analysis showed that the physical properties of waste piles closely controlled the TTE mobility and migration from the tailings. The obtained data also showed that the upper carbonate layers were first eroded by wind and rainfall. Then, the formation of an impermeable carbonate crust limited the Pb, Zn, and Cd releases. However, the hydrodynamic evolution of the underneath layers was different. As the high pile waste sediments’ weight meaning the lithostatic pressure (Pl), the geostatic ratios (λ = Pf/Pl) were in DII and DIII dumps superior to 0.29 and 0.26, respectively. Therefore, the overpressured fluids increased the mineral dissolution, including the sulfides and carbonates of metals, and hydraulic fracturing that raised the percentages of the mobile TTE and migration indexes. By the secondary pore and fracture volumes, the polluted fluids were progressively channeled towards the underpressured marge (dumps edge) by repetitive (polyphase) fluid pulsations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in full in the results section of this paper (Figs. 2 to 9 and Tables 1 to 6).

References

  • Acosta, J. A., Faz, A., Martínez-Martínez, S., Zornoza, R., Carmona, D. M., & Kabas, S. (2011). Multivariate statistical and GIS-based approach to evaluate heavy metals behavior in mine sites for future reclamation. Journal of Geochemical Exploration, 109(1–3), 8–17. https://doi.org/10.1016/j.gexplo.2011.01.004

    Article  CAS  Google Scholar 

  • Aris, A. Z., Praveena, S. M., Abdullah, M. H., & Radijevic, M. (2011). Statistical approach and hydrochemical modeling of groundwater system in small tropical island. Journal of Hydroinformatics, 14(1), 206–220. https://doi.org/10.2166/hydro.2011.072

    Article  Google Scholar 

  • Anderson, G. M., & Macqueen, R. W. (1982). Ore deposit models, Mississippi Valley type lead zinc deposits. Geoscience Canada, 9(2). https://journals.lib.unb.ca/index.php/GC/article/view/3300

  • Barker, C. (1972). Aquathermal pressuring-role of temperature in development of abnormal pressure zones. AAPG Bulletin, 56(10), 2068–2071. https://doi.org/10.1306/819A41B0-16C5-11D7-8645000102C1865D

    Article  Google Scholar 

  • Blanca, M. J., Arnau, J., López-Montiel, D., Bono, R., & Bendayan, R. (2013). Skewness and kurtosis in real data samples. Methodology, 9, 78–84. https://doi.org/10.1027/1614-2241/a000057

  • Borůvka, L., Vacek, O., & Jehlička, J. (2005). Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma, 128(3–4), 289–300. https://doi.org/10.1016/j.geoderma.2005.04.010

  • Cathles, L. M., & Smith, A. T. (1983). Thermal constraints on the formation of Mississippi Valley type lead-zinc deposits and their implications for episodic basin dewatering and deposit genesis. Economic Geology, 78(5), 983–1002. https://doi.org/10.2113/gsecongeo.78.5.983

  • ChaneKon, L., Durucan, S., & Korre, A. (2007). The development and application of a wind erosion model for the assessment of fugitive dust emissions from mine tailings dumps. Reclamation and Environment, 21(3), 198–218. https://doi.org/10.1080/17480930701365547

    Article  Google Scholar 

  • Davidson, C. M., Duncan, A. L., Littlejohn, D., Ure, A. M., & Garden, L. M. (1998). A critical evaluation ofthe three-stage BCR sequential extraction procedure to assess the potential mobility and oxicity of heavy metals in industrially-contaminated land. Analytica Chimica Acta, 363, 45–55.

    Article  CAS  Google Scholar 

  • Dickinson, G. (1953). Geological aspects of abnormal reservoir pressures in Gulf Coast Louisiana. AAPG Bulletin, 37(2), 410–432. https://doi.org/10.1306/5CEADC6B-16BB-11D7-8645000102C1865D

    Article  Google Scholar 

  • Dorronsoro, C., Martin, F., Ortiz, I., García, I., Simón, M., Fernández, E., & Fernández, J. (2002). Migration of trace elements from pyrite tailings in carbonate soils. Journal of Environmental Quality, 31(3), 829–835. https://doi.org/10.2134/jeq2002.8290

    Article  CAS  Google Scholar 

  • El Azhari, A., Rhoujjati, A., Laârabi, M., El Hachimi, & Ambrosi, J. P. (2017). Pollution and ecological risk assessment of heavy metals in the soil-plant system and the sediment-water column around a former Pb/Zn-mining area in NE Morocco. Ecotoxicology and Environmental Safety, 144, 464–474. https://doi.org/10.1016/j.ecoenv.2017.06.051

  • Garven, G., & Freeze, A. (1984). Theoretical analysis of the role of ground water flow in the genesis of strata bound ore deposits II Quantitative results. American Journal of Science, 284(10), 1125–1174.

    Article  CAS  Google Scholar 

  • Graf, D. L. (1982). Chemical osmosis, reverse chemical osmosis, and the origin of sub surface brines. Geochimica Et Cosmochimica Acta, 47(7), 1333. https://doi.org/10.1016/0016-7037(82)90277-0

    Article  Google Scholar 

  • Hedberg, H. D. (1974). Relation of methane generation to under compacted shales, shale diapirs, and mud volcanoes. AAPG Bulletin, 58(4), 661–673. https://doi.org/10.1306/83D91466-16C7-11D7-8645000102C1865D

    Article  CAS  Google Scholar 

  • Hester, R. E., & Harrison, R. M. (1994). Waste incineration and the environment. 2 In R. E Hester, & R. M. Harrison (Eds), Issues in environmental Science and technology. Royal Society of Chemistry.

  • Hudson-Edwards, K. A., Jamieson, H. E., & Lottermoser, B. G. (2011). Mine wastes: Past, present, future. Elements, 7(6), 375–380. https://doi.org/10.2113/gselements.7.6.375

  • Hou, D., O’Connor, D., Nathanail, P., Tian, L., & Ma, Y. (2017). Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination a critical review. Environmental Pollution, 231, 1188–1200. https://doi.org/10.1016/j.envpol.2017.07.021

    Article  CAS  Google Scholar 

  • Jolliffe, I. T. (2002) Principal component analysis. Series Title Springer Series in Statistics. Springer Science+Business Media, New York. https://www.springer.com/series/692

  • Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1), 141–151.

  • Kandji, E. H. B., Plante, B., Bussiere, B., & Beaudoin, G. (2017). Kinetic testing to evaluate the mineral carbonation and metal leaching potential of ultra mafic tailings: Case study of the Dumont Nickel Project. Applied Geochemistry, 84, 262–276. https://doi.org/10.1016/j.apgeochem.2017.07.005

    Article  CAS  Google Scholar 

  • Kang, J. W. (2014). Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnology Letters, 36(6), 1129–1139. https://doi.org/10.1007/s10529-014-1466-9

  • Khoeurna, K., Sakaguchia, A., Tomiyamab, S., & Igarashib, T. (2019). Long-term acid generation and heavy metal leaching from the tailings of Shimokawa mine, Hokkaido, Japan: Column study under natural condition. Journal of Geochemical Exploration, 201, 1–12. https://doi.org/10.1016/j.gexplo.2019.03.003

    Article  CAS  Google Scholar 

  • Komnitsas, K., Kontopoulos, A., Lazar, I., & Cambridge, M. (1998). Risk assessment andproposed remedial actions in coastal tailings disposal sites in Romania. Minerals Engineering, 11(12), 1179–1190. https://doi.org/10.1016/S0892-6875(98)00104-6

    Article  CAS  Google Scholar 

  • Kontopoulos, A., Komnitsas, K., Xenidis, A., & Papassiopi, N. (1995). Environmental characterisation of the sulphidic tailings in Lavrion. Minerals Engineering, 8(10), 1209–1219. https://doi.org/10.1016/0892-6875(95)00085-5

    Article  CAS  Google Scholar 

  • Kosson, D. S., van der Sloot, H. A., Sanchez, F., & Garrabrants, A. C. (2002). An integrated framework for evaluating leaching in waste management and utilization of secondary materials. Environmental Engineering Science, 19(3), 159–204.

  • Khelifi, F., Besser, H., Ayadi, Y., Liu, G., Yousaf, B., Harabi, S., & Hamed, Y. (2019). Evaluation of potentially toxic elements’(PTEs) vertical distribution in sediments of Gafsa-Metlaoui mining basin (Southwestern Tunisia) using geochemical and multivariate statistical analysis approaches. Environmental Earth Sciences, 78(2), 1–14. https://doi.org/10.1007/s12665-019-8048-z

    Article  CAS  Google Scholar 

  • Lei, M., Zhang, Y., Khan, S., et al. (2010). Pollution, fractionation, and mobility of Pb, Cd, Cu, and Zn in garden and paddy soils from a Pb/Zn mining area. Environmental Monitoring Assessment, 168, 215–222. https://doi.org/10.1007/s10661-009-1105-4

    Article  CAS  Google Scholar 

  • Li, X. D., Lee, S. L., Wong, S. C., Shi, W. Z., & Thorntonc, I. (2004). The study of metal contamination in urban soils of Hong Kong using a GIS based approach. Environnemental Pollution, 129(1), 113–124. https://doi.org/10.1016/j.envpol.2003.09.030

    Article  CAS  Google Scholar 

  • Lizárraga-Mendiola, L., González-Sandoval, M. R., Durán-Domínguez, M. C., et al. (2009). Geochemical behavior of heavy metals in a Zn–Pb–Cu mining area in the State of Mexico (central Mexico). Environmental Monitoring Assessment, 155, 355. https://doi.org/10.1007/s10661-008-0440-1

    Article  CAS  Google Scholar 

  • Lu, Q., Bian, Z., & Tsuchiya, N. (2021). Assessment of heavy metal pollution and ecological risk in river water and sediments in a historically metal mined watershed. Northeast Japan. Environmental Monitoring Assessment, 193, 814. https://doi.org/10.1007/s10661-021-09601-1

    Article  CAS  Google Scholar 

  • Macklin, M. G., & Klimek, K. (1992). Dispersal, storage and transformation of metal-contaminated alluvium in the upper Vistula basin. southwest Poland. Applied Geography, 12, 7. https://doi.org/10.1016/j.envpol.2003.09.030

  • Mao, L., Mo, D., Guo, Y., Fu, Q., Yang, J., & Jia, Y. (2013). Multivariate analysis of heavy metals in surface sediments from lower reaches of the Xiangjiang River, southern China. Environmental Earth Sciences, 69(3), 765–771.

  • Martínez-Martínez, J. A., Acosta, A., Faz Cano, D. M., & Carmona Cerda, R. C. (2013). Assessment of the lead and zinc contents in natural soils and tailing ponds from the Cartagena-La Union mining district, SE spain S. Journal of Geochemical Exploration, 124, 166–175. https://doi.org/10.1016/j.gexplo.2012.09.004

    Article  CAS  Google Scholar 

  • Mustapha, A., & Aris, A. Z. (2012). Multivariate statistical analysis and environmental modeling of heavy metals pollution by industries. Polish Journal of Environmental Studies, 21(5), 1359–1367.

    CAS  Google Scholar 

  • Modabberi, S., Alizadegan, A., Mirnejad, H., & Esmaeilzadeh, E. (2013). Prediction of AMD generation potential in mining waste piles in the Sarches meh porphyry copper deposit Iran. Environmental Monitoring and Assessment, 185(11), 9077–9087. https://doi.org/10.1007/s10661-013-3237-9

  • Moncur, M. C., Jambor, J. L., Ptacek, C. J., & Blowes, D. W. (2009). Mine drainage from the weathering of sulfide minerals and magnetite. Applied Geochemistry., 24(12), 2362–2373. https://doi.org/10.1016/j.apgeochem.2009.09.013

    Article  CAS  Google Scholar 

  • Nasraoui, R., Fkih Romdhan, D., Charef, A., & Ayari, J. (2022). Assessment of the historical evolution of the total and labile Pb, Zn, and Cd fractions and their environmental risks of the Jbel Ressas tailings and agricultural soil (NE Tunisia). Environmental Earth Sciences, 81, 472. https://www.researchgate.net/publication/364024749_

  • Ohmoto, H., & Rye, R. O. (1979). Isotopes of sulfur and carbon In Barnes, H.L. (Edt). Geochemistry of Hydrothermal Ore Deposits, 2(50), 10003419528. Wiley, New York, NY.

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s Guide to PHREEQC (version 2)- a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. USGS Water-Resources Investigations Report, 99(4259), 312.

    Google Scholar 

  • Phillips, J. W. (1972). Hydraulic fracturing and mineralization. Journal of Geological Society of London, 128(4), 337–359. https://doi.org/10.1144/gsjgs.128.4.0337

  • Price, N. J. (1975). Fluids in the crust of the earth. Science Program, 62(59). https://doi.org/10.1144/gsjgs.128.4.0337

  • Rammlmair, D. (2002). Hard panformation on mining residuals. In B. Merkel, F. B. Planer, & D. C. Wolkers (Eds.). Uranium in the Aquatic Environment (pp. 173–182). Springer, Berlin. https://doi.org/10.1007/978-3-642-55668-5_20

  • Rauret, G., López-Sánchez, J. F., Sahuquillo, A., Barahona, E., Lachica, M., Ure, A. M., Davidson, C. M., Gomez, A., Lück, D., & Bacon, J. (2000). Application of a modified BCR sequential extractionthree-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. Journal of Environmental Monitoring, 2, 228–233.

    Article  Google Scholar 

  • Rowe, R. K., & Hosney, M. S. (2013). Laboratory investigation of GCL performance for covering arsenic contaminated mine wastes. Geotextiles and Geomembranes, 39, 63–77. https://doi.org/10.1007/978-3-642-55668-5_20

    Article  Google Scholar 

  • Slavković, L., Škrbić, B., Miljević, N., & Onjia, A. (2004). Principal component analysis of trace elements in industrial soils. Environmental Chemistry Letters, 2(2), 105–108.

  • Smuda, J., Dold, B., Friese, K., Morgenstern, P., & Glaesser, W. (2007). Mineralogical and geochemical study of element mobility at the sulfide-rich Excelsior waste rock dump from the polymetallic Zn- Pb-(Ag-Bi-Cu) deposit, Cerro de Pasco, Peru. Journal of Geochemical Exploration, 92(2–3), 97–110. https://doi.org/10.1016/j.gexplo.2006.08.001

    Article  CAS  Google Scholar 

  • Soc. Min. J. Ressas. (1951). Contenu des digues de la mine de Jbel Ressas. Société des mines de Jbel Ressas, Rapport interne, 29 p.

  • Stüben, D., Berner, Z., Kappes, B., et al. (2001). Environmental monitoring of heavy metals and arsenic from Ag-Pb-Zn mining. A case study over two millennia. Environmental Monitoring Assessement, 70, 181–200. https://doi.org/10.1023/A:1010663631647

    Article  Google Scholar 

  • Thornber, M. R., Bettenay, E., & Russell, W. G. R. (1987). A mechanism of alumino silicate cementation to form a hard pan. Geochimica et Cosmochimica Acta, 51(9), 2303–2310. https://doi.org/10.1016/0016-7037(87)90283-3

    Article  CAS  Google Scholar 

  • Tobias, R. F. (1968). A study of the electrochemical behavior of iron by the rotating disk technique. University of California, Los Angeles.

  • Tuo, R., & Wu C. F. J. (2014). Efficient calibration for imperfect computer models. 2331–2352.

  • Van der Marel, H. W. (1966). Quantitative analysis of clay minerals and their admixtures. Contributions to Mineralogy and Petrology, 12(1), 96–138.

    Article  Google Scholar 

  • Van der Sloot, H. A. (2002). Characterization of the leaching behaviour of concrete mortars and of cement–stabilized wastes with different waste loading for long term environmental assessment. Waste Management, 22(2), 181–186.

  • Watts, E. V. (1948). Some aspects of high pressures in the D-7 zone of the Ventura Avenue field. Transactions of the AIME, 174(01), 191–205. https://doi.org/10.2118/948191-G

  • Wang, L., Li, Y., Wang, H., Cui, X., Wang, X., Lu, A., Wang, X., Wang, C., & Gan, D. (2017). Weathering behavior and metal mobility of tailings under an extremely arid climate at Jinchuan Cu-Ni sulfide deposit, Western China. Journal of Geochemical Exploration, 173, 1–12. https://doi.org/10.1016/j.gexplo.2016.11.009

    Article  CAS  Google Scholar 

  • Zanuzzi, A., Arocena, J. M., Van Mourik, J. M., & Faz Cano, A. (2009). Amendments with organic and industrial wastes stimulate soil formation in mine tailings as revealed by micromorphology. Geoderma, 154(1–2), 69–75. https://doi.org/10.1016/j.geoderma.2009.09.014

    Article  CAS  Google Scholar 

  • Zhang, X., Zhang, S., Liu, H., & Zhao, Y. (2021) Disposal of mine tailings via geopolymerization. Journal of Cleaner Production, 284, 124756. https://doi.org/10.1016/j.jclepro.2020.124756

  • Zhao, W., Ding, L., Gu, X., Luo, J., Liu, Y., Guo, L., & Cheng, S. (2015). Levels and ecological risk assessment of metals in soils from a typical e-waste recycling region in southeast China. Ecotoxicology, 24(9), 1947–1960.

  • Zhou, J., Feng, K., Pei, Z., Meng, F., & Sun, J. (2016). Multivariate analysis combined with GIS to source identification of heavy metals in soils around an abandoned industrial area, Eastern China. Ecotoxicology, 25(2), 380–388. https://doi.org/10.1007/s10646-015-1596-4

Download references

Acknowledgements

We would like to thank Pr. Simon Sheppared for the English language revision.

Funding

Tunisian Ministry of High and Education and Scientific Research had financed this project.

Author information

Authors and Affiliations

Authors

Contributions

Rawya Nassraoui: funding acquisition, conceptualization, investigation, formal analysis, software, and writing original draft. Mariem Trifi: formal analysis, software, and writing original draft. Abdelkrim charef: investigation, writing—review, validation, and editing.

Corresponding author

Correspondence to Abdelkrim Charef.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasraoui, R., Trifi, M. & Charef, A. Hydrodynamic release of Pb, Zn, and Cd from impermeable tailings as deduced from physical parameters evolution and multivariate statistical analysis: case study of Jbel Ressas mine waste (North Tunisia). Environ Monit Assess 195, 410 (2023). https://doi.org/10.1007/s10661-023-10967-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-10967-7

Keywords

Navigation