Skip to main content

Advertisement

Log in

Presence of pharmaceuticals and bacterial resistance genes in river epilithic biofilms exposed to intense agricultural and urban pressure

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The continuous discharge of pharmaceutical compounds into the aquatic environment has raised concerns over the contamination of water resources. Urban activities and intensive animal breeding are important sources of contamination. The accumulation of antibiotics may lead to the transfer or alternatively maintain the presence of resistance genes in natural microbial communities existing in epilithic biofilms. The objective of this study was to evaluate the pharmaceutical contamination levels and the presence of resistance genes in biofilms from a South Brazilian watershed. The Guaporé watershed exhibits a high diversity of land use, including agricultural and urban areas with differing levels of anthropogenic pressure. Seventeen sites along the Guaporé watershed were monitored. Biofilm samples were collected in two seasons (winter and summer), and the pharmaceutical concentration and quantity of resistance genes were analyzed. All monitored sites were contaminated with pharmaceuticals. Agricultural activities contribute through transferring pharmaceuticals derived from the application of animal waste to agricultural fields. The most contaminated site (pharmaceuticals and bacterial resistance genes) was located in an urban area exposed to high pressure. Decreases in the contamination of biofilms were also observed, exemplifying processes of natural attenuation in the watershed. The quality of the biofilms sampled throughout the watershed served as a useful tool to understand and monitor environmental pollution.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its available in supplementary information files.

References

  • Almeida, G. A. D., & Weber, R. R. (2005). Fármacos na represa Billings. Rev. Saúde E Ambiente, 6, 7–13.

    Google Scholar 

  • Américo, J. H. P., Torres, N. H., Américo, G. H. P., & de Carvalho, S. L. (2013). OCORRÊNCIA, DESTINO E POTENCIAIS IMPACTOS DOS FÁRMACOS NO AMBIENTE. SaBios Rev. Saúde E Biol., 8, 59–72.

    Google Scholar 

  • Aminov, R. I. (2011). Horizontal gene exchange in environmental microbiota. Frontiers in microbiology2. https://doi.org/10.3389/fmicb.2011.00158

  • Andersson, D. I., & Hughes, D. (2014). Microbiological effects of sublethal levels of antibiotics. Nature Reviews Microbiology, 12, 465–478. https://doi.org/10.1038/nrmicro3270

    Article  CAS  Google Scholar 

  • Arsand, J. B., Hoff, R. B., Jank, L., Bussamara, R., Dallegrave, A., Bento, F. M., & Pizzolato, T. M. (2020). Presence of antibiotic resistance genes and its association with antibiotic occurrence in Dilúvio River in southern Brazil. Science of the Total Environment, 738, 139781. https://doi.org/10.1016/j.scitotenv.2020.139781

    Article  CAS  Google Scholar 

  • Aubertheau, E., Stalder, T., Mondamert, L., Ploy, M. -C., Dagot, C., & Labanowski, J. (2017). Impact of wastewater treatment plant discharge on the contamination of river biofilms by pharmaceuticals and antibiotic resistance. Science of the Total Environment, 579, 1387–1398. https://doi.org/10.1016/j.scitotenv.2016.11.136

    Article  CAS  Google Scholar 

  • Balcázar, J. L., Subirats, J., & Borrego, C. M. (2015). The role of biofilms as environmental reservoirs of antibiotic resistance. Frontiers in microbiology6. https://doi.org/10.3389/fmicb.2015.01216

  • Bártíková, H., Podlipná, R., & Skálová, L. (2016). Veterinary drugs in the environment and their toxicity to plants. Chemosphere, 144, 2290–2301. https://doi.org/10.1016/j.chemosphere.2015.10.137

    Article  CAS  Google Scholar 

  • Bastos, M. C., dos Santos, D. R., Aubertheau, É., de Castro Lima, J. A. M., Le Guet, T., Caner, L., Mondamert, L., & Labanowski, J. (2018a). Antibiotics and microbial resistance in Brazilian soils under manure application. Land Degradation and Development, 29, 2472–2484. https://doi.org/10.1002/ldr.2964

    Article  Google Scholar 

  • Bastos, M. C. (2017). Study of the environmental contamination of human and veterinary552medicines in the south Brazil. Santa Maria-RS, Université de Poitiers and Universidade Federal de Santa Maria.

    Google Scholar 

  • Bastos, M. C., dos Santos, D. R., de Castro Lima, J. A. M., le Guet, T., Santanna dos Santos, M. A., Zanella, R., Aubertheau, E., Mondamert, L., Caner, L., & Labanowski, J. (2018b). Presence of anthropogenic markers in water: A case study of the Guaporé River watershed. Brazil. CLEAN - Soil Air Water, 46, 1700019. https://doi.org/10.1002/clen.201700019

    Article  CAS  Google Scholar 

  • Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M., & Packmann, A. I. (2016). The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology, 14, 251–263. https://doi.org/10.1038/nrmicro.2016.15

    Article  CAS  Google Scholar 

  • Ben Maamar, S., Hu, J., & Hartmann, E. M. (2020). Implications of indoor microbial ecology and evolution on antibiotic resistance. Journal of Exposure Science & Environmental Epidemiology30(1), 1-15. https://doi.org/10.1038/s41370-019-0171-0

  • Berglund, B. (2015). Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infection ecology & epidemiology, 5, 28564. https://doi.org/10.3402/iee.v5.28564

    Article  Google Scholar 

  • Böger, B., Surek, M., de Vilhena, R., O., Fachi, M.M., Junkert, A. M., Santos, J. M., Domingos, E. L., Cobre, A., de F., Momade, D. R., & Pontarolo, R. (2021). Occurrence of antibiotics and antibiotic resistant bacteria in subtropical urban rivers in Brazil. Journal of Hazardous Materials, 402, 123448. https://doi.org/10.1016/j.jhazmat.2020.123448

    Article  CAS  Google Scholar 

  • Bolong, N., Ismail, A. F., Salim, M. R., & Matsuura, T. (2009). A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination, 239, 229–246. https://doi.org/10.1016/j.desal.2008.03.020

    Article  CAS  Google Scholar 

  • Bruchmann, J., Kirchen, S., & Schwartz, T. (2013). Sub-inhibitory concentrations of antibiotics and wastewater influencing biofilm formation and gene expression of multi-resistant Pseudomonas aeruginosa wastewater isolates. Environmental Science and Pollution Research, 20, 3539–3549. https://doi.org/10.1007/s11356-013-1521-4

    Article  CAS  Google Scholar 

  • Bu, Q., Shi, X., Yu, G., Huang, J., & Wang, B. (2016). Assessing the persistence of pharmaceuticals in the aquatic environment: Challenges and needs. Emerging contaminants2, 145–147. https://doi.org/10.1016/j.emcon.2016.05.003

    Article  Google Scholar 

  • Capoane, V., Tiecher, T., Schaefer, G. L., Ciotti, L. H., & dos Santos, D. R. (2015). Transferência de nitrogênio e fósforo para águas superficiais em uma bacia hidrográfica com agricultura e produção pecuária intensiva no Sul do Brasil. Ciênc. Rural, 45, 647–650. https://doi.org/10.1590/0103-8478cr20140738

    Article  CAS  Google Scholar 

  • Chen, L., Zhang, W., Hua, J., Hu, C., Lok-Shun Lai, N., Qian, P. -Y., Lam, P. K. S., Lam, J. C. W., & Zhou, B. (2018). Dysregulation of intestinal health by environmental pollutants: Involvement of the estrogen receptor and aryl hydrocarbon receptor. Environmental Science and Technology, 52, 2323–2330. https://doi.org/10.1021/acs.est.7b06322

    Article  CAS  Google Scholar 

  • Chonova, T., Keck, F., Labanowski, J., Montuelle, B., Rimet, F., & Bouchez, A. (2016). Separate treatment of hospital and urban wastewaters: A real scale comparison of effluents and their effect on microbial communities. Science of the Total Environment, 542, 965–975. https://doi.org/10.1016/j.scitotenv.2015.10.161

    Article  CAS  Google Scholar 

  • Comte, S., Guibaud, G., & Baudu, M. (2006). Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and complexation properties of Pb and Cd with EPS. Enyzme and Microbial Technology, 38, 246–252. https://doi.org/10.1016/j.enzmictec.2005.06.023

    Article  CAS  Google Scholar 

  • Corcoll, N., Casellas, M., Huerta, B., Guasch, H., Acuña, V., Rodríguez-Mozaz, S., Serra-Compte, A., Barceló, D., & Sabater, S. (2015). Effects of flow intermittency and pharmaceutical exposure on the structure and metabolism of stream biofilms. Science of the Total Environment, 503–504, 159–170. https://doi.org/10.1016/j.scitotenv.2014.06.093

    Article  CAS  Google Scholar 

  • da Rocha, M. P., Dourado, P. L. R., de Souza Rodrigues, M., Raposo, J. L., Grisolia, A. B., & de Oliveira, K. M. P. (2015). The influence of industrial and agricultural waste on water quality in the Água Boa stream (Dourados, Mato Grosso do Sul, Brazil). Environmental Monitoring and Assessment, 187, 442. https://doi.org/10.1007/s10661-015-4475-9

    Article  CAS  Google Scholar 

  • da Silva Stelato, E., de Oliveira, T. G., Stunges, G. M., da Silva, E. C. P., Cuba, R. M. F., Minillo, A., & Isique, W. D. (2016). Avaliação da presença de resíduos de anti‑inflamatórios não esteroides nos córregos veado e cedro do município de Presidente Prudente (SP). Brazilian Journal of Environmental Sciences (Online), 97–113. https://doi.org/10.5327/Z2176-947820160050

  • Dar, S. A., & Bhat, R. A. (2020). Aquatic Pollution Stress and Role of Biofilms as Environment Cleanup Technology, in: Qadri, H., Bhat, R.A., Mehmood, M.A., Dar, G.H. (Eds.), Fresh water pollution dynamics and remediation. Springer Singapore, Singapore, pp. 293–318. https://doi.org/10.1007/978-981-13-8277-2_16

  • de Castro Lima, J. A. M., Labanowski, J., Bastos, M. C., Zanella, R., Prestes, O. D., de Vargas, J. P. R., Mondamert, L., Granado, E., Tiecher, T., Zafar, M., Troian, A., Le Guet, T., & dos Santos, D. R. (2020). “Modern agriculture” transfers many pesticides to watercourses: A case study of a representative rural catchment of southern Brazil. Environmental Science and Pollution Research, 27, 10581–10598. https://doi.org/10.1007/s11356-019-06550-8

    Article  CAS  Google Scholar 

  • de Sá, D. N., & Gerhardt, M. (2016). Uma história ambiental da Floresta Nacional de Passo Fundo: a aquisição das terras. INTERthesis: Revista Internacional Interdisciplinar, 13(3), 182–202. https://doi.org/10.5007/1807-1384.2016v13n3p182

  • Didoné, E. J., Minella, J. P. G., Reichert, J. M., Merten, G. H., Dalbianco, L., de Barrros, C. A. P., & Ramon, R. (2014). Impact of no-tillage agricultural systems on sediment yield in two large catchments in Southern Brazil. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-013-0844-6

    Article  Google Scholar 

  • Diwan, V., Tamhankar, A. J., Khandal, R. K., Sen, S., Aggarwal, M., Marothi, Y., Iyer, R. V., Sundblad-Tonderski, K., & Stålsby-Lundborg, C. (2010). Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain. India. BMC Public Health, 10, 414. https://doi.org/10.1186/1471-2458-10-414

    Article  CAS  Google Scholar 

  • Fernandes, G., Aparicio, V. C., Bastos, M. C., De Gerónimo, E., Labanowski, J., Prestes, O. D., Zanella, R., & dos Santos, D. R. (2019). Indiscriminate use of glyphosate impregnates river epilithic biofilms in southern Brazil. Science of the Total Environment, 651, 1377–1387. https://doi.org/10.1016/j.scitotenv.2018.09.292

    Article  CAS  Google Scholar 

  • Fernandes, G., Bastos, M. C., de Vargas, J. P. R., Le Guet, T., Clasen, B., & dos Santos, D. R. (2020). The use of epilithic biofilms as bioaccumulators of pesticides and pharmaceuticals in aquatic environments. Ecotoxicology. https://doi.org/10.1007/s10646-020-02259-4

    Article  Google Scholar 

  • Flemming, H. -C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8, 623–633. https://doi.org/10.1038/nrmicro2415

    Article  CAS  Google Scholar 

  • Gatiboni, L. C., Smyth, T. J., Schmitt, D. E., Cassol, P. C., & Oliveira, C. D. (2014). Proposta de limites críticos ambientais de fósforo para solos de Santa Catarina. Lages: UDESC/CAV.

  • Guerin, E., Cambray, G., Sanchez-Alberola, N., Campoy, S., Erill, I., Da Re, S., Gonzalez-Zorn, B., Barbe, J., Ploy, M. -C., & Mazel, D. (2009). The SOS Response Controls Integron Recombination. Science, 324, 1034–1034. https://doi.org/10.1126/science.1172914

    Article  CAS  Google Scholar 

  • Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. (2004). Bacterial biofilms: From the Natural environment to infectious diseases. Nature Reviews Microbiology, 2, 95–108. https://doi.org/10.1038/nrmicro821

    Article  CAS  Google Scholar 

  • Huerta, B., Rodriguez-Mozaz, S., Nannou, C., Nakis, L., Ruhí, A., Acuña, V., Sabater, S., & Barcelo, D. (2016). Determination of a broad spectrum of pharmaceuticals and endocrine disruptors in biofilm from a waste water treatment plant-impacted river. Science of the Total Environment, 540, 241–249. https://doi.org/10.1016/j.scitotenv.2015.05.049

    Article  CAS  Google Scholar 

  • IBGE. (2020). Instituto brasileiro de geografia e estatística [WWW Document]. Retrieved September 21, 2020, from www.sidra.ibge.gov.br/bda/agric

  • INMET. (2020). Banco de Dados Meteorológicos para Ensino e Pesquisa. Instituto Nacional de Meteorologia [WWW Document]. Retrieved September 21, 2020, from http://www.inmet.gov.br/projetos/rede/pesquisa/

  • Instituto Chico Mendes. (2011). Plano de manejo da floresta nacional de Passo Fundo (Inventarios florestais). ICM, Florianopolis.

  • Janecko, N., Pokludova, L., Blahova, J., Svobodova, Z., & Literak, I. (2016). Implications of fluoroquinolone contamination for the aquatic environment-A review: Fluoroquinolone in the aquatic ecosystem-A review. Environmental Toxicology and Chemistry, 35, 2647–2656. https://doi.org/10.1002/etc.3552

    Article  CAS  Google Scholar 

  • Jelić, A., Petrović, M., & Barceló, D. (2009). Multi-residue method for trace level determination of pharmaceuticals in solid samples using pressurized liquid extraction followed by liquid chromatography/quadrupole-linear ion trap mass spectrometry. Talanta, 80, 363–371. https://doi.org/10.1016/j.talanta.2009.06.077

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern, B., Dinsdale, R. M., & Guwy, A. J. (2009). The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Research, 43, 363–380. https://doi.org/10.1016/j.watres.2008.10.047

    Article  CAS  Google Scholar 

  • Klappenbach, J. A., Saxman, P. R., Cole, J. R., & Schmidt, T. M. (2001). rrndb: The Ribosomal RNA Operon Copy Number Database. Nucleic Acids Research, 29, 181–184.

    Article  CAS  Google Scholar 

  • Kumari, M., & Kumar, A. (2020). Human health risk assessment of antibiotics in binary mixtures for finished drinking water. Chemosphere, 240, 124864. https://doi.org/10.1016/j.chemosphere.2019.124864

    Article  CAS  Google Scholar 

  • Le Guet, T., Hsini, I., Labanowski, J., & Mondamert, L. (2018). Sorption of selected pharmaceuticals by a river sediment: Role and mechanisms of sediment or Aldrich humic substances. Environmental Science and Pollution Research, 25, 14532–14543. https://doi.org/10.1007/s11356-018-1684-0

    Article  CAS  Google Scholar 

  • Luque-Espinar, J. A., Navas, N., Chica-Olmo, M., Cantarero-Malagón, S., & Chica-Rivas, L. (2015). Seasonal occurrence and distribution of a group of ECs in the water resources of Granada city metropolitan areas (South of Spain): Pollution of raw drinking water. Journal of Hydrology, 531, 612–625. https://doi.org/10.1016/j.jhydrol.2015.10.066

    Article  CAS  Google Scholar 

  • MAPA. (2020). Secretaria de Defesa Agropecuária. INSTRUÇÃO NORMATIVA No 1. Retrieved January 13, 2020, from https://www.in.gov.br/en/web/dou/-/instrucao-normativa-n-1-de-13-de-janeiro-de-2020-239402385

  • McKinlay, R., Plant, J. A., Bell, J. N. B., & Voulvoulis, N. (2008). Endocrine disrupting pesticides: Implications for risk assessment. Environment International, 34, 168–183. https://doi.org/10.1016/j.envint.2007.07.013

    Article  CAS  Google Scholar 

  • Migliore, L. (1995). Effect on plants of sulphadimethoxine used in intensive farming (Panicum miliaceum, Pisum sativum and Zea mays). Agriculture, Ecosystems & Environment, 52, 103–110. https://doi.org/10.1016/0167-8809(94)00549-T

    Article  CAS  Google Scholar 

  • Neves, P. B. C., da Silva Rodrigues, D. A., Roeser, H. M. P., da Fonseca Santiago, A., & de Cássia Franco Afonso, R.J.,. (2020). Antibiotic consumption in developing countries defies global commitments: An overview on Brazilian growth in consumption. Environmental Science and Pollution Research, 27, 21013–21020. https://doi.org/10.1007/s11356-020-08574-x

    Article  Google Scholar 

  • Nicolini, P., Nascimento, J. W. L., Greco, K. V., & de Menezes, F. G. (2008). Fatores relacionados à prescrição médica de antibióticos em farmácia pública da região Oeste da cidade de São Paulo. Ciênc. Saúde Coletiva, 13, 689–696. https://doi.org/10.1590/S1413-81232008000700018

    Article  Google Scholar 

  • Paranhos, A. G., Pereira, A. R., da Fonseca, I. C., Sanson, A. L., Afonso, R. J., & Aquino, S. F. (2021). Analysis of tylosin in poultry litter by HPLC-UV and HPLC-MS/MS after LTPE. International Journal of Environmental Analytical Chemistry, 1–18. https://doi.org/10.1080/03067319.2019.1694921

  • Pellegrini, J. B. R., Santos, D. R. D., Gonçalves, C. S., Copetti, A. C. C., & Bortoluzzi, E. C. (2008). Adsorção de fósforo em sedimentos e sua relação com a ação antrópica. Revista Brasileira De Ciência Do Solo, 32, 2639–2646. https://doi.org/10.1590/S0100-06832008000700005

    Article  CAS  Google Scholar 

  • Pereira, A. M. P. T., Silva, L. J. G., Meisel, L. M., Lino, C. M., & Pena, A. (2015). Environmental impact of pharmaceuticals from Portuguese wastewaters: Geographical and seasonal occurrence, removal and risk assessment. Environmental Research, 136, 108–119. https://doi.org/10.1016/j.envres.2014.09.041

    Article  CAS  Google Scholar 

  • Ponsati, L., Corcoll, N., Petrović, M., Pico, Y., Ginebreda, A., Tornés, E., Guasch, H., Barceló, D., & Sabater, S. (2016). Multiple‐stressor effects on river biofilms under different hydrological conditions. Freshwater Biology14.

  • Rheinheimer dos Santos, D., de Castro, M., Lima, J. A., Rosa, P., de Vargas, J., Camotti Bastos, M., Santanna dos Santos, M. A., Mondamert, L., & Labanowski, J. (2020). Pesticide bioaccumulation in epilithic biofilms as a biomarker of agricultural activities in a representative watershed. Environmental Monitoring and Assessment, 192, 381. https://doi.org/10.1007/s10661-020-08264-8

    Article  CAS  Google Scholar 

  • Richmond, E. K., Grace, M. R., Kelly, J. J., Reisinger, A. J., Rosi, E. J., & Walters, D. M. (2017). Pharmaceuticals and personal care products (PPCPs) are ecological disrupting compounds (EcoDC). Elem Sci Anth, 5, 66. https://doi.org/10.1525/elementa.252

    Article  Google Scholar 

  • Romaní Cornet, A. M., Guasch, H., & Balaguer, M. D. (Eds.). (2016). Aquatic biofilms: Ecology, water quality and wastewater treatment. Caister Academic Press.

    Google Scholar 

  • Serra-Compte, A., Corcoll, N., Huerta, B., Rodríguez-Mozaz, S., Sabater, S., Barceló, D., & Álvarez-Muñoz, D. (2018). Fluvial biofilms exposed to desiccation and pharmaceutical pollution: New insights using metabolomics. Science of the Total Environment, 618, 1382–1388. https://doi.org/10.1016/j.scitotenv.2017.09.258

    Article  CAS  Google Scholar 

  • Sociedade Brasileira de Ciencia do Solo. (2016). Manual de adubação e de calagem para os estados do Rio Grande do Sul e de Santa Catarina. SBCS-NRS, Porto Alegre (RS).

  • Solís, M., Solís, A., Pérez, H. I., Manjarrez, N., & Flores, M. (2012). Microbial decolouration of azo dyes: A review. Process Biochemistry, 47, 1723–1748. https://doi.org/10.1016/j.procbio.2012.08.014

    Article  CAS  Google Scholar 

  • Soto, A., & Sonnenschein, C. (2010). Environmental causes of cancer: Endocrine disruptors as carcinogens. Nature Reviews. Endocrinology, 6, 363–370. https://doi.org/10.1038/nrendo.2010.87

    Article  CAS  Google Scholar 

  • Soymeal. (2019). World Soybean Meal Production [WWW Document]. URL https://www.soymeal.org (Accessed August 28, 2020).

  • Tamtam, F., Le Bot, B., Dinh, T., Mompelat, S., Eurin, J., Chevreuil, M., Bonté, P., Mouchel, J. -M., & Ayrault, S. (2011). A 50-year record of quinolone and sulphonamide antimicrobial agents in Seine River sediments. Journal of Soils and Sediments, 11, 852–859. https://doi.org/10.1007/s11368-011-0364-1

    Article  CAS  Google Scholar 

  • Tang, J., Wang, S., Tai, Y., Tam, N. F., Su, L., Shi, Y., Luo, B., Tao, R., Yang, Y., & Zhang, X. (2020). Evaluation of factors influencing annual occurrence, bioaccumulation, and biomagnification of antibiotics in planktonic food webs of a large subtropical river in South China. Water Research, 170, 115302. https://doi.org/10.1016/j.watres.2019.115302

    Article  CAS  Google Scholar 

  • Tiecher, T., Caner, L., Minella, J. P. G., Pellegrini, A., Capoane, V., Rasche, J. W. A., & dos Santos Rheinheimer, D. (2017). Tracing sediment sources in two paired agricultural catchments with different riparian forest and wetland proportion in southern Brazil. Research Gate. 285. https://doi.org/10.1016/j.geoderma.2016.10.008

  • Tolls, J. (2001). Sorption of veterinary pharmaceuticals in soils:a review. Environmental Science & Technology, 35(17), 3397–3406.

    Article  CAS  Google Scholar 

  • USDA. (2019). Brazil once again becomes the world’s largest beef exporter. Department of agriculture, United states.

  • Victoretti, B. A., Hess, M. L., Monteiro, C. E., & Filho, P. S. (1975). O impacto das barragens no meio ambiente. Revisat DAE, 60–69.

  • Weber, W. M., Kracko, D. A., Lehman, M. R., Irvin, C. M., Blair, L. F., White, R. K., Benson, J. M., Grotendorst, G. R., Cheng, Y. -S., & McDonald, J. D. (2010). Inhalation exposure systems for the development of rodent models of sulfur mustard-induced pulmonary injury. Toxicology Mechanisms and Methods, 20, 14–24. https://doi.org/10.3109/15376510903483730

    Article  CAS  Google Scholar 

  • WHO. (2018). Report on surveillance of antibiotic consumption: 2016–2018 early implementation. World Health Organization.

    Google Scholar 

  • Xuemei, W., Jingling, L., Muyuan, M., & Zhifeng, Y. (2010). Response of Freshwater Biofilm to pollution and ecosystem in Baiyangdian Lake of China. Procedia Environmental Sciences, 2, 1759–1769. https://doi.org/10.1016/j.proenv.2010.10.188

    Article  Google Scholar 

  • Zafar, M., Tiecher, T., de Castro Lima, J. A. M., Schaefer, G. L., Santanna, M. A., & Dos Santos, D. R. (2016). Phosphorus seasonal sorption-desorption kinetics in suspended sediment in response to land use and management in the Guaporé catchment. Southern Brazil. Environ. Monit. Assess., 188, 643. https://doi.org/10.1007/s10661-016-5650-3

    Article  CAS  Google Scholar 

  • Zhang, L., Dong, D., Hua, X., & Guo, Z. (2018). Inhibitory effects of extracellular polymeric substances on ofloxacin sorption by natural biofilms. Science of the Total Environment, 625, 178–184. https://doi.org/10.1016/j.scitotenv.2017.12.271

    Article  CAS  Google Scholar 

  • Zhang, X. -X., Zhang, T., & Fang, H. H. P. (2009). Antibiotic resistance genes in water environment. Applied Microbiology and Biotechnology, 82, 397–414. https://doi.org/10.1007/s00253-008-1829-z

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by CAPES‐COFECUB (Project 3504–11-5, 761/12), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Finep/FEPAGRO (Project MAIS AGUA), Europen Communities (FEDER) and Région Nouvelle Aquitaine, CAPES/PrInt bolsa PVE –Danilo Rheinheimer dos Santos (n° 88,887.695070/2022–00).

Author information

Authors and Affiliations

Authors

Contributions

Marília Camotti Bastos: conceptualization, data curation, formal analysis, investigation, methodology, validation, visualization, writing—original draft. Danilo Rheinheimer Dos Santos: conceptualization, funding acquisition, investigation, project administration, resources, supervision, writing—review and editing. Thibaut Le Guet: data curation, formal analysis, methodology, validation, writing—original draft. Jocelina Vargas Brunet: formal analysis, writing—original draft. Elodie Aubertheau: methodology, validation, writing—review, and editing. Leslie Mondamert: project administration, writing—review and editing. Jérôme Labanowski: conceptualization, funding acquisition, investigation, methodology, resources, supervision; validation; writing—original draft. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marília Camotti Bastos.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Biofilms are effective for environmental monitoring.

• Anthropic activity impregnates biofilms with pharmaceutic molecules.

• Biofilms in contact with pharmaceuticals can develop resistance genes.

• Biofilms can identify hot spots of pollution.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 47 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastos, M.C., Rheinheimer, D.d., Le Guet, T. et al. Presence of pharmaceuticals and bacterial resistance genes in river epilithic biofilms exposed to intense agricultural and urban pressure. Environ Monit Assess 195, 328 (2023). https://doi.org/10.1007/s10661-022-10899-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10899-8

Keywords

Navigation