Skip to main content
Log in

Hydrogeochemical characterization of the groundwater of Lahore region using supervised machine learning technique

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The cationic and anionic composition in groundwater can be better understood by identifying the type of hydrogeochemical processes influencing groundwater chemistry. This research deals with the characterization of groundwater samples by considering the likely role of hydrogeochemical processes and the factors responsible for the weathering process. The study applies statistical methods and supervised machine learning algorithm (i.e., logistic regression model) on the large data set of 1300 water samples from the Lahore district of Punjab, Pakistan. All the water samples were collected by the local authorities from a deep unconfined aquifer (> 350 ft in depth) for the years of 2005 to 2016. The characterization of groundwater quality parameters includes pH, total dissolved solids (TDS), electrical conductivity (EC), total hardness (TH), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), chloride (Cl), bicarbonate (HCO3), nitrate (NO3), and sulfate (SO42−). The results show the sequence of the major ion in the following order: Na+  > Ca2+  > Mg+  > K+ and HCO32−  > SO42−  > Cl  > NO3. The ionic ratios and Gibb’s plot revealed that the prominent hydrogeochemical facies of aquifer water is Ca–HCO3, Ca–Na–HCO3, and mixed Ca–Mg–Cl type rock-weathering process, especially carbonate and silicate weathering, as significant process controlling water chemistry. The statistical evaluation of the prepared regression model determined its prediction accuracy as 92.2%, which means the model is highly efficient and satisfies the analysis. The outcomes of this study favor the utilization of such methods for other areas with large data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

The authors have no reservations about sharing the data and material used for this study upon request.

Code availability

No new codes were generated for this study.

References

  • Adiat, K. A. N., Akeredolu, B. E., Akinlalu, A. A., & Olayanju, G. M. (2020). Application of logistic regression analysis in prediction of groundwater vulnerability in gold mining environment: A case of Ilesa gold mining area, southwestern, Nigeria. Environmental Monitoring and Assessment, 192(9). https://doi.org/10.1007/s10661-020-08532-7

  • Ahmad, N., Ahmad, M., Rafiq, M., & Iqbal, N. (2001). Hydrological modeling of the lahore-aquifer, using isotopic, chemical and numerical techniques. Sciencevision, 169–194.

  • Al-Ahmadi, M. E. (2013). Hydrochemical characterization of groundwater in Wadi Sayyah Western Saudi Arabia. Applied Water Science, 3(4), 721–732. https://doi.org/10.1007/s13201-013-0118-x

    Article  CAS  Google Scholar 

  • Al-Hmani, A., Jamaa, N. B., Kharroubi, A., & Agoubi, B. (2022). Assessment of groundwater in Sana’a Basin aquifers, Yemen, using hydrogeochemical modeling and multivariate statistical analysis. Arabian Journal of Geosciences, 15(8), 1–18. https://doi.org/10.1007/s12517-022-09979-3

    Article  Google Scholar 

  • Amiri, V., Kamrani, S., Ahmad, A., Bhattacharya, P., & Mansoori, J. (2021). Groundwater quality evaluation using Shannon information theory and human health risk assessment in Yazd province, central plateau of Iran. Environmental Science and Pollution Research, 28(1), 1108–1130. https://doi.org/10.1007/s11356-020-10362-6

    Article  Google Scholar 

  • APHA. (1995). Standard methods for the examination of water and wastewater (19th ed.). New York: American Public Health Association.

    Google Scholar 

  • Bartarya, S. K. (1993). Hydrochemistry and rock weathering in a sub-tropical Lesser Himalayan river basin in Kumaun, India. Journal of Hydrology, 146, 149–174. https://doi.org/10.1016/0022-1694(93)90274-D

  • Bewick, V., Cheek, L., & Ball, J. (2005). Statistics review 14: Logistic regression. Critical Care, 9(1), 112–118. https://doi.org/10.1186/cc3045

    Article  Google Scholar 

  • Boateng, T. K., Opoku, F., Acquaah, S. O., & Akoto, O. (2016). Groundwater quality assessment using statistical approach and water quality index in Ejisu-Juaben Municipality Ghana. Environmental Earth Sciences, 75(6), 1–14. https://doi.org/10.1007/s12665-015-5105-0

    Article  CAS  Google Scholar 

  • Burkart, M. R., Kolpin, D. W., Jaquis, R. J., & Cole, K. J. (1999). Agrichemicals in ground water of the Midwestern USA: relations to soil characteristics. Journal of Environmental Quality, 28, 1908–1915.

    Article  CAS  Google Scholar 

  • Carol, E., Kruse, E., & Mas-Pla, J. (2009). Hydrochemical and isotopical evidence of ground water salinization processes on the coastal plain of Samborombón Bay Argentina. Journal of Hydrology, 365(3–4), 335–345. https://doi.org/10.1016/j.jhydrol.2008.11.041

    Article  CAS  Google Scholar 

  • Chaillou, G., Touchette, M., Buffin-Bélanger, T., Cloutier, C. A., Hétu, B., & Roy, M. A. (2018). Hydrogeochemical evolution and groundwater mineralization of shallow aquifers in the Bas-Saint-Laurent region, Québec Canada. Canadian Water Resources Journal, 43(2), 136–151. https://doi.org/10.1080/07011784.2017.1387817

    Article  Google Scholar 

  • Cheebah, M., & Allia, Z. (2015). Geochemistry and hydrogeochemical process of groundwater in the Souf valley of Low Septentrional Sahara, Algeria. African Journal of Environmental Science and Technology, 9(3), 261–273. https://doi.org/10.5897/ajest2014.1710

    Article  Google Scholar 

  • Chen, L., & Feng, Q. (2013). Geostatistical analysis of temporal and spatial variations in groundwater levels and quality in the Minqin oasis. Northwest China. Environmental Earth Sciences, 70(3), 1367–1378. https://doi.org/10.1007/s12665-013-2220-7

    Article  Google Scholar 

  • Chenini, I., & Msaddek, M. H. (2019). Groundwater recharge susceptibility mapping using logistic regression model and bivariate statistical analysis. Quarterly Journal of Engineering Geology and Hydrogeology, 53(167–175), 13–175. https://doi.org/10.1144/qjegh2019-047

    Article  Google Scholar 

  • Cloutier, V., Lefebvre, R., Savard, M. M., & Therrien, R. (2010). Desalination of a sedimentary rock aquifer system invaded by Pleistocene Champlain Sea water and processes controlling groundwater geochemistry. Environmental Earth Sciences, 59(5), 977–994. https://doi.org/10.1007/s12665-009-0091-8

    Article  CAS  Google Scholar 

  • Cox, D. R., & Snell, E. J. (1989). Analysis of binary data. Second Edition. Chapman & Hall.

  • Davis, J. W. (2008). Medical statistics: A textbook for the health sciences. The American Statistician, 62. https://doi.org/10.1198/tas.2008.s274

  • Deutsch, W. J. (1997). Groundwater geochemistry: fundamentals and application to contamination. Boca Raton: CRC Press.

    Google Scholar 

  • Eckhardt, D. A. V., Stackelberg, P., & E. (1995). Relation of groundwater quality to land use on Long Island New York. Ground Water, 33(6), 1019–1033.

    Article  CAS  Google Scholar 

  • El-Fakharany, M. A., Mansour, N. M., Yehia, M. M., & Monem, M. (2017). Evaluation of groundwater quality of the Quaternary aquifer through multivariate statistical techniques at the southeastern part of the Nile Delta Egypt. Sustainable Water Resources Management, 3(1), 71–81. https://doi.org/10.1007/s40899-017-0087-6

    Article  Google Scholar 

  • Emenike, C. P., Tenebe, I. T., Omole, D. O., Ngene, B. U., Oniemayin, B. I., Maxwell, O., & Onoka, B. I. (2017). Accessing safe drinking water in sub-Saharan Africa: issues and challenges in south-west Nigeria. Sustainable Cities and Society, 30, 263–272. https://doi.org/10.1016/j.scs.2017.01.005

    Article  Google Scholar 

  • Farooqi, A., Masuda, H., Kusakabe, M., Naseem, M., & Firdous, N. (2007). Distribution of highly arsenic and fluoride contaminated groundwater from east Punjab, Pakistan, and the controlling role of anthropogenic pollutants in the natural hydrological cycle. Geochemical Journal, 41(4), 213–234. https://doi.org/10.2343/geochemj.41.213

    Article  CAS  Google Scholar 

  • Feng, F., Jia, Y., Yang, Y., Huan, H., Lian, X., Xu, X., et al. (2020). Hydrogeochemical and statistical analysis of high fluoride groundwater in northern China. Environmental Science and Pollution Research, 27(28), 34840–34861. https://doi.org/10.1007/s11356-020-09784-z

    Article  CAS  Google Scholar 

  • Freese, J., & Scott, L. (2006). Regression models for categorical dependent variables using Stata. College Station: Stata Press.

  • García, M. G., Hidalgo, M. D. V., & Blesa, M. A. (2001). Geochemistry of groundwater in the alluvial plain of Tucumán province Argentina. Hydrogeology Journal, 9(6), 597–610. https://doi.org/10.1007/s10040-001-0166-4

    Article  Google Scholar 

  • Ghasemi, A., & Zahediasl, S. (2012). Normality tests for statistical analysis: A guide for non-statisticians. International Journal of Endocrinology and Metabolism, 10(2), 486–489. https://doi.org/10.5812/ijem.3505

    Article  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world’s water chemistry. Science, 170, 1088–1090.

    Article  CAS  Google Scholar 

  • Grant, A., Ries, R., & Thompson, C. (2016). Quantitative approaches in life cycle assessment—Part 1—Descriptive statistics and factor analysis. International Journal of Life Cycle Assessment, 21(6), 903–911. https://doi.org/10.1007/s11367-016-1099-4

    Article  CAS  Google Scholar 

  • Greenman, D.W., Swarzenski, W.V., Bennett, G.D. (1967). Ground water hydrology of Punjab with emphasis on problems caused by canal irrigation. Water and Soil Investigation Division. Bulletin, (6). Water and Power Development Authority, Lahore.

  • Güler, C., Thyne, G. D., McCray, J. E., & Turner, A. K. (2002). Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology Journal, 10(4), 455–474. https://doi.org/10.1007/s10040-002-0196-6

    Article  CAS  Google Scholar 

  • Hanusz, Z., & Tarasińska, J. (2015). Normalization of the Kolmogorov-Smirnov and Shapiro-Wilk tests of normality. Biometrical Letters, 52(2), 85–93. https://doi.org/10.1515/bile-2015-0008

    Article  Google Scholar 

  • Hem, J. D. (1989). Study and interpretation of the chemical characteristics of natural water (3rd ed.). US Geology Survey Water Supply Paper 2254:263.

  • Hemmert, G. A. J., Schons, L. M., Wieseke, J., & Schimmelpfennig, H. (2018). Log-likelihood-based pseudo-R2 in logistic regression: Deriving sample-sensitive benchmarks. Sociological Methods & Research, 47(3), 507–531. https://doi.org/10.1177/0049124116638107

    Article  Google Scholar 

  • Heydarirad, L., Mosaferi, M., Pourakbar, M., Esmailzadeh, N., & Maleki, S. (2019). Groundwater salinity and quality assessment using multivariate statistical and hydrogeochemical analysis along the Urmia Lake coastal in Azarshahr plain, North West of Iran. Environmental Earth Sciences, 78(24), 1–16. https://doi.org/10.1007/s12665-019-8655-8

    Article  CAS  Google Scholar 

  • Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression. New York: John Wiley & Sons Inc.

    Book  Google Scholar 

  • Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression. New York: Wiley.

    Book  Google Scholar 

  • Hussin, N. H., Yusoff, I., Tahir, W. M., & W. Z., Mohamed, I., Ibrahim, A. I. N., & Rambli, A. (2016). Multivariate statistical analysis for identifying water quality and hydrogeochemical evolution of shallow groundwater in Quaternary deposits in the Lower Kelantan River Basin Malaysian Peninsula. Environmental Earth Sciences, 75(14), 1–16. https://doi.org/10.1007/s12665-016-5705-3

    Article  CAS  Google Scholar 

  • Hwang, J. Y., Park, S., Kim, M.-S., Jo, H.-J., Lee, G., Jeon, S. H., et al. (2017a). Applications of hydrochemical models for groundwater in Korea. Environment and Natural Resources Research, 7(3), 51. https://doi.org/10.5539/enrr.v7n3p51

    Article  Google Scholar 

  • Hwang, J. Y., Park, S., Kim, H.-K., Kim, M.-S., Jo, H.-J., Kim, J.-I., et al. (2017b). Hydrochemistry for the assessment of groundwater quality in Korea. Journal of Agricultural Chemistry and Environment, 06(01), 1–29. https://doi.org/10.4236/jacen.2017.61001

    Article  CAS  Google Scholar 

  • Igibah, C. E., & Tanko, J. A. (2019). Assessment of urban groundwater quality using Piper trilinear and multivariate techniques: A case study in the Abuja, North-central, Nigeria. Environmental Systems Research, 8(1). https://doi.org/10.1186/s40068-019-0140-6

  • Iqbal, M. M., Shoaib, M., Agwanda, P., & Lee, J. L. (2018). Modeling approach for water-quality management to control pollution concentration: A case study of Ravi River, Punjab, Pakistan. Water (Switzerland), 10(8). https://doi.org/10.3390/w10081068

  • Islam, A. R., Towfiqul, Md., Ahmed, N., Bodrud-Doza, M., & Chu, R. (2017). Characterizing groundwater quality ranks for drinking purposes in Sylhet district, Bangladesh, using entropy method, spatial autocorrelation index, and geostatistics. Environmental Science and Pollution Research, 24(34), 26350–26374. https://doi.org/10.1007/s11356-017-0254-1

    Article  CAS  Google Scholar 

  • Islam, A. R. M., Towfiqul, S., & S., Haque, M. A., Bodrud-Doza, M., Maw, K. W., & Habib, M. A. (2018). Assessing groundwater quality and its sustainability in Joypurhat district of Bangladesh using GIS and multivariate statistical approaches. Environment, Development and Sustainability, 20(5), 1935–1959. https://doi.org/10.1007/s10668-017-9971-3

    Article  Google Scholar 

  • Ismail, S., & Ahmed, M. F. (2021). GIS-based spatio-temporal and geostatistical analysis of groundwater parameters of Lahore region Pakistan and their source characterization. Environmental Earth Sciences, 80(21). https://doi.org/10.1007/s12665-021-10034-9

  • Jacks, G., & Sharma, V. P. (1995). Geochemistry of calcic horizons in relation to hillslope processes, southern India. Geoderma, 67(3–4), 203–214. https://doi.org/10.1016/0016-7061(95)00002-6

    Article  CAS  Google Scholar 

  • Jalali, M. (2005). Major ion chemistry of groundwaters in the Bahar area, Hamadan, western Iran. Environmental Geology, 47(6), 763–772. https://doi.org/10.1007/s00254-004-1200-3

    Article  CAS  Google Scholar 

  • Jawa, T. M. (2022). Logistic regression analysis for studying the impact of home quarantine on psychological health during COVID-19 in Saudi Arabia. Alexandria Engineering Journal, 61(10), 7995–8005. https://doi.org/10.1016/j.aej.2022.01.047

    Article  Google Scholar 

  • Kadam, A. K., Wagh, V. M., Muley, A. A., Umrikar, B. N., & Sankhua, R. N. (2019). Prediction of water quality index using artificial neural network and multiple linear regression modelling approach in Shivganga River basin India. Modeling Earth Systems and Environment, 5(3), 951–962. https://doi.org/10.1007/s40808-019-00581-3

    Article  Google Scholar 

  • Kadwai, S.U., & Siraj, A. (1964). The geology of Bari Doab, West Pakistan. WAPDA Water and Soil Investigation Division. Bulletin, (8).

  • Kanwal, S., Gabriel, H., & Mahmood, K. (2015). Lahore’s groundwater depletion-A review of the aquifer susceptibility to degradation and its consequences. University of Engineering and Technology Taxila. Technical Journal, 20:26.

  • Keskin, S. (2006). Comparison of several univariate normality tests regarding type I error rate and power of the test in simulation based small samples. Power, 2(5), 296–300.

    Google Scholar 

  • Kim, D., Ahn Chun, J., & Jung Choi, S. (2019). Incorporating the logistic regression into a decision-centric assessment of climate change impacts on a complex river system. Hydrology and Earth System Sciences, 23(2), 1145–1162. https://doi.org/10.5194/hess-23-1145-2019

    Article  Google Scholar 

  • Krishna kumar, S., Logeshkumaran, A., Magesh, N. S., Godson, P. S., & Chandrasekar, N. (2015). Hydro-geochemistry and application of water quality index (WQI) for groundwater quality assessment, Anna Nagar, part of Chennai City, Tamil Nadu India. Applied Water Science, 5(4), 335–343. https://doi.org/10.1007/s13201-014-0196-4

    Article  CAS  Google Scholar 

  • Krishnaraj, S., Murugesan, V., & K, V., Sabarathinam, C., Paluchamy, A., & Ramachandran, M. (2012). Use of hydrochemistry and stable isotopes as tools for groundwater evolution and contamination investigations. Journal of Geo-Sciences, 1(1), 16–25. https://doi.org/10.5923/j.geo.20110101.02

    Article  Google Scholar 

  • Li, P., Wu, J., & Qian, H. (2013). Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China. Environmental Earth Sciences, 69(7), 2211–2225. https://doi.org/10.1007/s12665-012-2049-5

    Article  CAS  Google Scholar 

  • Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment, 313(1), 77–89.

    Article  CAS  Google Scholar 

  • Liu, J., Jin, D., Wang, T., Gao, M., Yang, J., & Wang, Q. (2019). Hydrogeochemical processes and quality assessment of shallow groundwater in Chenqi coalfield, Inner Mongolia China. Environmental Earth Sciences, 78(12), 1–13. https://doi.org/10.1007/s12665-019-8355-4

    Article  CAS  Google Scholar 

  • Mahanta, A. R., Rawat, K. S., Singh, S. K., Sanjeevi, S., & Mishra, A. K. (2022). Evaluation of long-term nitrate and electrical conductivity in groundwater system of Peninsula India. Applied Water Science, 12(2), 1–20. https://doi.org/10.1007/s13201-021-01568-1

    Article  CAS  Google Scholar 

  • Mahmood, K., Rana, A., Tariq, S., Kanwal, S., Ali, R., & Haidar, A. (2011). Groundwater levels susceptibility to degradation in Lahore metropolitan. Depression, 150, 8–01.

  • Mahmood, K., Ul-Haq, Z., Batool, S. A., Rana, A. D., & Tariq, S. (2016). Application of temporal GIS to track areas of significant concern regarding groundwater contamination. Environmental Earth Sciences, 75(1), 1–11. https://doi.org/10.1007/s12665-015-4844-2

    Article  CAS  Google Scholar 

  • Mallick, J., Singh, C. K., AlMesfer, M. K., Kumar, A., Khan, R. A., Islam, S., & Rahman, A. (2018). Hydro-geochemical assessment of groundwater quality in Aseer Region Saudi Arabia. Water (switzerland), 10(12), 1–14. https://doi.org/10.3390/w10121847

    Article  CAS  Google Scholar 

  • McLean, W., Jankowski, J., & Levitt, N. (2000). Groundwater quality and sustainability in an alluvial aquifer, Australia. In O. Sililo (Ed.), Groundwater, past achievements and future challenges (pp. 567–573). Balkenna: Rotterdam.

    Google Scholar 

  • Meyers, L. S., Gamst, G., & Guarino, A. J. (2006). Applied multivariate research. Sage Publications Inc.

    Google Scholar 

  • Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of Cardiac Anaesthesia, 22, 67–72. https://doi.org/10.4103/aca.ACA_157_18

    Article  Google Scholar 

  • Muhammad, A. M., & Zhonghua, T. (2014). Municipal solid waste and its relation with groundwater contamination in Lahore, Pakistan. Research Journal of Applied Sciences, Engineering and Technology, 7(8), 1551–1560. https://doi.org/10.19026/rjaset.7.431

  • Nafouanti, M. B., Li, J., Mustapha, N. A., Uwamungu, P., & AL-Alimi, D. (2021). Prediction on the fluoride contamination in groundwater at the Datong Basin, Northern China: Comparison of random forest, logistic regression and artificial neural network. Applied Geochemistry, 132, 105054.

  • Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78, 691–692.

    Article  Google Scholar 

  • Niaz, A. (2005). Ground water modeling: a case study of lahore aquifer. Proceedings of South Asia Regional Training Workshop on Watershed Modeling, Global Change Impact Studies Centre (GCISC), Islamabad, Pakistan, March 7–18, 2005

  • Nolan, B. T. (2001). Relating nitrogen sources and aquifer susceptibility to nitrate in shallow ground waters of the United States. Ground Water, 39(2), 290–299.

    Article  CAS  Google Scholar 

  • Noshad, Z., Javaid, N., Saba, T., Wadud, Z., Saleem, M. Q., Alzahrani, M. E., & Sheta, O. E. (2019). Fault detection in wireless sensor networks through the random forest classifier. Sensors, 19, 1–21. https://doi.org/10.3390/s19071568

    Article  Google Scholar 

  • Okiongbo, K. S., & Akpofure, E. (2016). Hydrogeophysical characterization of shallow unconsolidated alluvial aquifer in Yenagoa and Environs, Southern Nigeria. Arabian Journal for Science and Engineering, 41(6), 2261–2270. https://doi.org/10.1007/s13369-015-1827-2

    Article  Google Scholar 

  • Okiongbo, K. S., & Douglas, R. K. (2015). Evaluation of major factors influencing the geochemistry of groundwater using graphical and multivariate statistical methods in Yenagoa city Southern Nigeria. Applied Water Science, 5(1), 27–37. https://doi.org/10.1007/s13201-014-0166-x

    Article  CAS  Google Scholar 

  • Ozdemir, A. (2016). Sinkhole susceptibility mapping using logistic regression in Karapınar (Konya, Turkey). Bulletin of Engineering Geology and the Environment, 75(2), 681–707. https://doi.org/10.1007/s10064-015-0778-x

    Article  CAS  Google Scholar 

  • Papaioannou, A., Mavridou, A., Hadjichristodoulou, C., Papastergiou, P., Pappa, O., Dovriki, E., & Rigas, I. (2010). Application of multivariate statistical methods for groundwater physicochemical and biological quality assessment in the context of public health. Environmental Monitoring and Assessment, 170(1–4), 87–97. https://doi.org/10.1007/s10661-009-1217-x

    Article  CAS  Google Scholar 

  • Park, H. A. (2013). An introduction to logistic regression: From basic concepts to interpretation with particular attention to nursing domain. Journal of Korean Academy of Nursing, 43(2), 154–164. https://doi.org/10.4040/jkan.2013.43.2.154

    Article  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide toPHREEQC (version 2)–A computer program for speciation,batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations Report, 99(4259), 312.

  • Pazand, K. (2016). Geochemistry and multivariate statistical analysis for fluoride occurrence in groundwater in the Kuhbanan basin, Central Iran. Modeling Earth Systems and Environment, 2(2), 1–9. https://doi.org/10.1007/s40808-016-0127-5

    Article  Google Scholar 

  • Peat, J. & Barton, B. (2005). Medical statistics: A guide to data analysis and critical appraisal. Blackwell Publishing

  • Piper, A. M. (1944). A graphical procedure in the geochemical interpretation of water. Transactions, American Geophysical Union, 25, 914–992.

    Article  Google Scholar 

  • Podgorski, J. E., Labhasetwar, P., Saha, D., & Berg, M. (2018). Prediction modeling and mapping of groundwater fluoride contamination throughout India. Environmental Science and Technology, 52(17), 9889–9898. https://doi.org/10.1021/acs.est.8b01679

    Article  CAS  Google Scholar 

  • Qian, L., Zhang, R., Bai, C., Wang, Y., & Wang, H. (2018). An improved logistic probability prediction model for water shortage risk in situations with insufficient data. Natural Hazards and Earth System Sciences Discussions, 1–31.

  • Qureshi, A., & Sayed, A. H. (2014). Situation analysis of the water resources of Lahore-Establishing a case for water stewardship. World wildlife fund-Pakistan, 3–34.

  • Rajmohan, N., & Elango, L. (2004). Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins Southern India. Environmental Geology, 46(1), 47–61. https://doi.org/10.1007/s00254-004-1012-5

    Article  CAS  Google Scholar 

  • Ruiz, F., Gomis, V., & Blasco, P. (1990). Application of factor analysis to the study of a coastal aquifer. Hydrogeology Journal, 119, 169–177.

    Article  CAS  Google Scholar 

  • Sajil Kumar, P. J., & James, E. J. (2016). Identification of hydrogeochemical processes in the Coimbatore district, Tamil Nadu India. Hydrological Sciences Journal, 61(4), 719–731. https://doi.org/10.1080/02626667.2015.1022551

    Article  CAS  Google Scholar 

  • Sami, K. (1992). Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern Cape, South Africa. Journal of Hydrology, 139(1–4), 27–48. https://doi.org/10.1016/0022-1694(92)90193-Y

    Article  CAS  Google Scholar 

  • Schoeller, H. (1977). Geochemistry of groundwater. In Groundwater studies, An international guide for research and practice. (pp. Ch. 15, 1–18). UNESCO, Paris.

  • Selvam, S., Singaraja, C., Venkatramanan, S., & Chung, S. Y. (2018). Geochemical appraisal of groundwater quality in Ottapidaram Taluk, Thoothukudi District, Tamil Nadu using graphical and numerical method. Journal of the Geological Society of India, 92(3), 313–320. https://doi.org/10.1007/s12594-018-1013-8

    Article  CAS  Google Scholar 

  • Selvam, S., Venkatramanan, S., Chung, S. Y., & Singaraja, C. (2016). Identification of groundwater contamination sources in Dindugal district of Tamil Nadu, India using GIS and multivariate statistical analyses. Arabian Journal of Geosciences, 9(5). https://doi.org/10.1007/s12517-016-2417-7

  • Shrestha, S., Pandey, V. P., Shivakoti, B. R., & Thatikonda, S. (2016). Groundwater environment in Asian cities: Concepts, methods and case studies. https://doi.org/10.1016/C2014-0-02217-4

  • Sperandei, S. (2014). Understanding logistic regression analysis. Biochemia Medica, 24(1), 12–18. https://doi.org/10.11613/BM.2014.003

  • Srinivas, Y., Oliver, D. H., Raj, A. S., & Chandrasekar, N. (2013). Evaluation of groundwater quality in and around Nagercoil town, Tamilnadu, India: An integrated geochemical and GIS approach. Applied Water Science, 3(3), 631–651. https://doi.org/10.1007/s13201-013-0109-y

    Article  CAS  Google Scholar 

  • Subba Rao, N. (2002). Geochemistry of groundwater in parts of Guntur district, Andhra Pradesh. India. Environmental Geology, 41(5), 552–562. https://doi.org/10.1007/s002540100431

    Article  CAS  Google Scholar 

  • Subrahmanyam, K., & Yadaiah, P. (2000). Assessment of the impact of industrial effluents on water quality in Patancheru and environs, Medak district, Andhra Pradesh. India. Hydrogeology Journal, 9(3), 297–312. https://doi.org/10.1007/s100400000120

    Article  CAS  Google Scholar 

  • Subramani, T., Rajmohan, N., & Elango, L. (2010). Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region. Southern India. Environmental Monitoring and Assessment, 162(1–4), 123–137. https://doi.org/10.1007/s10661-009-0781-4

    Article  CAS  Google Scholar 

  • Tesoriero, A. J., & Voss, F. D. (1997). Predicting the probability of elevated nitrate concentrations in the Puget Sound Basin: Implications for aquifer susceptibility and vulnerability. Ground Water, 35(6), 1029–1039.

    Article  CAS  Google Scholar 

  • Thode, H. J. (2002). Testing for normality. Marcel Dekker.

    Book  Google Scholar 

  • Tiwari, A. K., Singh, A. K., & Mahato, M. K. (2018). Assessment of groundwater quality of Pratapgarh district in India for suitability of drinking purpose using water quality index (WQI) and GIS technique. Sustainable Water Resources Management, 4(3), 601–616. https://doi.org/10.1007/s40899-017-0144-1

    Article  Google Scholar 

  • Tiwari, A. K., Singh, A. K., Singh, A. K., & Singh, M. P. (2017). Hydrogeochemical analysis and evaluation of surface water quality of Pratapgarh district, Uttar Pradesh India. Applied Water Science, 7(4), 1609–1623. https://doi.org/10.1007/s13201-015-0313-z

    Article  CAS  Google Scholar 

  • Todd, D. K. (2001). Groundwater hydrology (pp. 280–281). Canada: Wiley.

    Google Scholar 

  • Twarakavi, N. K. C., & Kaluarachchi, J. J. (2005). Aquifer vulnerability assessment to heavy metals using ordinal logistic regression. Ground Water, 43(2), 200–214. https://doi.org/10.1111/j.1745-6584.2005.0001.x

    Article  CAS  Google Scholar 

  • Uddin, S., Khan, A., Hossain, M. E., & Moni, M. A. (2019). Comparing different supervised machine learning algorithms for disease prediction. BMC Medical Informatics and Decision Making, 19(1), 1–16. https://doi.org/10.1186/s12911-019-1004-8

    Article  Google Scholar 

  • Walton, W. C. (1970). Groundwater resources evaluation. New York: McGraw Hill Book Co.

    Google Scholar 

  • Wen, D., Zhang, F., Zhang, E., Wang, C., Han, S., & Zheng, Y. (2013). Arsenic, fluoride and iodine in groundwater of China. Journal of Geochemical Exploration, 135, 1–21. https://doi.org/10.1016/j.gexplo.2013.10.012

    Article  CAS  Google Scholar 

  • WHO. (2004). Guidelines for drinking water quality: training pack. Geneva, Switzerland: WHO.

    Google Scholar 

  • Worrall, F., & Kolpin, D. W. (2003). Direct assessment of groundwater vulnerability from single observations of multiple contaminants. Water Resources Research, 39(12), 1–8. https://doi.org/10.1029/2002WR001212

    Article  CAS  Google Scholar 

  • Yaseen, M., Salik, M., Khan, A., Kashif, S. R., Akram, M., Yaseen, M., & Ali, S. (2009). Studies on heavy metals status and their uptake by vegetables in adjoining areas of Hudiara drain in Lahore Plant Nutrition View project Digitisation of ground water quality in Punjab View project Studies on heavy metals status and their uptake by vegetab. Soil & Environ, 28(1), 7–12.

    Google Scholar 

  • Zhang, Z. (2016). Model building strategy for logistic regression: Purposeful selection. Annals of Translational Medicine, 4(6), 4–10. https://doi.org/10.21037/atm.2016.02.15

  • Zhu, G. F., Su, Y. H., & Feng, Q. (2008). The hydrochemical characteristics and evolution of groundwater and surface water in the Heihe River Basin, northwest China. Hydrogeology Journal, 16(1), 167–182. https://doi.org/10.1007/s10040-007-0216-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the University of Engineering and Technology, Lahore, Pakistan, for providing laboratory support to conduct different tests and transportation facility for field visits in accomplishing the study objectives.

Funding

No external funds were available for this Research. However, internal funds from the University of Engineering and Technology, Lahore, Pakistan, were utilized to execute the field aspect of this study.

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author Ms. Sadia Ismail is a PhD scholar and the main contributor to this research work. The second author, Mr. Muhammad Farooq Ahmad, is her PhD research supervisor.

Corresponding author

Correspondence to Sadia Ismail.

Ethics declarations

Ethics approval

This article does not include any material already published elsewhere, so no formal consent is required for the material used in this article. This is the authors’ original work, and found 12% plagiarism as Turnitin before the submission, which is within allowable limits.

Consent to participate

NA

Consent for publication

Closed access publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, S., Ahmed, M.F. Hydrogeochemical characterization of the groundwater of Lahore region using supervised machine learning technique. Environ Monit Assess 195, 5 (2023). https://doi.org/10.1007/s10661-022-10648-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10648-x

Keywords

Navigation