Skip to main content
Log in

A converged approach of electro-biological process for decolorization and degradation of toxic synthetic dyes

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Being one of the leading industries worldwide, the textile industry has been consuming large quantities of groundwater and discharging huge volumes of dye-contaminated effluents into our aquatic environment. Augmentation of water sources via reuse of treated effluents is therefore highly necessary. In the present study, the decolorization and degradation of synthetic toxic dye from an aqueous solution were investigated through an electro-biological route. Initially, decolorization of synthetic dye solutions (100, 500, and 1000 mg L−1) was carried out by electrooxidation process using mixed metal oxide and titanium as anode and cathode, respectively. The electrooxidation solutions were further treated using bacteria (Pseudomonas aeruginosa) that were isolated from petroleum-transporting pipelines. UV–Vis, TOC, chemical oxygen demand, and NMR analyses revealed that the biodegradation process with electrooxidation enhanced the mineralization of the synthetic dye solutions. An optimum NaCl electrolyte concentration of 3 g L−1 was sufficient to produce reactive species viz., free chlorine and hypochlorite, which are responsible for the Reactive Blue 19 (RB-19) decolorization. Among the three RB-19 concentrations, the highest removal percentage was noticed at 100 mg L−1 (100%) with energy consumption and energy costs equal to 5.44 kWh m−3 and 0.65 USD m−3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdessamad, N. E. H., Akrout, H., Hamdaoui, G., Elghniji, K., Ksibi, M., & Bousselmi, L. (2013). Evaluation of the efficiency of monopolar and bipolar BDD electrodes for electrochemical oxidation of anthraquinone textile synthetic effluent for reuse. Chemosphere, 93(7), 1309–1316. https://doi.org/10.1016/j.chemosphere.2013.07.011

    Article  CAS  Google Scholar 

  • Annamalai, S., & Sundaram, M. (2019). Electro-bioremediation: An advanced remediation technology for the treatment and management of contaminated soil. In Bioremediation of Industrial Waste for Environmental Safety: Vol. II. Springer Nature Singapore Pvt. Ltd.

  • Annamalai, S., Santhanam, M., Selvaraj, S., Sundaram, M., Pandian, K., & Pazos, M. (2018). “Green technology”: Bio-stimulation by an electric field for textile reactive dye contaminated agricultural soil. Science of the Total Environment, 624(1984), 1649–1657.

    Article  CAS  Google Scholar 

  • Annamalai, S., Santhanam, M., Sudanthiramoorthy, S., Pandian, K., & Pazos, M. (2016). Greener technology for organic reactive dye degradation in textile dye-contaminated field soil and in situ formation of “electroactive species” at the anode by electrokinetics. RSC Advances, 6(5), 3552–3560.

    Article  CAS  Google Scholar 

  • Annamalai, S., Santhanam, M., Sundaram, M., & Curras, M. P. (2014). Electrokinetic remediation of inorganic and organic pollutants in textile effluent contaminated agricultural soil. Chemosphere, 117, 673–678.

    Article  CAS  Google Scholar 

  • Annamalai, S., Selvaraj, S., Selvaraj, H., Santhanam, M., & Pazos, M. (2015). Electrokinetic remediation: Challenging and optimization of electrolyte for sulfate removal in textile effluent-contaminated farming soil. RSC Advances, 5(99), 81052–81058.

    Article  CAS  Google Scholar 

  • Annamalai, S., Sundaram, M., & Curras, M. P. (2017). Integrated approach of chemical and electrodialysis process in textile effluent contaminated groundwater for irrigation. Journal of Environmental Chemical Engineering, 5(4), 3190–3200.

    Article  CAS  Google Scholar 

  • Aravind, P., Selvaraj, R., Sankarmahalingam, A., & Kandasamy, S. (2016). A hybrid approach: Indirect electro-oxidation followed by in situ electrogeneration of H2O2 in real textile effluent. Clean - Soil, Air, Water, 44(4), 362–370. https://doi.org/10.1002/clen.201400673

    Article  CAS  Google Scholar 

  • Basha, C. A., Sendhil, J., Selvakumar, K. V., Muniswaran, P. K. A., & Lee, C. W. (2012). Electrochemical degradation of textile dyeing industry effluent in batch and flow reactor systems. Desalination, 285, 188–197. https://doi.org/10.1016/j.desal.2011.09.054

    Article  CAS  Google Scholar 

  • Bhatia, D., Sharma, N. R., Singh, J., & Kanwar, R. S. (2017). Biological methods for textile dye removal from wastewater: A review. Critical Reviews in Environmental Science and Technology, 47(19), 1836–1876. https://doi.org/10.1080/10643389.2017.1393263

    Article  CAS  Google Scholar 

  • Brillas, E., & Martínez-Huitle, C. A. (2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis b: Environmental, 166–167, 603–643. https://doi.org/10.1016/j.apcatb.2014.11.016

    Article  CAS  Google Scholar 

  • Brito, C. D. N., da Silva, D. R., Garcia-Segura, S., de Moura, D. C., & Martínez-Huitle, C. A. (2015). Indirect electrochemical oxidation of reactive blue 19 dye as a model organic substrate: Role of anode material and oxidants electrochemically generated. Journal of the Electrochemical Society, 163(3), E62–E69. https://doi.org/10.1149/2.0191603jes

    Article  CAS  Google Scholar 

  • Carneiro, P. A., Osugi, M. E., Fugivara, C. S., Boralle, N., Furlan, M., & Zanoni, M. V. B. (2005). Evaluation of different electrochemical methods on the oxidation and degradation of Reactive Blue 4 in aqueous solution. Chemosphere, 59(3), 431–439. https://doi.org/10.1016/j.chemosphere.2004.10.043

    Article  CAS  Google Scholar 

  • Chatzisymeon, E., Xekoukoulotakis, N. P., Coz, A., Kalogerakis, N., & Mantzavinos, D. (2006). Electrochemical treatment of textile dyes and dyehouse effluents. Journal of Hazardous Materials, 137(2), 998–1007.

    Article  CAS  Google Scholar 

  • Chen, K. C., Wu, J. Y., Liou, D. J., & Hwang, S. C. J. (2003). Decolorization of the textile dyes by newly isolated bacterial strains. Journal of Biotechnology, 101(1), 57–68. https://doi.org/10.1016/S0168-1656(02)00303-6

    Article  CAS  Google Scholar 

  • Christie, R. M. (2002). Colour chemistry. Color Research and Application (Vol. 27). https://doi.org/10.1002/col.10090

  • Deng, D., Guo, J., Zeng, G., & Sun, G. (2008). Decolorization of anthraquinone, triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11. International Biodeterioration and Biodegradation, 62(3), 263–269. https://doi.org/10.1016/j.ibiod.2008.01.017

    Article  CAS  Google Scholar 

  • dos Santos, A. B., Bisschops, I. A. E., Cervantes, F. J., & van Lier, J. B. (2005). The transformation and toxicity of anthraquinone dyes during thermophilic (55 °C) and mesophilic (30 °C) anaerobic treatments. Journal of Biotechnology, 115(4), 345–353. https://doi.org/10.1016/j.jbiotec.2004.09.007

    Article  CAS  Google Scholar 

  • Fanchiang, J. M., & Tseng, D. H. (2009). Degradation of anthraquinone dye C.I. Reactive Blue 19 in aqueous solution by ozonation. Chemosphere, 77(2), 214–221. https://doi.org/10.1016/j.chemosphere.2009.07.038

    Article  CAS  Google Scholar 

  • Forgacs, E., Cserhati, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: A review. Environment International, 30(7), 953–971.

    Article  CAS  Google Scholar 

  • Ghodbane, H., & Hamdaoui, O. (2010). Decolorization of antraquinonic dye, C.I. Acid Blue 25, in aqueous solution by direct UV irradiation, UV/H2O2 and UV/Fe(II) processes. Chemical Engineering Journal, 160, 226–231. https://doi.org/10.1016/j.cej.2010.03.049

    Article  CAS  Google Scholar 

  • Hoseinzadeh, E., & Rezaee, A. (2015). Electrochemical degradation of RB19 dye using low-frequency alternating current: Effect of a square wave. RSC Advances, 5(117), 96918–96926. https://doi.org/10.1039/c5ra19686h

    Article  CAS  Google Scholar 

  • Jović, M., Stanković, D., Manojlović, D., Andelković, I., Milić, A., Dojćinović, B., & Roglić, G. (2013). Study of the electrochemical oxidation of reactive textile dyes using platinum electrode. International Journal of Electrochemical Science, 8(1), 168–183.

    Google Scholar 

  • Lee, Y. H., & Pavlostathis, S. G. (2004a). Decolorization and toxicity of reactive anthraquinone textile dyes under methanogenic conditions. Water Research, 38(7), 1838–1852. https://doi.org/10.1016/j.watres.2003.12.028

    Article  CAS  Google Scholar 

  • Lee, Y. H., & Pavlostathis, S. G. (2004b). Decolorization and toxicity of reactive anthraquinone textile dyes under methanogenic conditions. Water Research, 38(7), 1838–1852. https://doi.org/10.1016/j.watres.2003.12.028

    Article  CAS  Google Scholar 

  • Li, A., Weng, J., Yan, X., Li, H., Shi, H., & Wu, X. (2021). Electrochemical oxidation of acid orange 74 using Ru, IrO2, PbO2, and boron doped diamond anodes: Direct and indirect oxidation. Journal of Electroanalytical Chemistry, 898, 115622. https://doi.org/10.1016/j.jelechem.2021.115622

    Article  CAS  Google Scholar 

  • Malpei, F., Andreoni, V., Daffonchio, D., & Rozzi, A. (1998). Anaerobic digestion of print pastes: A preliminary screening of inhibition by dyes and biodegradability of thickeners. Bioresource Technology, 63(1), 49–56. https://doi.org/10.1016/S0960-8524(97)00109-0

    Article  CAS  Google Scholar 

  • Mei, R., Wei, Q., Zhu, C., Ye, W., Zhou, B., Ma, L., et al. (2019). 3D macroporous boron-doped diamond electrode with interconnected liquid flow channels: A high-efficiency electrochemical degradation of RB-19 dye wastewater under low current. Applied Catalysis b: Environmental, 245, 420–427. https://doi.org/10.1016/j.apcatb.2018.12.074

    Article  CAS  Google Scholar 

  • Morsi, M. S., Al-Sarawy, A. A., & El-Dein, W. A. S. (2011). Electrochemical degradation of some organic dyes by electrochemical oxidation on a Pb/PbO2 electrode. Desalination and Water Treatment, 26(1–3), 301–308. https://doi.org/10.5004/dwt.2011.1926

    Article  CAS  Google Scholar 

  • Moussavi, G., & Mahmoudi, M. (2009). Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. Journal of Hazardous Materials, 168(2–3), 806–812. https://doi.org/10.1016/j.jhazmat.2009.02.097

    Article  CAS  Google Scholar 

  • Ozmen, E. Y., Sezgin, M., Yilmaz, A., & Yilmaz, M. (2008). Synthesis of β-cyclodextrin and starch based polymers for sorption of azo dyes from aqueous solutions. Bioresource Technology, 99(3), 526–531.

    Article  CAS  Google Scholar 

  • Prakash, A. A., Rajasekar, A., Sarankumar, R. K., AlSalhi, M. S., Devanesan, S., Aljaafreh, M. J., et al. (2021). Metagenomic analysis of microbial community and its role in bioelectrokinetic remediation of tannery contaminated soil. Journal of Hazardous Materials, 412, 125133. https://doi.org/10.1016/j.jhazmat.2021.125133

    Article  CAS  Google Scholar 

  • Pramila, M., Manikandan, S., Anju, K. S., Kannan, M. M., Hong, S., Maruthamuthu, S., & Subramanian, K. (2014). Electrochemical decolorization and degradation of Turquoise Blue G (TBG) by pre-adapted petroleum degrading bacteria. Separation and Purification Technology, 132, 719–727.

    Article  CAS  Google Scholar 

  • Rajkumar, D., & Kim, J. G. (2006). Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment. Journal of Hazardous Materials, 136(2), 203–212. https://doi.org/10.1016/j.jhazmat.2005.11.096

    Article  CAS  Google Scholar 

  • Rajkumar, D., Song, B. J., & Kim, J. G. (2007). Electrochemical degradation of Reactive Blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds. Dyes and Pigments, 72(1), 1–7. https://doi.org/10.1016/j.dyepig.2005.07.015

    Article  CAS  Google Scholar 

  • Salazar-Gastélum, M. I., Reynoso-Soto, E. A., Lin, S. W., Perez-Sicairos, S., & Félix-Navarro, R. M. (2013). Electrochemical and photoelectrochemical decoloration of amaranth dye azo using composited dimensional stable anodes. Journal of Environmental Protection, 04(01), 136–143. https://doi.org/10.4236/jep.2013.41016

    Article  CAS  Google Scholar 

  • Sanislav, A., Fogorasi, M., Stanescu, M. D., Muntean, S., & Dochia, M. (2015). Ultrasound effect on dyeing wool fibers with two anthraquinone dyes. Fibers and Polymers, 16(1), 62–66. https://doi.org/10.1007/s12221-015-0062-5

    Article  CAS  Google Scholar 

  • Santhanam, M., Annamalai, S., Umarkatha, S. B., & Sundaram, M. (2015). Enhanced degradation of eletrooxidized textile effluent by petroleum degrading Pseudomonas aeruginosa (MTCC No.1201) at compressed gas pressure. Bioprocess and Biosystems Engineering.

  • Santhanam, M., Selvaraj, R., Annamalai, S., & Sundaram, M. (2017). Combined electrochemical, sunlight-induced oxidation and biological process for the treatment of chloride containing textile effluent. Chemosphere, 186, 1026–1032.

    Article  CAS  Google Scholar 

  • Sathishkumar, K., AlSalhi, M. S., Sanganyado, E., Devanesan, S., Arulprakash, A., & Rajasekar, A. (2019). Sequential electrochemical oxidation and bio-treatment of the azo dye congo red and textile effluent. Journal of Photochemistry and Photobiology b: Biology, 200, 111655. https://doi.org/10.1016/j.jphotobiol.2019.111655

    Article  CAS  Google Scholar 

  • Sathishkumar, K., Sathiyaraj, S., Parthipan, P., Akhil, A., Murugan, K., & Rajasekar, A. (2017). Electrochemical decolorization of methyl red by RuO2-IrO2-TiO2 electrode and biodegradation with Pseudomonas stutzeri MN1 and Acinetobacter baumannii MN3: An integrated approach. Chemosphere, 183, 204–211. https://doi.org/10.1016/j.chemosphere.2017.05.087

    Article  CAS  Google Scholar 

  • Wang, A., Qu, J., Liu, H., & Ge, J. (2004). Degradation of azo dye Acid Red 14 in aqueous solution by electrokinetic and electrooxidation process. Chemosphere, 55(9), 1189–1196. https://doi.org/10.1016/j.chemosphere.2004.01.024

    Article  CAS  Google Scholar 

  • Weber, E. J., & Stickney, V. C. (1993). Hydrolysis kinetics of reactive blue 19-vinyl sulfone. Water Research, 27(1), 63–67.

    Article  CAS  Google Scholar 

  • Xu, M., Guo, J., Zeng, G., Zhong, X., & Sun, G. (2006). Decolorization of anthraquinone dye by Shewanella decolorationis S12. Applied Microbiology and Biotechnology, 71(2), 246–251. https://doi.org/10.1007/s00253-005-0144-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CSIR for sponsoring this project under Sustainable Environmental Technology for Chemical and Allied Industries (SETCA)—Project No: CSC 0113. The authors extend their appreciation to the Researchers Supporting Project Number (RSP-2021/311), King Saud University, Riyadh, Saudi Arabia. One of the authors, Mr. Venkatesan Muthukumar, Scientific Assistant, conducted the NMR analysis at the Dept. of Chemistry, Vellore Institute of Technology, Vellore, Tamil Nadu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivasankar Annamalai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Optimization of NaCl concentration for effective decolorization and degradation of synthetic toxic dyes.

• Complete mineralization of Reactive Blue 19 (RB-19) was achieved after the EO–Bio process.

• NMR spectra reveal the effective removal of aromatic compounds in the EO–Bio treatment of RB-19.

• Lower energy consumption and cost were needed for RB-19 dye decolorization and degradation.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2447 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Annamalai, S., Muthukumar, V. & Alkhulaifi, M.M. A converged approach of electro-biological process for decolorization and degradation of toxic synthetic dyes. Environ Monit Assess 195, 14 (2023). https://doi.org/10.1007/s10661-022-10583-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10583-x

Keywords

Navigation