Skip to main content

Advertisement

Log in

Realizing certainty in an uncertain future climate: modeling suitable areas for conserving wild Citrus species under different change scenarios in India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Citrus is an important horticultural crop of India and is often prone to diseases, particularly under increased temperature scenarios. For developing disease-resistant Citrus varieties, conservation of wild relatives is extremely important. However, our knowledge on temperature tolerance of these wild relatives of Citrus to varied climate change scenarios is extremely limited. Therefore, we determined the climatic niche of six wild relatives of cultivated Citrus species (C. indica Tanaka, C. karna Rafin., C. latipes (Swingle) Tanaka, C. macroptera Montrouz., C. medica L., and C. sinensis (L.) Osbeck.) and identified the geographical areas in India that would remain climatically stable in future through ecological niche modeling (ENM). Raster data on 19 bioclimatic variables with a resolution of 0.04° were used to generate niche models for each Citrus species that delineated their potential distribution areas. Future species distribution predictions for the year 2050 were made using the climate change scenarios from the most appropriate climate models, i.e., IPSL-CM5A-LR and NIMR-HADGEM2-AO with four Representative Concentration Pathways (RCPs). Ensemble of current and future projections was used to identify climatically stable areas for each species. Precipitation-related bioclimatic variables were the key climatic determinants for the modeled distribution pattern. The consensus of current and future projections suggests that most areas with stable climates for the species in the future would be available in the northeastern states of Arunachal Pradesh, Meghalaya, Mizoram, and Tripura. Efforts for in situ conservation and establishment of germplasm banks and citrus orchards may be encouraged in these identified areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adhikari, D., Barik, S. K., & Upadhaya, K. (2012). Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India. Ecological Engineering, 40, 37–43.

    Article  Google Scholar 

  • Adhikari, D., Tiwary, R., Singh, P. P., Upadhaya, K., Singh, B., Haridasan, K. E., Bhatt, B.B., Chettri, A., & Barik, S. K. (2019). Ecological niche modeling as a cumulative environmental impact assessment tool for biodiversity assessment and conservation planning: A case study of critically endangered plant Lagerstroemia minuticarpa in the Indian Eastern Himalaya. Journal of environmental management243, 299–307.

  • Arora, R.K., & Nayar, E.R. (1984). Wild Relatives of Crop Plants in India. National Bureau of Plant Genetic Resources, New Delhi.

  • Baek, H. J., Lee, J., Lee, H. S., Hyun, Y. K., Cho, C., Kwon, W. T., Marzin, C., Gan, S. Y., Kim, M. J., Choi, D. H., Lee, J., Lee, J., Boo, K. O., Kang, H. S., & Byun, Y. H. (2013). Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pacific Journal of Atmospheric Sciences, 49(5), 603–618.

    Article  Google Scholar 

  • Barik, S. K., & Adhikari, D. (2012). Predicting the geographical distribution of an invasive species (Chromolaena odorata L.(King) & HE Robins) in the Indian subcontinent under climate change scenarios. In: Bhatt, J. R.; Singh, J. S.; Singh, S. P.; Tripathi, R. S.; Kohli, R. K. (eds) Invasive alien plants: an ecological appraisal for the Indian subcontinent, 77–88.

  • Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., Soberón, J., & Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11), 1810–1819.

    Article  Google Scholar 

  • Becklin, K. M., Anderson, J. T., Gerhart, L. M., Wadgymar, S. M., Wessinger, C. A., & Ward, J. K. (2016). Examining plant physiological responses to climate change through an evolutionary lens. Plant Physiology, 172(2), 635–649.

    CAS  Google Scholar 

  • Bhattacharya, S.C., & Dutta, S. (1956). Classification of Citrus fruits of Assam. Scientific Monograph No. 20, ICAR, New Delhi.

  • Bonavia, E. (1880–1890). The cultivated oranges and lemons etc. of India and Ceylon. WH Allen & Co, London, pp 384.

  • Byjesh, K., Kumar, S. N., & Aggarwal, P. K. (2010). Simulating impacts, potential adaptation and vulnerability of maize to climate change in India. Mitigation and Adaptation Strategies for Global Change, 15(5), 413–431.

    Article  Google Scholar 

  • Chapman, A.D., & Wieczorek. J. (2006). Guide to Best Practices for Georeferencing (eds Arthur D. Chapman & John Wieczorek). Contributors: J. Wieczorek, R. Guralnick, A. Chapman, C. Frazier, N. Rios, R. Beaman, Q. Guo. Global Biodiversity Information Facility. Copenhagen, Denmark. pp. 1–80.

  • Chitale, V. S., Behera, M. D., & Roy, P. S. (2014). Future of endemic flora of biodiversity hotspots in India. PLoS ONE, 9(12), e115264.

    Article  Google Scholar 

  • Dhyani, S., Kadaverugu, R., & Pujari, P. (2020). Predicting impacts of climate variability on Banj oak (Quercus leucotrichophora A. Camus) forests: Understanding future implications for Central Himalayas. Regional Environmental Change20(4), 1–13.

  • Dufresne, J. L., Foujols, M. A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., … Vuichard, N. (2013). Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dynamics, 40(9), 2123–2165.

    Article  Google Scholar 

  • Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettman, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M., Peterson, A. T., … Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151.

    Article  Google Scholar 

  • Escalante, T., Rodríguez-Tapia, G., Linaje, M., Illoldi-Rangel, P., & González-López, R. (2013). Identification of areas of endemism from species distribution models: Threshold selection and nearctic mammals. TIP Revista Especializada En Ciencias Químico-Biológicas, 16(1), 5–17.

    Article  Google Scholar 

  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315.

    Article  Google Scholar 

  • Gogoi, M., Singh, B., Rethy, P., & Kalita, S. (2004). Distribution pattern of Citrus species in Arunachal Pradesh. Journal of Hill Research, 17(1), 13–16.

    Google Scholar 

  • Gogoi, M., Singh, B., Rethy, P., & Mishra, A. K. (2006). Citrus species of Arunachal Pradesh and cultivation prospects. In: Singh, V.B., Sema, K. Akali., Alila, P. (eds.). Horticulture for sustainable income and environmental protection, Concept Publishing Company, New Delhi.

  • Hazarika, T. K. (2012). Citrus genetic diversity of north-east India, their distribution, ecogeography and ecobiology. Genetic Resources and Crop Evolution, 59(6), 1267–1280.

    Article  Google Scholar 

  • Hore, D. K., Govind, S., & Singh, I. P. (1997). Collecting of Citrus germplasm from Mizoram and Tripura hills of India. Plant Genetic Resources Newsletter (IPGRI/FAO) 110:57–59.

  • Hynniewta, M., Malik, S. K., & Rao, S. R. (2014). Genetic diversity and phylogenetic analysis of Citrus (L) from north-east India as revealed by meiosis, and molecular analysis of internal transcribed spacer region of rDNA. Meta Gene, 2, 237–251.

    Article  Google Scholar 

  • Iwamura, T., Wilson, K. A., Venter, O., & Possingham, H. P. (2010). A climatic stability approach to prioritizing global conservation investments. PLoS ONE, 5(11), e15103.

    Article  CAS  Google Scholar 

  • Jena, S. N., Kumar, S., & Nair, N. K. (2009). Molecular phylogeny in Indian Citrus L. (Rutaceae) inferred through PCR-RFLP and trnL-trnF sequence data of chloroplast DNA. Scientia horticulturae119(4), 403–416.

  • Kumar, S., Jena, S. N., & Nair, N. K. (2010). ISSR polymorphism in Indian wild orange (Citrus indica Tanaka, Rutaceae) and related wild species in North-east India. Scientia Horticulturae, 123, 350–359.

    Article  CAS  Google Scholar 

  • Kumar, S. N., Aggarwal, P. K., Rani, S., Jain, S., Saxena, R., & Chauhan, N. (2011). Impact of climate change on crop productivity in Western Ghats, coastal and northeastern regions of India. Current Science, 332–341.

  • Kumar, S. N., Aggarwal, P. K., Rani, D. S., Saxena, R., Chauhan, N., & Jain, S. (2014). Vulnerability of wheat production to climate change in India. Climate Research, 59(3), 173–187.

    Article  Google Scholar 

  • Machado-Stredel, F., Cobos, M. E., & Peterson, A. T. (2021). A simulation-based method for selecting calibration areas for ecological niche models and species distribution models. Frontiers of Biogeography13(4).

  • Malik, S. K., Chaudhury, R., Dhariwal, O. P., & Kalia, R. K. (2006). Collection and characterization of Citrus indica Tanaka and C. macroptera Montr.: Wild endangered species of northeastern India. Genetic Resources and Crop Evolution, 53, 1485–1493.

    Article  Google Scholar 

  • Malik, S. K., Kumar, S., Singh, I. P., Dhariwal, O. P., & Chaudhury, R. (2013a). Socio-economic importance, domestication trends and in situ conservation of wild Citrus species of Northeast India. Genetic Resources and Crop Evolution, 60(5), 1655–1671.

    Article  Google Scholar 

  • Malik, S. K., Uchoi, A., Kumar, S., Choudhary, R., Pal, D., Kole, P. R., Chaudhury, R., & Bhat, K. V. (2013b). Molecular characterization of Citrus macroptera Montr. (Satkara): An endangered wild species from northeast India. Plant Biosystems, 147(4), 857–863.

  • Manish, K., Telwala, Y., Nautiyal, D. C., & Pandit, M. K. (2016). Modelling the impacts of future climate change on plant communities in the Himalaya: A case study from Eastern Himalaya. India. Modeling Earth Systems and Environment, 2(2), 1–12.

    Google Scholar 

  • Nair, K. N., & Nayar, M. P. (1997). Rutaceae. In P. K. Hajra, V. J. Nair, & P. Daniel (Eds.), Flora of India (Vol. iv, pp. 259–408). Botanical survey of India.

    Google Scholar 

  • O’Donnell, M. S., & Ignizio, D. A. (2012). Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geological Survey Data Series, 691(10), 4–9.

    Google Scholar 

  • Osorio-Olvera, L., Lira‐Noriega, A., Soberón, J., Townsend Peterson, A., Falconi, M., Contreras‐Díaz, R. G., Martínez‐Meyer, E., Barve, V., & Barve, N. (2020). ntbox: An R package with graphical user interface for modeling and evaluating multidimensional ecological niches. Methods in Ecology and Evolution, 11, 1199–1206. https://doi.org/10.1111/2041-210X.13452. https://github.com/luismurao/ntbox

  • Pandey, A., Tomer, A. K., Bhandari, D. C., & Pareek, S. K. (2008). Towards collection of wild relatives of crop plants in India. Genetic Resources and Crop Evolution, 55(2), 187–202.

    Article  Google Scholar 

  • Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., & Araújo, M. B. (2011). Ecological niches and geographic distributions (MPB-49). In Ecological Niches and Geographic Distributions (MPB-49). Princeton University Press.

  • Phillips, S. J., Anderson, R., & Schapire, R. (2006). Maximum entropy modelling of species geographical distributions. Ecological Modelling, 190, 231–259.

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: An open-source release of Maxent. Ecography, 40(7), 887–893.

    Article  Google Scholar 

  • Rajpoot, R., Adhikari, D., Verma, S., Saikia, P., Kumar, A., Grant, K. R., Dayanandan, A., Kumar, A., Khare, P. K., & Khan, M. L. (2020). Climate models predict a divergent future for the medicinal tree Boswellia serrata Roxb. in India. Global Ecology and Conservation23, e01040.

  • Sanabam, R., Somkuwar, B. G., Thingnam, G., Moirangthem, S., Handique, P. J., & Huidrom, S. (2012). CIBMAN: Database exploring Citrus biodiversity of Manipur. Bioinformation, 8(17), 838.

    Article  Google Scholar 

  • Scora, R. W. (1975). On the history and origin of Citrus. The Journal of the Torrey Botanical Society, 369–375.

  • Sharma, B. D., Hore, D. K., & Gupta, S. K. (2004). Genetic resources of Citrus of northeastern India and their potential use. Genetic Resources and Crop Evolution, 51, 411–418.

    Article  Google Scholar 

  • Singh, A. K. (2017). Wild relatives of cultivated plants in India: A reservoir of alternative genetic resources and more. Springer

  • Singh, I. P., & Singh, S. (2003). Exploration, collection and mapping of Citrus genetic diversity in India. Technical bulletin no. 7. NRC for Citrus, Nagpur, p 230.

  • Singh, I. P., & Singh, S. (2006). Exploration, collection and characterization of Citrus germplasm - A review. Agricultural Reviews, 27(2), 79–90.

    Google Scholar 

  • Singh, S., & Srivastava, A. K. (2006). Problem and prospects of Citrus industry in North-East India. Horticulture for Sustainable Income and Environment Protection, 1, 120–159.

    Google Scholar 

  • Singh, A., Dubey, P. K., Chaurasiya, R., Mathur, N., Kumar, G., Bharati, S., & Abhilash, P. C. (2018). Indian spinach: An underutilized perennial leafy vegetable for nutritional security in developing world. Energy, Ecology and Environment, 3(3), 195–205.

    Article  Google Scholar 

  • Soora, N. K., Aggarwal, P. K., Saxena, R., Rani, S., Jain, S., & Chauhan, N. (2013). An assessment of regional vulnerability of rice to climate change in India. Climatic Change, 118(3), 683–699.

    Article  Google Scholar 

  • Srivastava, A., Kumar, S. N., & Aggarwal, P. K. (2010). Assessment on vulnerability of sorghum to climate change in India. Agriculture, Ecosystems & Environment, 138(3–4), 160–169.

    Article  Google Scholar 

  • Tanaka, T. (1928). On certain new species of Citrus. Stud Citrol, 2, 155–164.

    Google Scholar 

  • Tanaka, T. (1937). Further revision of Rutaceae- Aurantioideae of India and Ceylon (Revisio aurantiacearum VIII). The Journal of Indian Botanical Society, 16, 227–240.

    Google Scholar 

  • Tanaka, T. (1959). A Revision of Assam Citrus. Bulletin of the University of Osaka Prefecture, 9, 12–39.

    Google Scholar 

  • Tang, C. Q., Matsui, T., Ohashi, H., Dong, Y. F., Momohara, A., Herrando-Moraira, S., Qian, S., Yang, Y., Ohsawa, M., Luu, H. T., Grote, P. J., Krestov, P. V., LePage, B., Werger, M., Robertson, K., Hobohm, C., Wang, C. Y., Peng, M. C., Chen, X., … López-Pujol, J. (2018). Identifying long-term stable refugia for relict plant species in East Asia. Nature Communications, 9(1), 1–14.

    Google Scholar 

  • Thuiller, W., Lavorel, S., Sykes, M. T., & Araújo, M. B. (2006). Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe. Diversity and Distributions, 12(1), 49–60.

    Article  Google Scholar 

  • Xian, Y., Liu, G., & Zhong, L. (2022). Will citrus geographical indications face different climate change challenges in China? Journal of Cleaner Production, 356, 131885.

    Article  Google Scholar 

  • Zandalinas, S. I., Balfagón, D., Gómez-Cadenas, A., & Mittler, R. (2022). Plant responses to climate change: Metabolic changes under combined abiotic stresses. Journal of Experimental Botany, 73(11), 3339–3354.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support received from Water and Power Consultancy Services (WAPCOS), Ministry of Water Resources, Government of India; Government of Arunachal Pradesh; and the Department of Biotechnology (DBT), Government of India is gratefully acknowledged. This manuscript has the institutional communication number CSIR-NBRI_MS/2022/02/07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Adhikari.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barik, S.K., Behera, M.D. & Adhikari, D. Realizing certainty in an uncertain future climate: modeling suitable areas for conserving wild Citrus species under different change scenarios in India. Environ Monit Assess 194, 864 (2022). https://doi.org/10.1007/s10661-022-10556-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10556-0

Keywords

Navigation