Skip to main content

Advertisement

Log in

Impact of extreme weather events on cropland inundation over Indian subcontinent

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Cyclonic storms and extreme precipitation lead to loss of lives and significant damage to land and property, crop productivity, etc. The “Gulab” cyclonic storm formed on the 24th of September 2021 in the Bay of Bengal (BoB), hit the eastern Indian coasts on the 26th of September and caused massive damage and water inundation. This study used Integrated Multi-satellite Retrievals for GPM (IMERG) satellite precipitation data for daily to monthly scale assessments focusing on the “Gulab” cyclonic event. The Otsu’s thresholding approach was applied to Sentinel-1 data to map water inundation. Standardized Precipitation Index (SPI) was employed to analyze the precipitation deviation compared to the 20 years mean climatology across India from June to November 2021 on a monthly scale. The water-inundated areas were overlaid on a recent publicly available high-resolution land use land cover (LULC) map to demarcate crop area damage in four eastern Indian states such as Andhra Pradesh, Chhattisgarh, Odisha, and Telangana. The maximum water inundation and crop area damages were observed in Andhra Pradesh (~2700 km2), followed by Telangana (~2040 km2) and Odisha (~1132 km2), and the least in Chhattisgarh (~93.75 km2). This study has potential implications for an emergency response to extreme weather events, such as cyclones, extreme precipitation, and flood. The spatio-temporal data layers and rapid assessment methodology can be helpful to various users such as disaster management authorities, mitigation and response teams, and crop insurance scheme development. The relevant satellite data, products, and cloud-computing facility could operationalize systematic disaster monitoring under the rising threats of extreme weather events in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anusha, N., & Bharathi, B. (2020). Flood detection and flood mapping using multi-temporal synthetic aperture radar and optical data. The Egyptian Journal of Remote Sensing and Space Science, 23(2), 207–219. https://doi.org/10.1016/j.ejrs.2019.01.001

    Article  Google Scholar 

  • Behera, M. D., Prakash, J., Paramanik, S., Mudi, S., Dash, J., Varghese, R., et al. (2022). Assessment of tropical cyclone Amphan affected inundation areas using sentinel-1 satellite data. Tropical Ecology, 63(1), 9–19. https://doi.org/10.1007/s42965-021-00187-w

    Article  Google Scholar 

  • Behera, M. D., & Roy, P. S. (2002). Lidar remote sensing for forestry applications: The Indian context. Current Science, 83(11), 1320–1328. http://www.jstor.org/stable/24106956

  • Behera, M. D., Gupta, A. K., Barik, S. K., Das, P., & Panda, R. M. (2018). Use of satellite remote sensing as a monitoring tool for land and water resources development activities in an Indian tropical site. Environmental Monitoring and Assessment, 190(7), 401. https://doi.org/10.1007/s10661-018-6770-8

    Article  CAS  Google Scholar 

  • Behera, M. D., & Kushwaha, S. P. S. (2012). The charms and challenges of climate change biodiversity in a warming world. Biodiversity and Conservation, 21(5), 1153–1158. https://doi.org/10.1007/s10531-012-0281-7

    Article  Google Scholar 

  • Bofana, J., Zhang, M., Wu, B., Zeng, H., Nabil, M., Zhang, N., et al. (2022). How long did crops survive from floods caused by Cyclone Idai in Mozambique detected with multi-satellite data. Remote Sensing of Environment, 269, 112808.

    Article  Google Scholar 

  • Capolongo, D., Refice, A., Bocchiola, D., D’Addabbo, A., Vouvalidis, K., Soncini, A., et al. (2019). Coupling multitemporal remote sensing with geomorphology and hydrological modeling for post flood recovery in the Strymonas dammed river basin (Greece). Science of the Total Environment, 651, 1958–1968. https://doi.org/10.1016/j.scitotenv.2018.10.114

    Article  CAS  Google Scholar 

  • Chakraborty, A., Srikanth, P., Murthy, C. S., Rao, P. V. N., & Chowdhury, S. (2021). Assessing lodging damage of jute crop due to super cyclone Amphan using multi-temporal Sentinel-1 and Sentinel-2 data over parts of West Bengal India. Environmental Monitoring and Assessment, 193(8), 464. https://doi.org/10.1007/s10661-021-09220-w

    Article  CAS  Google Scholar 

  • Chanda, A., Das, S., Mukhopadhyay, A., Ghosh, A., Akhand, A., Ghosh, P., Ghosh, T., Mitra, D., & Hazra, S. (2018). Sea surface temperature and rainfall anomaly over the Bay of Bengal during the El Niño-Southern Oscillation and the extreme Indian Ocean Dipole events between 2002 and 2016. Remote Sensing Applications: Society and Environment, 12, 10–22. https://doi.org/10.1016/j.rsase.2018.08.001

    Article  Google Scholar 

  • Dadhich, G., Miyazaki, H., & Babel, M. (2019). Applications of sentinel-1 synthetic aperture radar imagery for floods damage assessment: A case study of Nakhon Si Thammarat, Thailand. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2/W13), 1927–1931. https://doi.org/10.5194/isprs-archives-XLII-2-W13-1927-2019

  • Das, P., Behera, M. D., Patidar, N., Sahoo, B., Tripathi, P., Behera, P. R., et al. (2018). Impact of LULC change on the runoff, base flow and evapotranspiration dynamics in eastern Indian river basins during 1985–2005 using variable infiltration capacity approach. Journal of Earth System Science, 127(2), 19. https://doi.org/10.1007/s12040-018-0921-8

    Article  Google Scholar 

  • Das, P., Mudi, S., Behera, M. D., Barik, S. K., Mishra, D. R., & Roy, P. S. (2021). Automated mapping for long-term analysis of shifting cultivation in Northeast India. Remote Sensing, 13(6). https://doi.org/10.3390/rs13061066

  • Devrani, R., Srivastava, P., Kumar, R., & Kasana, P. (2022). Characterization and assessment of flood inundated areas of lower Brahmaputra River Basin using multitemporal synthetic aperture radar data: A case study from NE India. Geological Journal, 57(2), 622–646. https://doi.org/10.1002/gj.4365

    Article  Google Scholar 

  • Donchyts, G., Baart, F., Winsemius, H., Gorelick, N., Kwadijk, J., & van de Giesen, N. (2016). Earth’s surface water change over the past 30 years. Nature Climate Change, 6(9), 810–813. https://doi.org/10.1038/nclimate3111

    Article  Google Scholar 

  • Edmonds, D. A., Caldwell, R. L., Brondizio, E. S., & Siani, S. M. (2020). Coastal flooding will disproportionately impact people on river deltas. Nature Communications, 11(1), 1–8.

    Article  Google Scholar 

  • Esfandeh, S., Danehkar, A., Salmanmahiny, A., Sadeghi, S. M. M., & Marcu, M. V. (2022). Climate change risk of urban growth and land use/land cover conversion: An in-depth review of the recent research in Iran. Sustainability, 14(1), 338.

    Article  Google Scholar 

  • Gxokwe, S., Dube, T., & Mazvimavi, D. (2022). Leveraging Google Earth Engine platform to characterize and map small seasonal wetlands in the semi-arid environments of South Africa. Science of the Total Environment, 803, 150139.

    Article  CAS  Google Scholar 

  • Hossain, M. S., Alam, G. M. M., Fahad, S., Sarker, T., Moniruzzaman, M., & Rabbany, Md. G. (2022). Smallholder farmers’ willingness to pay for flood insurance as climate change adaptation strategy in northern Bangladesh. Journal of Cleaner Production, 338, 130584. https://doi.org/10.1016/j.jclepro.2022.130584

    Article  Google Scholar 

  • Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., et al. (2007). The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1), 38–55.

    Article  Google Scholar 

  • I. M. D. (2021). Cyclonic storm ‘GULAB’ over Eastern Bay of Bengal: A report. https://mausam.imd.gov.in/backend/assets/cyclone_pdf/8__Tropical_Cyclone_Advisory_No_3_based_on_1800_UTC_of_25_09_2021.pdf. Accessed 5 Mar 2022

  • Jena, P., & Azad, S. (2021). Observed and projected changes in extreme drought and flood-prone regions over India under CMIP5 RCP8.5 using a new vulnerability index. Climate Dynamics, 57(9–10), 2595–2613. https://doi.org/10.1007/s00382-021-05824-7

  • Jiang, X., Liang, S., He, X., Ziegler, A. D., Lin, P., Pan, M., et al. (2021). Rapid and large-scale mapping of flood inundation via integrating spaceborne synthetic aperture radar imagery with unsupervised deep learning. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 36–50.

    Article  Google Scholar 

  • Kim, S., & Sharma, A. (2019). The role of floodplain topography in deriving basin discharge using passive microwave remote sensing. Water Resources Research, 55(2), 1707–1716. https://doi.org/10.1029/2018WR023627

    Article  Google Scholar 

  • Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., & Brumby, S. P. (2021). Global land use/land cover with Sentinel 2 and deep learning. In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 4704–4707

  • Kumar, S., Lal, P., & Kumar, A. (2021). Influence of super cyclone “Amphan” in the Indian subcontinent amid COVID-19 pandemic. Remote Sensing in Earth Systems Sciences, 4(1–2), 96–103. https://doi.org/10.1007/s41976-021-00048-z

    Article  Google Scholar 

  • Lal, P., Prakash, A., Kumar, A., Srivastava, P. K., Saikia, P., Pandey, A. C., et al. (2020). Evaluating the 2018 extreme flood hazard events in Kerala India. Remote Sensing Letters, 11(5), 436–445. https://doi.org/10.1080/2150704X.2020.1730468

    Article  Google Scholar 

  • Liang, J., & Liu, D. (2020). A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 53–62.

    Article  Google Scholar 

  • Mausam, I. M. D. (2021). Cyclonic storm ‘GULAB’ over Eastern Bay of Bengal: A report. https://mausam.imd.gov.in/imd_latest/contents/cyclone.php. Accessed 5 Mar 2022

  • Meyers, G., McIntosh, P., Pigot, L., & Pook, M. (2007). The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. Journal of Climate, 20(13), 2872–2880. https://doi.org/10.1175/JCLI4152.1

    Article  Google Scholar 

  • Molinari, D., Scorzini, A. R., Gallazzi, A., & Ballio, F. (2019). AGRIDE-c, a conceptual model for the estimation of flood damage to crops: Development and implementation. Natural Hazards and Earth System Sciences, 19(11), 2565–2582. https://doi.org/10.5194/nhess-19-2565-2019

    Article  Google Scholar 

  • Mondal, P., Dutta, T., Qadir, A., & Sharma, S. (2022). Radar and optical remote sensing for near real-time assessments of cyclone impacts on coastal ecosystems. Remote Sensing in Ecology and Conservation. https://doi.org/10.1002/rse2.257

    Article  Google Scholar 

  • Nair, P. J., Chakraborty, A., Varikoden, H., Francis, P. A., & Kuttippurath, J. (2018). The local and global climate forcings induced inhomogeneity of Indian rainfall. Scientific Reports, 8(1), 6026. https://doi.org/10.1038/s41598-018-24021-x

    Article  CAS  Google Scholar 

  • Nath, P. K., & Behera, B. (2011). A critical review of impact of and adaptation to climate change in developed and developing economies. Environment, Development and Sustainability, 13(1), 141–162.

    Article  Google Scholar 

  • Olofsson, P., Foody, G. M., Stehman, S. V., & Woodcock, C. E. (2013). Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing of Environment, 129, 122–131. https://doi.org/10.1016/j.rse.2012.10.031

    Article  Google Scholar 

  • Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66. https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  • Pal, S. C., Chowdhuri, I., Das, B., Chakrabortty, R., Roy, P., Saha, A., & Shit, M. (2022). Threats of climate change and land use patterns enhance the susceptibility of future floods in India. Journal of Environmental Management, 305, 114317.

    Article  Google Scholar 

  • Parker, L., Bourgoin, C., Martinez-Valle, A., & Läderach, P. (2019). Vulnerability of the agricultural sector to climate change: The development of a pan-tropical climate risk vulnerability assessment to inform sub-national decision making. PLoS ONE, 14(3), e0213641.

    Article  CAS  Google Scholar 

  • Pandey V., Srivastava PK., Singh SK., Petropoulos GP., Mall RK. (2021). Drought identification and trend analysis using long-term CHIRPS satellite precipitation product in Bundelkhand, India. Sustainability, 13(3):1042. https://doi.org/10.3390/su13031042

  • Praveen, B., Talukdar, S., Shahfahad, M., S., Mondal, J., Sharma, P., et al. (2020). Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Scientific Reports, 10(1), 10342. https://doi.org/10.1038/s41598-020-67228-7

    Article  CAS  Google Scholar 

  • Pulvirenti, L., Pierdicca, N., Chini, M., & Guerriero, L. (2011). An algorithm for operational flood mapping from synthetic aperture radar (SAR) data using fuzzy logic. Natural Hazards and Earth System Sciences, 11(2), 529–540.

    Article  Google Scholar 

  • Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., et al. (2017). The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009

    Article  Google Scholar 

  • Sahoo, S., Swain, S., Goswami, A., Sharma, R., & Pateriya, B. (2021). Assessment of trends and multi-decadal changes in groundwater level in parts of the Malwa region, Punjab India. Groundwater for Sustainable Development, 14, 100644. https://doi.org/10.1016/j.gsd.2021.100644

    Article  Google Scholar 

  • Singh, D., Tsiang, M., Rajaratnam, B., & Diffenbaugh, N. S. (2014). Observed changes in extreme wet and dry spells during the South Asian summer monsoon season. Nature Climate Change, 4(6), 456–461.

    Article  Google Scholar 

  • Singh, G., & Pandey, A. (2021). Mapping Punjab flood using multi-temporal open-access synthetic aperture radar data in Google earth engine. In Hydrological Extremes, 75–85. https://doi.org/10.1007/978-3-030-59148-9_5

  • Swain, S., Taloor, A. K., Dhal, L., Sahoo, S., & Al-Ansari, N. (2022). Impact of climate change on groundwater hydrology: A comprehensive review and current status of the Indian hydrogeology. Applied Water Science, 12(6), 120. https://doi.org/10.1007/s13201-022-01652-0

    Article  Google Scholar 

  • Tanoue, M., Hirabayashi, Y., & Ikeuchi, H. (2016). Global-scale river flood vulnerability in the last 50 years. Scientific Reports, 6(1), 36021. https://doi.org/10.1038/srep36021

    Article  CAS  Google Scholar 

  • Tripathi, G., Pandey, A. C., Parida, B. R., & Kumar, A. (2020). Flood inundation mapping and impact assessment using multi-temporal optical and SAR satellite data: A case study of 2017 flood in Darbhanga District, Bihar India. Water Resources Management, 34(6), 1871–1892. https://doi.org/10.1007/s11269-020-02534-3

    Article  Google Scholar 

  • World Economic Forum. (2015). World Economic Forum Global Risks 2015 Report. Global risks perception survey 2015.

Download references

Acknowledgements

The Sentinel data provided by the Copernicus program used in the GEE cloud computing platform is duly acknowledged. The lead author acknowledges the support of the Indian Institute of Technology Kharagpur for providing the necessary data provided during this study. The anonymous reviewers and the Editor’s constructive comments and suggestions on the manuscript are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubham Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 437 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, A.J., Kumar, S., Behera, M.D. et al. Impact of extreme weather events on cropland inundation over Indian subcontinent. Environ Monit Assess 195, 50 (2023). https://doi.org/10.1007/s10661-022-10553-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10553-3

Keywords

Navigation