Skip to main content

Advertisement

Log in

Impact evaluation of the run-of-river hydropower projects on the water quality dynamics of the Sindh River in the Northwestern Himalayas

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

As the run-of-river (RoR) hydropower projects remain understudied, we conducted this study to understand how these projects affect the hydro-chemical dynamics and water quality index (WQI) of the Sindh River in the Kashmir Himalayas. We used multivariate statistical techniques and WQI to identify the spatiotemporal dynamics of 18 physico-chemical parameters from 11 sampling stations distributed along the length of river Sindh from December 2017 to December 2019. The dataset was classified into three groups using hierarchical cluster analysis based on similarities between hydro-chemical characteristics, and the results were confirmed by discriminant analysis. Wilk’s quotient distribution further showed that ions, nutrients, free carbon dioxide, water temperature, and pH contributed to the formation of clusters. Principle component analysis revealed that the chloride (Cl), total phosphorus (TP), ortho-phosphorus (PO4–P), nitrate-nitrogen (NO3–N), nitrite-nitrogen (NO2–N), and sulfate ion (SO42−) are significant factors that influence the water quality. Furthermore, our results suggest that diverting water for RoR operation did not significantly raise the WQI value to the point where water in the bypassed reaches could be declared unfit for drinking. Our analysis concluded that inclusive assessments are vital for framing policies on expanding RoR hydropower in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article (and its supplementary information files).

Abbreviations

BIS:

Bureau of Indian Standards

BST:

Bartlett’s sphericity tests

DA:

Discriminant analysis

E-Flows:

Environmental flows

HCA:

Hierarchical cluster analysis

KMO:

Kaiser–Meyer–Olkin

PCA:

Principle component analysis

RoR:

Run-of-river

SHP:

Small hydropower plants

WHO:

World Health Organization

WQI:

Water quality index

References

  • Abba, S. I., Pham, Q. B., Saini, G., Linh, N. T. T., Ahmed, A. N., Mohajane, M., Khaledian, M., Abdulkadir, R. A., & Bach, Q. V. (2020). Implementation of data intelligence models coupled with ensemble machine learning for prediction of water quality index. Environmental Science and Pollution Research International, 27(33), 41524–41539. https://doi.org/10.1007/s11356-020-09689-x

    Article  CAS  Google Scholar 

  • Abbasi, T., & Abbasi, S. A. (2011). ‘Renewable’ hydrogen: Prospects and challenges. Renewable and Sustainable Energy Reviews, 15(6), 3034–3040. https://doi.org/10.1016/j.rser.2011.02.026

    Article  Google Scholar 

  • Ahearn, D. S., Sheibley, R. W., & Dahlgren, R. A. (2005). Effects of river regulation on water quality in the lower Mokelumne River, California. River Research and Applications, 21(6), 651–670.

    Article  Google Scholar 

  • Álvarez, X., Valero, E., Torre-Rodríguez, N., & Acuña-Alonso, C. (2020). Influence of small hydroelectric power stations on river water quality. Water, 12(2), 312. https://doi.org/10.3390/w12020312

    Article  CAS  Google Scholar 

  • American Public Health Association (APHA). (2017). Standard methods for the examination of water and waste water (23rd ed). Washington.

  • Anderson, D., Moggridge, H., Warren, P., & Shucksmith, J. (2015). The impacts of ‘run-of-river’ hydropower on the physical and ecological condition of rivers. Water and Environment Journal., 2015(29), 268–276. https://doi.org/10.1111/wej.12101

    Article  Google Scholar 

  • Athayde, S., Duarte, C. G., Gallardo, A. L., Moretto, E. M., Sangoi, L. A., Dibo, A. P. A., et al. (2019). Improving policies and instruments to address cumulative impacts of small hydropower in the Amazon. Energy Policy, 132, 265–271. https://doi.org/10.1016/j.enpol.2019.05.003

    Article  Google Scholar 

  • Bejarano, M. D., Sordo-Ward, A., Gabriel-Martin, I., & Garrote, L. (2019). Tradeoff between economic and environmental costs and benefits of hydropower production at run-of-river-diversion schemes under different environmental flows scenarios. Journal of Hydrology, 572, 790–804.

    Article  Google Scholar 

  • Bhat, S. U., Khanday, S. A., Islam, S. T., & Sabha, I. (2021). Understanding the spatiotemporal pollution dynamics of highly fragile montane watersheds of Kashmir Himalaya, India. Environmental Pollution, 286, 117335. https://doi.org/10.1016/j.envpol.2021.117335

    Article  CAS  Google Scholar 

  • Blei, D., & Lafferty, J. (2009). Topic models. In A. Srivastava & M. Sahami (Eds.), Text mining: Classification, clustering, and applications (pp. 71–94). Taylor & Francis Group.

    Google Scholar 

  • Brown, R. M., Mccleiland, N. J., Deiniger, R. A., & O’Connor, M. F. (1972). Water quality index-crossing the physical barrier. Proceedings of the International Conference on Water Pollution Research, Jerusalem (pp. 787–797).

  • Bureau of Indian Standards. (2012). Indian Standard drinking water specifications. https://cgwb.gov.in/Documents/WATERQUALITY-standards.pdf. Accessed 18 May 2021.

  • Canizo, B. V., Escudero, L. B., Pellerano, R. G., & Wuilloud, R. G. (2019). Quality monitoring and authenticity assessment of wines: Analytical and chemometric methods. Quality control in the beverage Industry, 335–384. In book, Quality Control in the Beverage Industry (vol. 17., pp. 2019). The Science of Beverages. Publisher. Elsevier, Inc.

  • Chang, M. (2003). Forest hydrology: An introduction to water and forests. CRC Press Press.

  • Charrad, M., Ghazzali, N., Boiteau, V., Niknafs, A., & Charrad, M. M. (2014). Package “NbClust.” Journal of Statistical Software, 61, 1–36.

    Article  Google Scholar 

  • Ciric, R. M. (2019). Review of techno-economic and environmental aspects of building small hydroelectric plants – A case study in Serbia. Renewable Energy, 140, 715–721. https://doi.org/10.1016/j.renene.2019.03.091

    Article  Google Scholar 

  • Couto, T. B., & Olden, J. D. (2018). Global proliferation of small hydropower plants–Science and policy. Frontiers in Ecology and the Environment, 16(2), 91–100. https://doi.org/10.1002/fee.1746

    Article  Google Scholar 

  • Cunningham, M. A., Menking, K. M., Gillikin, D. P., Smith, K. C., Freimuth, C. P., Belli, S. L., Pregnall, A. M., Schlessman, M. A., & Batur, P. (2010). Influence of open space on water qualityin an urban stream. Physical Geography, 31(4), 336–356. https://doi.org/10.2747/0272-3646.31.4.336

    Article  Google Scholar 

  • Dada, M. A., Ahmad, U. F., Rather, M. A., & Kuchhay, N. A. (2013). Topographic and geomorphological mapping of River Sindh a study of Himalayan river of Jammu and Kashmir. International Journal of Remote Sensing & Geoscience, 2(6), 1–7.

  • Dar, R. A., Jaan, O., Murtaza, K. O., & Romshoo, S. A. (2017). Glacial-geomorphic study of the Thajwas glacier valley, Kashmir Himalayas, India. Quaternary International, 444, 157–171. https://doi.org/10.1016/j.quaint.2017.05.021

    Article  Google Scholar 

  • Dar, S. A., Hamid, A., Rashid, I., & Bhat, S. U. (2022). Identification of anthropogenic contribution to wetland degradation: Insights from the environmetric techniques. Stochastic Environmental Research and Risk Assessment, 36, 1397–1411. https://doi.org/10.1007/s00477-021-02121-x

    Article  Google Scholar 

  • Dar, S. A., Rashid, I., & Bhat, S. U. (2021). Land system transformations govern the trophic status of an urban wetland ecosystem: Perspectives from remote sensing and Water qualityanalysis. Land Degradation and Development, 32(14), 4087–4104. https://doi.org/10.1002/ldr.3924

    Article  Google Scholar 

  • de Oliveira Naliato, D. A., Nogueira, M. G., & Perbiche-Neves, G. (2009). Discharge pulses of hydroelectric dams and their effects in the downstream limnological conditions: A case study in a large tropical river (SE Brazil). Lakes & Reservoirs: Research & Management, 14(4), 301–314.

    Article  Google Scholar 

  • Denver, J. M., Cravotta, C. A., Ator, S. W., & Lindsey, B. D. (2010). Contributions of phosphorus from groundwater to streams in the Piedmont, Blue Ridge, and Valley and Ridge Physiographic Provinces, Eastern United States. US Geological Survey Scientific Investigations Report 2010–5176.

  • Dixon, W., & Chiswell, B. (1996). Review of aquatic monitoring program design. Water Research, 30(9), 1935–1948. https://doi.org/10.1016/0043-1354(96)00087-5

    Article  CAS  Google Scholar 

  • Dupont, M. F., Elbourne, A., Cozzolino, D., Chapman, J., Truong, V. K., Crawford, R. J., & Latham, K. (2020). Chemometrics for environmental monitoring: A review. Analytical Methods: Advancing Methods and Applications, 12(38), 4597–4620. https://doi.org/10.1039/D0AY01389G

    Article  CAS  Google Scholar 

  • Einax, J. W., Zwanziger, H. W., & Geiss, S. (1997). Chemometrics in environmental analysis. John Wiley & Sons.

    Book  Google Scholar 

  • Fataei, E., Seyyedsharifi, A., Seiiedsafaviyan, T., & Nasrollahzadeh, S. (2013). Water quality assessment based on WQI and CWQI Indexes in Balikhlou River, Iran. Journal of Basic and Applied Scientific Research, 3, 263–269.

    Google Scholar 

  • Ferreira, V., & Chauvet, E. (2011). Future increase in temperature more than decrease in litter quality can affect microbial litter decomposition in streams. Oecologia, 167(1), 279–291. https://doi.org/10.1007/s00442-011-1976-2

    Article  Google Scholar 

  • Gibeau, P., & Palen, W. J. (2020). Predicted effects of flow diversion by run-of-river hydropower on bypassed stream temperature and bioenergetics of salmonid fishes. River Research and Applications, 36(9), 1903–1915. https://doi.org/10.1002/rra.3706

    Article  Google Scholar 

  • Govorushko, S. M., & Rupert, C. E. (2014). Hydropower: Types, development strategies, and environmental impacts. Nova Science Publishers Inc.

    Google Scholar 

  • Griffiths, N. A., & Tiegs, S. D. (2016). Organic-matter decomposition along a temperature gradient in a forested headwater stream. Freshwater Science, 35(2), 518–533. https://doi.org/10.1086/685657

    Article  Google Scholar 

  • Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., Babu, S., Borrelli, P., Cheng, L., Crochetiere, H., Ehalt Macedo, H. E., Filgueiras, R., Goichot, M., Higgins, J., Hogan, Z., Lip, B., McClain, M. E., Meng, J., Mulligan, M., & Zarfl, C. (2019). Mapping the world’s free-flowing rivers. Nature, 569(7755), 215–221. https://doi.org/10.1038/s41586-019-1111-9

    Article  CAS  Google Scholar 

  • Hamid, A., Bhat, S. A., Bhat, S. U., & Jehangir, A. (2016). Environmetric techniques in Water quality assessment and monitoring: A case study. Environmental Earth Sciences, 75(4), 321. https://doi.org/10.1007/s12665-015-5139-3

    Article  CAS  Google Scholar 

  • Hamid, A., Bhat, S. U., & Jehangir, A. (2020). Local determinants influencing stream water Quality. Applied Water Science, 10(1), 1–16. https://doi.org/10.1007/s13201-019-1043-4

    Article  Google Scholar 

  • Hatvani, I. G., Kovács, J., Kovács, I. S., Jakusch, P., & Korponai, J. (2011). Analysis of long-term water qualitychanges in the Kis-Balaton water protection system with time series-, cluster analysis and Wilks’ lambda distribution. Ecological Engineering, 37(4), 629–635. https://doi.org/10.1016/j.ecoleng.2010.12.028

    Article  Google Scholar 

  • Horton, R. (1965). An index number system for rating water quality. Journal of Water Pollution Control Federation, 37, 300–306.

    Google Scholar 

  • Jaeger, W. K., Amos, A., Conklin, D. R., Langpap, C., Moore, K., & Plantinga, A. J. (2019). Scope and limitations of drought management within complex human–natural systems. Nature Sustainability, 2(8), 710–717. https://doi.org/10.1038/s41893-019-0326-y

    Article  Google Scholar 

  • Jesus, T., Santos, P., Formigo, N., & Tavares, G. R. (2004). Impact evaluation of the Vila Viçosa small hydroelectric power plant (Portugal) on the water quality and on the dynamics of the benthic macroinvertebrate communities of the Ardena river. Limnetica, 23(3–4), 241–255.

    Article  Google Scholar 

  • Jiang, X., Jin, X., Yao, Y., Li, L., & Wu, F. (2008). Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake, China. Water Research, 42(8–9), 2251–2259. https://doi.org/10.1016/j.watres.2007.12.003

    Article  CAS  Google Scholar 

  • Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society a: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. https://doi.org/10.1098/rsta.2015.0202

    Article  Google Scholar 

  • Kelly-Richards, S., Silber-Coats, N., Crootof, A., Tecklin, D., & Bauer, C. (2017). Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom. Energy Policy, 101, 251–264. https://doi.org/10.1016/j.enpol.2016.11.035

    Article  Google Scholar 

  • Khanday, S. A., Bhat, S. U., Islam, S. T., & Sabha, I. (2021). Identifying lithogenic and anthropogenic factors responsible for spatio-seasonal patterns and quality evaluation of snow melt waters of the River Jhelum basin in Kashmir Himalaya. Catena. https://doi.org/10.1016/j.catena.2020.104853

    Article  Google Scholar 

  • Kibler, K. M., & Tullos, D. D. (2013). Cumulative biophysical impact of small and large hydropower development in Nu River, China. Water Resources Research, 49, 3104–3118. https://doi.org/10.1002/wrcr.20243

    Article  Google Scholar 

  • Koralay, N., Kara, O., & Kezik, U. (2018). Effects of run-of-the-river hydropower plants on the surface Water qualityin the Solakli stream watershed, Northeastern Turkey. Water and Environment Journal, 32(3), 412–421. https://doi.org/10.1111/wej.12338

    Article  CAS  Google Scholar 

  • Kraft, J., Kowalik, C., & Einax, J. W. (2003). Statistical evaluation of river pollution data exemplified by the Elbe River system. In A. Parczewski (Ed.), Chemometrics. Methods and applications Conference, October 16–19 (pp. 40–49). Zakopane, Poland, II.

  • Kumar, M., & Puri, A. (2012). A review of permissible limits of drinking water. Indian Journal of Occupational and Environmental Medicine, 16(1), 40–44. https://doi.org/10.4103/0019-5278.99696

    Article  Google Scholar 

  • Kuriqi, A., & Jurasz, J. (2022). Small hydropower plants proliferation and fluvial ecosystem conservation nexus. In Complementarity of Variable Renewable Energy Sources (pp. 503–527). Academic Press.

  • Kuriqi, A., Pinheiro, A. N., Sordo-Ward, A., & Garrote, L. (2020). Water-energy-ecosystem nexus: Balancing competing interests at a run-of-river hydropower plant coupling a hydrologic–ecohydraulic approach. Energy Conversion and Management, 223, 113267.

    Article  Google Scholar 

  • Kuriqi, A., Pinheiro, A. N., Sordo-Ward, A., & Garrote, L. (2019). Influence of hydrologically based environmental flow methods on flow alteration and energy production in a run-of-river hydropower plant. Journal of Cleaner Productions., 232, 1028–1042. https://doi.org/10.1016/j.jclepro.2019.05.358

    Article  Google Scholar 

  • Kuriqi, A., Pinheiro, A. N., Sordo-Ward, A., Bejarano, M. D., & Garrote, L. (2021). Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2021.110833 PubMed: 110833.

    Article  Google Scholar 

  • Lange, K., Meier, P., Trautwein, C., Schmid, M., Robinson, C. T., Weber, C., & Brodersen, J. (2018). Basin-scale effects of small hydropower on biodiversity dynamics. Frontiers in Ecology and the Environment, 16(7), 397–404. https://doi.org/10.1002/fee.1823

    Article  Google Scholar 

  • Lessard, J. L., & Hayes, D. B. (2003). Effects of elevated water temperature on fish and macroinvertebrate communities below small dams. River Research and Applications, 19(7), 721–732.

    Article  Google Scholar 

  • Lewandowski, S., Bolt, S., & Salkind, N. J. (2010). Box-and-whisker plot. In Encyclopedia of Research Design. https://doi.org/10.4135/9781412961288.n35.SAGEPublicationsInc

    Article  Google Scholar 

  • Li, B., Rodell, M., Sheffield, J., Wood, E., & Sutanudjaja, E. (2019). Long-term, non-anthropogenic groundwater storage changes simulated by three global-scale hydrological models. Scientific Reports, 9(1), 10746. https://doi.org/10.1038/s41598-019-47219-z

    Article  CAS  Google Scholar 

  • Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundWater qualityin a Blackfoot disease area in Taiwan. Science of the Total Environment, 313(1–3), 77–89. https://doi.org/10.1016/S0048-9697(02)00683-6

    Article  CAS  Google Scholar 

  • Liu, T., Huang, H. Q., Shao, M., Yao, W., Gu, J., & Yu, G. (2015). Responses of streamflow and sediment load to climate change and human activity in the Upper Yellow River, China: A case of the Ten Great Gullies Basin. Water Science and Technology, 71(12), 1893–1900. https://doi.org/10.2166/wst.2015.167

    Article  Google Scholar 

  • Marandi, A., Polikarpus, M., & Jõeleht, A. (2013). A new approach for describing the relationship between electrical conductivity and major anion concentration in natural waters. Applied Geochemistry, 38, 103–109. https://doi.org/10.1016/j.apgeochem.2013.09.003

    Article  CAS  Google Scholar 

  • Melo, D. C. D., Anache, J. A. A., Almeida, Cd. N., Coutinho, J. V., Ramos Filho, G. M., Rosalem, L. M. P., Pelinson, N. S., Ferreira, G. L. R. A., Schwamback, D., Calixto, K. G., Siqueira, J. P. G., Duarte-Carvajalino, J. C., Jhunior, H. C. S., Nóbrega, J. D., Morita, A. K. M., Leite, C. M. C., Guedes, A. C. E., Coelho, V. H. R., & Wendland, E. (2020). The big picture of field hydrology studies in Brazil. Hydrological Sciences Journal, 65(8), 1262–1280. https://doi.org/10.1080/02626667.2020.1747618

    Article  Google Scholar 

  • Mishra, S., & Kumar, A. (2021). Estimation of physicochemical characteristics and associated metal contamination risk in the Narmada River, India. Environmental Engineering Research. https://doi.org/10.4491/eer.2019.521

    Article  Google Scholar 

  • Mishra, S., Kumar, A., & Shukla, P. (2021). Estimation of heavy metal contamination in the Hindon River, India: An environmetric approach. Applied Water Science, 11(1), 2. https://doi.org/10.1007/s13201-020-01331-y

    Article  CAS  Google Scholar 

  • Młyński, D., Wałęga, A., & Kuriqi, A. (2021). Influence of meteorological drought on environmental flows in mountain catchments. Ecological Indicators, 133, 108460. https://doi.org/10.1016/j.ecolind.2021.108460

    Article  Google Scholar 

  • Munfarida, I., Auvaria, S. W., Munir, M., & Rezagama, A. (2020). Analysis of pollution load carrying capacity of Cibatarua River in Pamulihan District, Garut Regency, west Java. In AIP Conference Proceedings (Vol. 2231, No. 1, p. 040044). AIP Publishing LLC.

  • Nacar, S., Bayram, A., Satilmis, U., & Baki, O. T. (2016). The surface water quality monitoring and assessment of the eastern Black Sea basin (Trabzon Province) streams. Turkey (abstract book). 12th International Congress on Advances in Civil Engineering (ACE 2016) (p. 111).

  • Nilsson, C., & Renöfält, B. M. (2008). Linking flow regime and water quality in rivers: A challenge to adaptive catchment management. Ecology and Society, 13(2). http://www.jstor.org/stable/26268001. https://doi.org/10.5751/ES-02588-130218

  • Ning, S. K., & Chang, N. B. (2004). Optimal expansion of Water qualitymonitoring network by fuzzy optimization approach. Environmental Monitoring and Assessment, 91(1–3), 145–170. https://doi.org/10.1023/B:EMAS.0000009233.98215.1f

    Article  Google Scholar 

  • Nisar, M. (2012). A geospatial approach to study environmental characterization of a Kashmir wetland (anchar) catchment with special reference to land use/land cover and changing climate [Doctoral Dissertation].

  • Noori, R., Berndtsson, R., Hosseinzadeh, M., Adamowski, J. F., & Abyaneh, M. R. (2019). A critical review on the application of the National Sanitation Foundation water Quality Index. Environmental Pollution, 244, 575–587. https://doi.org/10.1016/j.envpol.2018.10.076

    Article  CAS  Google Scholar 

  • Noori, R., Sabahi, M. S., Karbassi, A. R., Baghvand, A., & Taati Zadeh, H. T. (2010). Multivariate statistical analysis of surface water quality based on correlations and variations in the data set. Desalination, 260(1–3), 129–136. https://doi.org/10.1016/j.desal.2010.04.053

    Article  CAS  Google Scholar 

  • Panda, U. C., Sundaray, S. K., Rath, P., Nayak, B. B., & Bhatta, D. (2006). Application of factor and cluster analysis for characterization of river and estuarine water systems–A case study: Mahanadi River (India). Journal of Hydrology, 331(3–4), 434–445. https://doi.org/10.1016/j.jhydrol.2006.05.029

    Article  CAS  Google Scholar 

  • Pang, M., Zhang, L., Bahaj, A. S., Xu, K., Hao, Y., & Wang, C. (2018). Small hydropower development in Tibet: Insight from a survey in Nagqu Prefecture. Renewable and Sustainable Energy Reviews., 81, 3032–3040. https://doi.org/10.1016/j.rser.2017.06.115

    Article  Google Scholar 

  • Parvaiz, A. (2018). Paradise lost? The decline of Kashmir’s mountain resorts. Retrieved October 12, 2021, from https://india.mongabay.com/2018/05/paradise-lost-the-decline-of-kashmirs-mountain-resorts/

  • Pesce, S. F., & Wunderlin, D. A. (2000). Use of water quality indices to verify the impact of Cordoba City (Argentina) on Suquia River. Water Research, 34(11), 2915–2926. https://doi.org/10.1016/S0043-1354(00)00036-1

  • R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing. ISBN 3–900051–07-0.

  • Rashid, H., & Pandit, A. K. (2008). Ecology of plankton community of river Sindh in Kashmir Himalaya. Journal of Himalayan Ecology and Sustainable Development, 3, 11–22.

    Google Scholar 

  • Ringnér, M. (2008). What is principal component analysis? Nature Biotechnology, 26(3), 303–304. https://doi.org/10.1038/nbt0308-303

    Article  CAS  Google Scholar 

  • Rogers, C. W., Sharpley, A. N., Haggard, B. E., & Scott, J. T. (2012). Phosphorus uptake and release from submerged sediments in a simulated stream channel inundated with a poultry litter source. Water, Air, and Soil Pollution., 224, 1361. https://doi.org/10.1007/s11270-012-1361-8

    Article  CAS  Google Scholar 

  • Sabha, I., Bhat, S. U., Hamid, A., & Rather, J. A. (2019). Monitoring stream water quality of Dagwan stream, an important tributary of Dal Lake, Kashmir Himalaya. Arabian Journal of Geosciences, 12(8), 1–17. https://doi.org/10.1007/s12517-019-4439-4

    Article  Google Scholar 

  • Sedeño-Díaz, J. E., & López-López, E. (2007). Water quality in the Río Lerma, Mexico: An overview of the last quarter of the twentieth century. Water Resources Management, 21(10), 1797–1812. https://doi.org/10.1007/s11269-006-9128-x

    Article  Google Scholar 

  • Şener, Ş., Şener, E., & Davraz, A. (2017). Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SWTurkey). Science of the Total Environment, 584, 131–144.

  • Shrestha, S., & Kazama, F. (2007). Assessment of surface Water qualityusing multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling and Software, 22(4), 464–475. https://doi.org/10.1016/j.envsoft.2006.02.001

    Article  Google Scholar 

  • Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M., & Kouimtzis, T. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37(17), 4119–4124. https://doi.org/10.1016/S0043-1354(03)00398-1

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study. Water Research, 38(18), 3980–3992. https://doi.org/10.1016/j.watres.2004.06.011

    Article  CAS  Google Scholar 

  • Singh, T. A., Meetei, N. S., & Meetei, L. B. (2013). Seasonal variation of some physico-chemical characteristics of three major Rivers in Imphal, Manipur: A comparative evaluation. Current World Environment Journal, 8(1), 93–102. https://doi.org/10.12944/CWE.8.1.10

  • Soares, A. L. C., Pinto, C. C., & Oliveira, S. C. (2020). Impacts of anthropogenic activities and calculation of the relative risk of violating surface Water qualitystandards established by environmental legislation: A case study from the Piracicaba and Paraopeba river basins, Brazil. Environmental Science and Pollution Research International, 27(12), 14085–14099. https://doi.org/10.1007/s11356-020-07647-1

    Article  CAS  Google Scholar 

  • Sofi, M. S., Bhat, S. U., Rashid, I., & Kuniyal, J. C. (2020). The natural flow regime: A master variable for maintaining river ecosystem health. Ecohydrology, 13(8), e2247. https://doi.org/10.1002/eco.2247

    Article  Google Scholar 

  • Sofi, M. S., Hamid, A., Bhat, S. U., Rashid, I., & Kuniyal, J. C. (2022). Biotic alteration of benthic macroinvertebrate communities based on multispatial-scale environmental variables in a regulated river system of Kashmir Himalaya. Ecological Engineering. https://doi.org/10.1016/j.ecoleng.2022.106560

    Article  Google Scholar 

  • Sofi, M. S., Rautela, K. S., Bhat, S. U., Rashid, I., & Kuniyal, J. C. (2021). Application of geomorphometric approach for the estimation of hydro-sedimentological flows and cation weathering rate: Towards understanding the sustainable land use policy for the Sindh Basin, Kashmir Himalaya. Water, Air, and Soil Pollution, 232(7), 1–11. https://doi.org/10.1007/s11270-021-05217-w

    Article  CAS  Google Scholar 

  • Sow, M. M., Majdi, N., Muylaert, K., Tackx, M., Julien, F., Probst, J. L., ... & Gérino, M. (2016). Retention of nutrients, suspended particulate matter and phytoplankton in a pondage associated with a run‐of‐the‐river type hydroelectric power plant. Ecohydrology, 9(2), 229–237.

  • Srinivas, R., Singh, A. P., & Shankar, D. (2020). Understanding the threats and challenges concerning Ganges River basin for effective policy recommendations towards sustainable development. Environment, Development and Sustainability, 22(4), 3655–3690. https://doi.org/10.1007/s10668-019-00361-0

    Article  Google Scholar 

  • Tiwari, T., & Mishra, M. A. (1985). Preliminary assignment of water quality index of major Indian rivers. Indian Journal of Environmental Protection, 1985, 276–279.

    Google Scholar 

  • Tomczyk, P., & Wiatkowski, M. (2021a). Impact of a small hydropower plant on water qualitydynamics in a diversion and natural river channel. Journal of Environmental Quality, 50(5), 1156–1170. https://doi.org/10.1002/jeq2.20274

    Article  CAS  Google Scholar 

  • Tomczyk, P., & Wiatkowski, M. (2021b). The effects of hydropower plants on the physicochemical parameters of the Bystrzyca River in Poland. Energies, 14(8), 2075. https://doi.org/10.3390/en14082075

    Article  CAS  Google Scholar 

  • Tullis, T., & Albert, B. (2013). Special topics. Measuring the User Experience, 209–236. https://doi.org/10.1016/b978-0-12-415781-1.00009-1

  • Tunc Dede, O., Telci, I. T., & Aral, M. M. (2013). The use of water qualityindex models for the evaluation of surface water quality: A case study for Kirmir Basin, Ankara, Turkey. Water Quality, Exposure and Health, 5(1), 41–56. https://doi.org/10.1007/s12403-013-0085-3

    Article  CAS  Google Scholar 

  • Turner, L., & Erskine, W. D. (2005). Variability in the development, persistence and breakdown of thermal, oxygen and salt stratification on regulated rivers of south-eastern Australia. River Research and Applications, 21(2–3), 151–168.

    Article  Google Scholar 

  • Uddin, W., Ayesha, Zeb, K., Haider, A., Khan, B., Islam, Su., Ishfaq, M., Khan, I., Adil, M., & Kim, H. J. (2019). Current and future prospects of small hydro power in Pakistan: A survey. Energy Strategy Reviews, 24, 166–177. https://doi.org/10.1016/j.esr.2019.03.002

    Article  Google Scholar 

  • UNIDO. (2016). ICSHP. World small hydropower development report. 2 ed. Vienna, Austria: United Nations Industrial Development Organization (UNIDO) and the International Center on Small Hydro Power (ICSHP); p. 1–44, http://www.smallhydroworld.org/menu-pages/reports/2016/. Assessed 12 Apr 2022.

  • Varol, M., & Şen, B. (2009). Assessment of surface Water qualityusing multivariate statistical techniques: A case study of Behrimaz Stream, Turkey. Environmental Monitoring and Assessment, 159(1–4), 543–553. https://doi.org/10.1007/s10661-008-0650-6

    Article  CAS  Google Scholar 

  • Varol, S., & Davraz, A. (2015). Evaluation of the ground water quality with WQI (Water qualityIndex) and multivariate analysis: A case study of the Tefenni plain (Burdur/Turkey). Environmental Earth Sciences, 73(4), 1725–1744. https://doi.org/10.1007/s12665-014-3531-z

    Article  CAS  Google Scholar 

  • Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Ganthi, R. R., Chidambaram, S., Anandhan, P., Manivannan, R., & Vasudevan, S. (2010). Application of water quality index for ground Water quality assessment: Thirumanimuttar sub-basin, Tamil Nadu, India. Environmental Monitoring and Assessment, 171(1–4), 595–609. https://doi.org/10.1007/s10661-009-1302-1

    Article  CAS  Google Scholar 

  • Wiatkowski, M., & Tomczyk, P. (2018). Comparative assessment of the hydromorphological status of the rivers Odra, Bystrzyca, and Ślęza using the RHS, LAWA, QBR, and HEM methods above and below the hydropower plants. Water, 10(7), 855. https://doi.org/10.3390/w10070855

    Article  Google Scholar 

  • Wilks, S. S. (1932). Certain generalizations in the analysis of variance. Biometrika, 24(3/4), 471–494. https://doi.org/10.2307/2331979

    Article  Google Scholar 

  • Wolf, S., Esser, V., Schüttrumpf, H., & Lehmkuhl, F. (2021). Influence of 200 years of water resource management on a typical central European river. Does industrialization straighten a river? Environmental Sciences Europe, 33(1), 1–23. https://doi.org/10.1186/s12302-021-00460-8

    Article  Google Scholar 

  • World Health Organization, WHO., & World Health Organization Staff. (2012). WHO guidelines for drinking-water quality (4th ed). World Health Organization.

  • Zarfl, C., & Lehner, B. (2020). European rivers are fragmented by many more barriers than had been recorded. Nature, 588(7838), 395–396. https://doi.org/10.1038/d41586-020-03440-9

    Article  CAS  Google Scholar 

  • Zbierska, J., Ławniczak, A. E., & Zbierska, A. (2015). Changes in the trophic status of Lake Niepruszewskie (Poland). Journal of Ecological Engineering, 16, 65–73. https://doi.org/10.12911/22998993/59351

Download references

Acknowledgements

The research work was conducted as part of the Research project titled, “Anthropogenic impacts and their management options in different ecosystems of the Indian Himalayan Region” funded by the National Mission on Himalayan Studies (NMHS), MoEF & CC, Govt. of India is thankfully acknowledged. The authors also thank Director, Govind Ballabh Pant National Institute of Himalayan Environment (NIHE), Kosi-Katarmal, Almora-263 643, Uttarakhand, India as well as the Department of Environmental Science, the University of Kashmir for providing facilities that together made the present study possible.

Funding

This work was supported by NMHS, MoEF & CC Govt. of India under the grant number NMHS/SG/-2017/260.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Mohd Sharjeel Sofi, Sami Ullah Bhat. Formal analysis and data curation: Mohd Sharjeel Sofi, Aadil Hamid. Writing—original draft preparation: Mohd Sharjeel Sofi, Sami Ullah Bhat, Aadil Hamid. Writing—review and editing: Mohd Sharjeel Sofi, Aadil Hamid, Sami Ullah Bhat, Irfan Rashid, Jagdish Chandra Kuniyal. Funding acquisition: Jagdish Chandra Kuniyal, Sami Ullah Bhat, Irfan Rashid. Supervision: Sami Ullah Bhat, Irfan Rashid, Jagdish Chandra Kuniyal.

Corresponding author

Correspondence to Sami Ullah Bhat.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofi, M.S., Hamid, A., Bhat, S.U. et al. Impact evaluation of the run-of-river hydropower projects on the water quality dynamics of the Sindh River in the Northwestern Himalayas. Environ Monit Assess 194, 626 (2022). https://doi.org/10.1007/s10661-022-10303-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10303-5

Keywords

Navigation