Skip to main content

Advertisement

Log in

Environmental and human health risk assessments of polycyclic aromatic hydrocarbons in particulate matter in Nigeria

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are an important organic group in particulate matter which has attracted much attention among the scientific community in terms of health risk because of their carcinogenic, mutagenic, and ubiquitous nature in the environment. In this study, PAHs in particulate matter in Okitipupa were determined. Indoor and outdoor particle samples were sampled with the aid of SKC Air Check XR5000 high-volume gravimetric sampler, and analyzed using gas chromatography flame ionization detector (GC-FID). The results obtained showed that high molecular weight PAHs (5-ring, 6-ring PAHs) had higher mean concentration than low molecular weight PAHs (2-ring, 3-ring PAHs), in both indoor and outdoor particulate matter. Health risk assessments from exposure to these PAHs were also determined using toxicity equivalence quotient (TEQ), mutagenicity equivalence quotient (MEQ), incremental life cancer risk (ILCR), and hazard quotient (HQ). Dibenz(a,h)anthracene had the highest mean concentration across the sample location in both indoor and outdoor with values ranging from 33 to 31 and 90 to 93 µg/m3 respectively. The total mean concentration in outdoor PAHs ranged from 280 to 329 µg/m3, while total mean concentration in indoor PAHs ranged from 74 to 104 µg/m3. The incremental lifetime cancer risk in indoor ranged from 6.9 × 10–7 to 1.2 × 10–5, while the ILCR in outdoor ranged from 8.5 × 10–6 to 1.0 × 10–5. The hazard quotient in indoor ranged from 7.6 × 10–5 to 2.2 × 10–3, while the HQ in outdoor ranged from 10 × 10–4 to 1.4 × 10–3. These values are within the WHO permissible limit, and therefore underscores the danger associated with the inhalation of polycyclic aromatic hydrocarbons in Okitipupa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  • Agudelo-Castañeda, D. M., Teixeira, E. C., Schneider, I. L., Lara, S. R., & Silva, L. F. O. (2017). Exposure to polycyclic aromatic hydrocarbons in atmospheric PM1.0 of urban environments: Carcinogenic and mutagenic respiratory health risk by age groups. Environmental Pollution, 224, 158–170.

    Article  CAS  Google Scholar 

  • Aiyesanmi, F. A., Ademefun, A. E., Ibigbami, A. O., Adedeji, A., & Adelodun, A. A. (2021). Polycyclic aromatic hydrocarbons and organochlorine pesticides in floodplain soils: A case study of Onuku River in Okitipupa. Nigeria. Environmental Challenges, 5, 100351.

    Article  CAS  Google Scholar 

  • Alves, C., Gonçalves, C., Fernandes, A.P., Tarelho, L., & Pio, C. (2011). Fireplace and wood stove fine particle emissions from combustion of western Mediterranean wood types. Atmospheric Research, 101, 692–700.

  • Armstrong, B. G., Hutchinson, E., Unwin, J., & Fletcher, T. (2004). Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: A review and meta-analysis. Environ Health Perspective, 112, 970–978.

    Article  CAS  Google Scholar 

  • Cereceda-Balic, F., Fadic, X., Llanos, A. L., Dominguez, A. M., Guevara, J. L., Vidal, V., Diaz-Robles, L. A., Schiappacasse, L. N., & Etcharren, P. (2012). Obtaining polycyclic aromatic hydrocarbon concentration ratios and molecular markers for residential wood combustion: Temuco, a case study. Journal of Air & Waste ManagemenT., 62, 44–51.

    Article  CAS  Google Scholar 

  • Chaber, P., & Gworek, B. (2020). Surface horizons of forest soils for the diagnosis of soil environment contamination and toxicity caused by polycyclic aromatic hydrocarbons (PAHs). PLoS ONE, 15(4), e0231359.

    Article  CAS  Google Scholar 

  • Durant, J. L., Busby, W. F., Lafleur, A. L., Penman, B. W., & Crespi, C. L. (1996). Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclicaromatic hydrocarbons associated with urban aerosols. Mutation Research., 371, 123–157.

    Article  CAS  Google Scholar 

  • Dutton, S. J., Rajagopalan, B., Vedal, S., & Hannigan, M. P. (2010). Temporal patterns in daily measurements of inorganic and organic speciated PM2.5 in Denver. Atmospheric Environment, 44, 987–998.

    Article  CAS  Google Scholar 

  • Ediagbonya, T. F., Tobin, A. E., & Legemah, M. (2013a). Indoor and outdoor air quality in hospital environment. Chemistry and Material Research, 3(10), 72–78.

    Google Scholar 

  • Ediagbonya, T. F., Tobin, A. E., Ukpebor, E. E., & Okiemien, F. E. (2014). Prevalence of respiratory symptoms among adults from exposure to particulate matter in rural area of Niger Delta region of Nigeria. Biological and Environmental Sciences Journal for Tropics, 11(4), 463–466.

    Google Scholar 

  • Ediagbonya, T. F., & Tobin, A. E. (2020). Toxicological assessment of Chlorine concentration in atmospheric particulate matter in Benin City, Nigeria. Air Quality, Atmosphere& Health, 13(4), 1–7.

    Google Scholar 

  • Ediagbonya, T. F., Tobin, A. E., & Ukpebor E. E. (2013b).The level of suspended of suspended particulate matter in wood industry(sawmills) in Benin City, Nigeria. Journal of Environmental Chemistry & Ecotoxicology, 5, (1):1–6.

  • Esen, F., Tasdemir, Y. C., & Vardar, N. (2008). Atmospheric concentrations of PAHs, their possible sources and gas-to-particle partitioning at a residential site of Bursa. Turkey. Atmospheric Research., 88, 243–255.

    Article  CAS  Google Scholar 

  • Fang, G. C., Chang, K. F., Lu, C., & Bai, H. (2004). Estimation of PAHs dry deposition and BaP toxic equivalency factors (TEFs) study at urban, industry park and rural sampling sites in central Taiwan. Taichung. Chemosphere, 44(787), 796.

    Google Scholar 

  • Galarneau, E. (2008). Source specificity and atmospheric processing of airborne PAHs: Implications for source apportionment. Atmospheric. Environment., 42, 8139–8149. https://doi.org/10.1016/j.atmosenv.2008.07.025

    Article  CAS  Google Scholar 

  • Gasparotto, J., Chaves, P. R., da BoitMartinello, K., da Rosa-Siva, H. T., Bortolin, R., Silva, L. F., Rabelo, T., Da Silva, J., Da Silva, F., Nordin, A., Soares, K., Borges, M., Gelain, D., Leon-Mejía, ´ G., Machado, M. N., Okuro, R. T., Silva, L. F., Telles, C., Dias, J., Niekraszewicz, L., Da Silva, J., Henriques, J. A. P., & Zin, W. A. (2018). Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues. Science.of the Total Environment, 625, 589–599.

  • Guo, Y., Wu, K., Huo, X., & Xu, X. (2011). Sources, distribution, and toxicity of polycyclic aromatic hydrocarbons. Journal. of Environment. Health, 73, 22–25.

    CAS  Google Scholar 

  • Haddaoui, I., Mahjoub, O., Mahjoub, B., Boujelben, A., & Di Bella, G. (2016). Occurrence and distribution of PAHs, PCBs, and chlorinated pesticides in Tunisian soil irrigated with treated wastewater. Chemosphere, 146, 195–205.

    Article  CAS  Google Scholar 

  • Han, B., Ding, X., Bai, Z., Kong, S., & Guo, G. (2011). Source analysis of particulate matter associated polycyclicaromatic hydrocarbons (PAHs) in an industrial city in northeastern China. Journal of Environmental Monitoring., 13, 2597–2604.

    Article  CAS  Google Scholar 

  • Harrison, R. M., Smith, D. J. T., & Luhana, L. (1996). Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham. UK Environ. Sci. Technol., 30, 825–832.

    Article  CAS  Google Scholar 

  • Hassan, S., & Khoder, M. (2012). Gas–particle concentration, distribution, and health risk assessment of polycyclic aromatic hydrocarbons at a traffic area of Giza. Egypt. Environmental Monitoring & AssessmenT., 184, 3593–3612.

    Article  CAS  Google Scholar 

  • Islam, N., Rabha, S., Silva, L. F. O., & Saikia, B. K. (2019). Air quality and PM10-associated poly-aromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches. Environmental Geochemistry and Health, 41, (5):2039–2053.

  • Kavouras, I. G., Koutrakis, P., Tsapakis, M., Lagoudaki, E., Stephanou, E. G., Von Baer, D., & Oyola, P. (2001). Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environmental Science & TechnologY., 35, 2288–2294.

    Article  CAS  Google Scholar 

  • Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions Atmospheric. Environment, 29, 533–542.

    CAS  Google Scholar 

  • Kong, S. F., Shi, J. W., Lu, B., Qiu, W. G., Zhang, B. S., Peng, Y., & Bai, Z. P. (2011). Characterization of PAHs within PM10 fraction for ashes from coke production, ironsmelt, heating station and power plant stacks in Liaoning Province, China. Atmospheric Environment, 45, 3777–3785.

  • Krugly, E., Martuzevicius, D., Sidaraviciute, R., Ciuzas, D., Prasauskas, T., Kauneliene, V., Stasiulaitiene, I., & Kliucininkas, L. (2014). Characterization of Particulate and Vapor Phase Polycyclic Aromatic Hydrocarbons in Indoor and Outdoor Air of Primary School Atmospheric Environment., 82, 298–306.

    CAS  Google Scholar 

  • Lee, W. -M. G., & Tsay, L. Y. (1994). The partitioning model of polycyclic aromatic hydrocarbon between gaseous and particulate (PM10A) phases in urban atmosphere with high humidity. Science of the Total Environment, 145, 163–171.

    Article  CAS  Google Scholar 

  • Leon-Mejía, ´ G., Machado, M. N., Okuro, R. T., Silva, L. F., Telles, C., Dias, J., Niekraszewicz, L., Da Silva, J., Henriques, J. A. P., & Zin, W. A.,. (2018). Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues. Science of the Total Environment., 625, 589–599.

    Article  CAS  Google Scholar 

  • Li, J., Zhang, G., Li, X. D., Qi, S. H., Liu, G. Q., & Peng, X. Z. (2006). Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China. Science of the Total Environment, 355, 145–155.

    Article  CAS  Google Scholar 

  • Lian, J. -J., Ren, Y., Chen, J. -M., Wang, T., & Cheng, T. -T. (2009). Distribution and source of alkyl polycyclic aromatic hydrocarbons in dustfall in Shanghai, China: The effect on the coastal area. Journal of. Environmental Monitoring., 11, 187–192.

    Article  CAS  Google Scholar 

  • Lima, B. D., Teixeira, E. C., Hower, J. C., Civeira, M. S., Ramirez, O., Yang, C., Oliveira, M. L. S., & Silva, L. F. O. (2021). Metal-enriched nanoparticles and black carbon: A perspective from the Brazil railway system air pollution. Geoscience Frontiers, 12, 101129.

    Article  CAS  Google Scholar 

  • Lin, D., Tu, Y., & Zhu, L. (2005). Concentrations and health risk of polycyclic aromatic hydrocarbons in tea. Food and Chemical Toxicology, 43, 41–48.

    Article  CAS  Google Scholar 

  • Lohmann, R., Harner, T., Thomas, G. O., & Jones, K. C. (2000). A comparative study of the gas-particle partitioning of PCDD/Fs, PCBs, and PAHs. Environmental Science and Technology., 34, 4943–4951.

    Article  CAS  Google Scholar 

  • Ma, W., Li, Y., Qi, H., Sun, D., Liu, L., & Wang, D. (2010). Seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) to a northeastern urban city, China. Chemosphere, 79, 441–447.

    Article  CAS  Google Scholar 

  • Malcolm, H. M., & Dobson, S. (1994). The calculation of an Environmental Assessment Level (EAL) for atmospheric PAHs using relative potencies. Department of the Environment, London.

  • Morillas, H., García-Florentino, C., Marcaida, I., Silva, L. F. O., & Madariaga, J. M. (2018a). In-situ analytical study of bricks exposed to marine environment using hand-held X-ray fluorescence spectrometry and related laboratory techniques. Spectrochimica Acta - Part B Atomic Spectroscopy, 146, 28–35.

    Article  CAS  Google Scholar 

  • Morillas, H., Vazquez, P., Maguregui, M., Marcaida, I., & Silva, L. F. O. (2018b). Composition and porosity study of original and restoration materials included in a coastal historical construction. Construction and Building Materials, 178, 384–392.

    Article  Google Scholar 

  • Nam, J. J., Song, B. H., Eom, K. C., Lee, S. H., & Smith, A. (2003). Distribution of polycyclic aromatic hydrocarbons in agricultural soils in South Korea. Chemosphere, 50, 1281–1289.

    Article  CAS  Google Scholar 

  • Nisbet, I. C., & Lagoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicological Pharmacology, 16, 290–300.

    Article  CAS  Google Scholar 

  • Oliveira, M. L. S., Dario, C., Tutikian, B. F., Almeida, C. C. O., & Silva, L. F. O. (2019). Historic building materials from Alhambra: Nanoparticles and global climate change effects. Journal of Cleaner Production, 232, 751–758.

    Article  Google Scholar 

  • Oliveira, M. L. S., Flores, E. M. M., Dotto, G. L., Neckel, A., & Silva, L. F. O. (2021). Nanomineralogy of mortars and ceramics from the Forum of Caesar and Nerva (Rome, Italy): The protagonist of black crusts produced on historic buildings. Journal of Cleaner Production, 278, 123982.

    Article  CAS  Google Scholar 

  • Oliveira, H. C., Garcia, R., de Almeida, V. V. S., Oliveira, A. C., Pires, A. J. V., Nascimento, C. S., Veloso, C. M., Silva, R. R., & Oliveira, U. L. C. (2016). Feeding behavior of lambs fed castor meal. Semina Ciencias Agrarias, 37, (3):1451–1460.

  • Oliveira, M. L. S., Tutikian, B. F., Milanes, C., & Silva, L. F. O. (2020). Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica. Journal of Cleaner Production, 248, 119250.

    Article  CAS  Google Scholar 

  • Park, S. S., Kim, Y. J., & Kang, C. H. (2002). Atmospheric polycyclic aromatic hydrocarbons in Seoul. Korea. Atmospheric Environment., 36, 2917–2924.

    Article  CAS  Google Scholar 

  • Ramírez, O., da Boit, K., Blanco, E., & Silva, L. F. O. (2020). Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban Climate, 33, 100655.

    Article  Google Scholar 

  • Ramírez, O., Sánchez de la Campa, A. M., Amato, F., Silva, L. F., & de la Rosa, J. D. (2019). Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Science of the Total Environment, 652, 434–446.

    Article  CAS  Google Scholar 

  • Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42, 2895–2921.

    Article  CAS  Google Scholar 

  • Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. T. (1998). Sources of fine organic aerosol. 9. Pine, oak and synthetic log combustion in residential fireplaces. Environmental. Science Technology, 32, 13–22.

    Article  CAS  Google Scholar 

  • Rogula-Kozłowska, W., Kozielska, B., & Klejnowski, K. (2013). Concentration, origin and health hazard from fine particle-bound PAH at three characteristic sites in Southern Poland. Bulletin of Environmental Contamination & Toxicology., 91, 349–355.

    Article  CAS  Google Scholar 

  • Rojas, J. C., Sánchez, N. E., Schneider, I., Oliveira, M. L. S., Teixeira, E. C., & Silva, L. F. O. (2019). Exposure to nanometric pollutants in primary schools: Environmental implications. Urban Climate, 27, 412–419.

    Article  Google Scholar 

  • Romagnoli, E., Barboni, T., Santoni, P. A., & Chiaramonti, N. (2014). Quantification of volatile organic compounds in smoke from prescribed burning and comparison with occupational exposure limits Natural. Hazards Earth System. Science., 14, 1049–1057.

    Article  Google Scholar 

  • Saikia, B. K., Saikia, J., Rabha, S., Silva, L. F., & Finkelman, R. (2018). Ambient nanoparticles/nanominerals and hazardous elements from coal combustion activity: Implications on energy challenges and health hazards. Geoscience Frontiers, 9, 863–875.

    Article  CAS  Google Scholar 

  • Schneider, I. L., Teixeira, E. C., Dotto, G. L., Pinto, D., Yang, C., & Silva, L. F. O. (2021). Geochemical study of submicron particulate matter (PM1) in a metropolitan area. Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2020.12.011

    Article  Google Scholar 

  • Sehn, J., de Leão, F., Da Boit, K., Oliveira, M., Hidalgo, G., Sampaio, C., & Silva, L. F. (2016). Nanomineralogy in the real world: A perspective on nanoparticles in the environmental impacts of coal fire. Chemosphere, 147, 439–443.

    Article  CAS  Google Scholar 

  • Silva, L. F. O., Jasper, A., Andrade, M. L., Sampaio, C. H., Dai, S., Li, X., Li, T., Chen, W., Wang, X., Liu, H., Zhao, L., Hopps, S. G., Jewell, R. F., & Hower, J. C. (2012). Applied investigation on the interaction of hazardous elements binding on ultrafine and nanoparticles in Chinese anthracite-derived fly ash. Science of the Total Environment., 419, 250–264.

    Article  CAS  Google Scholar 

  • Silva, L. F. O., Oliveira, M. L. S., Sampaio, C. H., De Brum, I. A. S., & Hower, J. C. (2013). Vanadium and nickel speciation in pulverized coal and petroleum coke cocombustion. Energy & Fuels, 27, 1194–1203.

    Article  CAS  Google Scholar 

  • Silva, L. F. O., Pinto, D., Neckel, A., & Oliveira, M. L. S. (2020a). An analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces. Geoscience Frontiers, 11, 2053–2060.

    Article  Google Scholar 

  • Silva, L. F. O., Pinto, D., Neckel, A., Dotto, G. L., & Oliveira, M. L. S. (2020b). The impact of air pollution on the rate of degradation of the fortress of Florianópolis Island. Brazil. Chemosphere, 251, 126838.

    Article  CAS  Google Scholar 

  • Silva, L. F. O., Pinto, D., Neckel, A., Oliveira, M. L. S., Sampaio, C. H. (2020c). Atmospheric nanocompounds on Lanzarote Island: vehicular exhaust and igneous geologic formation interactions. Chemosphere, 254, 126822.

  • Silva, L. F. O., Schneider, I. L., Artaxo, P., Núñez-Blanco, Y., Pinto, D., Flores, E. M. M., Gómez-Plata, L., Ramírez, O., Dotto, G. L. (2021). Particulate matter geochemistry of a highly industrialized region in the Caribbean: basis for future toxicological studies. Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2020.11.012

  • Simcik, M. F., Eisenreich, S. J., & Lioy, P. J. (1999). Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmospheric Environment., 33, 5071–5079.

    Article  CAS  Google Scholar 

  • Simcik, M. F., Franz, T. P., Zhang, H., & Eisenreich, S. J. (1998). Gas-particle partitioning of PCBs and PAHs in the Chicago urban and adjacent coastal atmosphere: States of equilibrium. Environmental Science and Technology, 32, 251–257.

    Article  CAS  Google Scholar 

  • Teixeira, E. C., Agudelo-Castañeda, D. M., Fachel, J. M. G., Leal, K. A., Garcia, K. D. O., & Wiegand, F. (2012). Source identification and seasonal variation of polycyclic aromatic hydrocarbons associated with atmospheric fine and coarse particles in the Metropolitan Area of Porto Alegre, RS. Brazil. Atmospheric Research., 118, 390–403.

    Article  CAS  Google Scholar 

  • Teixeira, E. C., Garcia, K. O., Meincke, L., & Leal, K. A. (2011). Study of nitro-polycyclic aromatic hydrocarbons in fine and coarse atmospheric particles. Atmospheric. Research., 101, 631–639.

    Article  CAS  Google Scholar 

  • The Tobacco Atlas. (2018). Available from: https://tobaccoatlas.org/country/nigeria/. Accessed 21 Sep 2020.

  • Trejos, E. M., Silva, L. F. O., Hower, J. C., Flores, E. M. M., Gonzalez, C. M., Pachon, J. E., & Aristizabal, B. H. (2021). Volcanic emissions and atmospheric pollution: A study of nanoparticles. Geoscience Frontiers, 12, 746–755.

    Article  CAS  Google Scholar 

  • USEPA (US Environmental Protection Agency). (1989). Risk assessment guidance for superfund volume I human health evaluation manual (Part A). Washington, DC:US Environmental Protection Agency.

  • Vasilakos, C., Levi, N., Maggos, T., Hatzianestis, J., Michopoulos, J., & Helmis, C. (2007). Gas-particle concentration and characterization of sources of PAHs in the atmosphere of a suburban area in Athens. Greece. Journal Hazardous Materials., 140, 45–51.

    Article  CAS  Google Scholar 

  • Villalobos-Pietrini, R., Hernández-Mena, L., Amador-Muñoz, O., MuniveColín, Z., Bravo-Cabrera, J. L., Gómez-Arroyo, S., Frías-Villegas, A., Waliszewski, S., Ramírez-Pulido, J., & Ortiz-Muñiz, R. (2007). Biodirected mutagenic chemical assay of PM10 extractable organic matter in Southwest Mexico City. Mutation Research, 634(1–2), 192–204.

    Article  CAS  Google Scholar 

  • Wang, X., Song, G., Zhai, Z., Wu, Y., Yin, H., & Yu, L. (2021). Effects of vehicle load on emissions of heavy-duty diesel trucks: a study based on real-world. Data International Journal of Environment Research and Public Health, 18, 3877. https://doi.org/10.3390/ijerph18083877

  • Wei, H., Guangbin, L., Yong, T., & Qin, Z. (2015). Emission of polycyclic aromatic hydrocarbons from different types of motor vehicles’ exhaust. Environmental Earth Sciences, 74, 5557–5564.

    Article  CAS  Google Scholar 

  • WHO. (2014). Ambient (outdoor) air quality and health. Fact sheet N 313. Updated March 2014. https://www.who.int/mediacentre/factsheets/fs313/en/. Accessed 6 July 2018.

  • WHO. (1998). World Health Organization, pp. 123–152.

  • WHO. (2015). Global Report on Trends in Tobacco Smoking 2000–2025. World Health Organization, Geneva. Available on Accessed 24 Sep 2020. https://www.who.int/tobacco/publications/surveillance/reportontrendstobaccosmoking/en/

  • Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry., 33, 489–515.

    Article  CAS  Google Scholar 

  • Zhang, S., Wang, K., Shen, Y., Zhang, W., Hu, L., Yue, D., & Wang, X. (2007). Polycyclic aromatic hydrocarbons in dustfall in the southeastern suburb of Beijing. China. Journal of Agro-Environment Science., 26, 1568–1574.

    CAS  Google Scholar 

  • Zhang, Z. H., & Balasubramanian, R. (2016). Investigation of particulate emission characteristics of a diesel engine fueled with higher alcohols/biodiesel blends. Applied Energy, 163, 71–80.

    Article  CAS  Google Scholar 

  • Zhu, L., Chen, B., Wang, J., & Shen, H. (2004). Pollution survey of polycyclic aromatic hydrocarbons in surface water of Hangzhou. China Chemosphere, 56, 1085–1095.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely want to thank the management of Olusegun Agagu University of Science and Technology for their contribution during research.

Funding

Partially funded by the institution.

Author information

Authors and Affiliations

Authors

Contributions

Dr EDIAGBONYA Thompson Farady: Designed the project and discussed part of the results. Dr. Okungbowa Enosakhare Godwin: He did some part of the discussion and the statistical analysis. Dr. Joseph Uche did the statistical work and some of the literature. Mr. Oyinlusi Olalekan Charles: Collected the samples and did part of the analysis.

Corresponding author

Correspondence to Thompson Faraday Ediagbonya.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to participate

We were given consent.

Consent to publish

We give our consent to publish the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ediagbonya, T.F., Oyinlusi, O.C., Okungbowa, E.G. et al. Environmental and human health risk assessments of polycyclic aromatic hydrocarbons in particulate matter in Nigeria. Environ Monit Assess 194, 569 (2022). https://doi.org/10.1007/s10661-022-10260-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10260-z

Keywords

Navigation