Skip to main content

Advertisement

Log in

Surface water and groundwater interaction in the Kosi River alluvial fan of the Himalayan Foreland

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

We report the isotopic composition of the surface water and groundwater of the Kosi River fan on the Himalayan Foreland, India. We have collected 65 water samples from surface water (Kosi River (n = 2), streams (n = 9), waterlogging (n = 29), and canal (n = 4)), and groundwater (n = 21) for δ18O and δ2H analysis during December 2019. We obtained groundwater level data measured at the observation wells from the Central Groundwater Board, India, for 1996 and 2017. The groundwater level varies from 1.0 to 8.1 m below ground level (bgl) and from 0.5 to 9.0 m bgl during 1996 and 2017, respectively. We have used water table fluctuation approach to estimate the recharge rate. The recharge rate in the Kosi Fan varies from 0.7 to 21.4 mm/year from 1996 to 2017. Further, we have used δ18O and δ2H values of water samples to identify the source and the interaction between surface water and groundwater. The δ18O value of groundwater shows a wide variation (from −9.3‰ to −5.6‰) compared to the surface water, i.e., streams (−7.8‰ to −6.4‰) and canals (−6.9‰ to −6.0‰), suggesting mixing in groundwater during recharge processes. Furthermore, we have used a two-component mixing model to assess the fraction contribution from streams and precipitation to groundwater. The estimated fraction contribution from stream water to groundwater ranges from 45 to 83%. We also suggest higher recharge is limited up to the depth of 6 m bgl. We suggest precipitation and surface water actively recharge groundwater. We conclude that marked spatial variation in the isotopic composition of groundwater is mainly due to the local recharge sources and interaction between surface water and groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The groundwater level data used in the present study is freely available in various reports published by the Central Groundwater Board, State Government Departments, and Ministry of Jal Sakti, India (http://cgwb.gov.in/).

References

  • Bhattacharya, S., Gupta, S., & Krishnamurthy, R. (1985). Oxygen and hydrogen isotopic ratios in groundwaters and river waters from India. Proceedings of the Indian Academy of Sciences - Earth and Planetary Sciences, 94(3), 283–295.

    CAS  Google Scholar 

  • Boral, S., & Sen, I. S. (2020). Tracing ‘Third Pole’ice meltwater contribution to the Himalayan rivers using oxygen and hydrogen isotopes. Geochemical Perspectives Letters, 13, 48–53.

    Article  Google Scholar 

  • Brenninkmeijer, C. A. M., & Morrison, P. D. (1987). An automated system for isotopic equilibration of CO2 and H2O for 18O analysis of water. Chemical Geology: Isotope Geoscience Section, 66(1–2), 21–26.

    CAS  Google Scholar 

  • CGWB. (2009). Methodology for assessment of development potential of deeper aquifers, Central Ground Water Board, Ministry of Water Resources, River Development & Ganga Rejuvenation, Government of India, Faridabad.

  • Chakraborty, T., Kar, R., Ghosh, P., & Basu, S. (2010). Kosi megafan: Historical records, geomorphology and the recent avulsion of the Kosi river. Quaternary International, 227(2), 143–160.

    Article  Google Scholar 

  • Clark, I. D., & Fritz, P. (1997). Environmental isotopes in hydrogeology, CRC press.

  • Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133(3465), 1702–1703.

    Article  CAS  Google Scholar 

  • Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus A 16(4).

  • Das, P., Mukherjee, A., Hussain, S. A., Jamal, M. S., Das, K., Shaw, A., Layek, M. K., & Sengupta, P. (2021). Stable isotope dynamics of groundwater interactions with Ganges River. Hydrological Processes, 35(1), e14002.

    Article  Google Scholar 

  • Deshpande, R. D., & Gupta, S.K. (2012). September. Oxygen and hydrogen isotopes in hydrological cycle: new data from IWIN national programme. In Proc Indian Natl Sci Acad, 78, 321–331.

  • Dincer, T., Payne, B., Florkowski, T., Martinec, J., & Tongiorgi, E. (1970). Snowmelt runoff from measurements of tritium and oxygen-18. Water Resources Research, 6(1), 110–124.

    Article  Google Scholar 

  • Dutton, A., Wilkinson, B. H., Welker, J. M., Bowen, G. J., & Lohmann, K. C. (2005). Spatial distribution and seasonal variation in 18O/16O of modern precipitation and river water across the conterminous USA. Hydrological Processes: An International Journal, 19(20), 4121–4146.

    Article  CAS  Google Scholar 

  • Epstein, S., & Mayeda, T. (1953). Variation of O18 content of waters from natural sources. Geochimica Et Cosmochimica Acta, 4(5), 213–224.

    Article  CAS  Google Scholar 

  • Fontes, J. C. (1980). Handbook of environmental isotope geochemistry.

  • Gat, J. R. (1996). Oxygen and Hydrogen Isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences, 24(1), 225–262.

    Article  CAS  Google Scholar 

  • Gat, J. R. (1983). Palaeoclimates and palaeowaters: A collection of environmental isotope studies: Proceedings of an Advisory Group Meeting on the Variations of the Isotopic Composition of Precipitation and of Groundwater During the Quaternary as a Consequence of Climatic Changes, IAEA.

  • Gaurav, K., M ́etivier, F., Devauchelle, O., Sinha, R., Chauvet, H., Houssais, M., & Bouquerel, H. (2015). Morphology of the Kosi megafan channels. Earth Surface Dynamics, 3(3), 321–331.

  • Gremillion, P., Gonyeau, A., & Wanielista, M. (2000). Application of alternative hydrograph separation models to detect changes in flow paths in a watershed undergoing urban development. Hydrological Processes, 14(8), 1485–1501.

    Article  Google Scholar 

  • Healy, R. W., & Cook, P. G. (2002). Using groundwater levels to estimate recharge. Hydrogeology Journal, 10(1), 91–109.

    Article  Google Scholar 

  • Joshi, S. K., Rai, S. P., Sinha, R., Gupta, S., Densmore, A. L., Rawat, Y. S., & Shekhar, S. (2018). Tracing groundwater recharge sources in the northwestern Indian alluvial aquifer using water isotopes (δ18O, δ2H, and 3H). Journal of Hydrology, 559, 835–847.

    Article  CAS  Google Scholar 

  • Joshi, S. K., Rai, S. P., & Sinha, R. (2020a). Understanding groundwater recharge processes in Sutlej-Yamuna plain in northwest India using isotopic approach (p. 507). Geological Society.

    Google Scholar 

  • Joshi, S. K., Swarnkar, S., & Shukla, S. (2020b). Variability in snow/ice melt, surface runoff and groundwater to Sutlej river runoff in the western Himalayan region. In Geological Society of America Abstracts with Programs 52(6).

  • Joshi, S. K., Khobragade, S. D., & Kumar, S. (2020c). Spatio-temporal variability in glacier melt contribution in Bhagirathi River discharge in the headwater region of Himalaya, in Proceedings of the 5th International Electronic Conference on Water Sciences, 16–30 November 2020c, MDPI: Basel, Switzerland. https://doi.org/10.3390/ECWS-5-08004

  • Joshi, S. K., Tiwari, A., Kumar, S., Saxena, R., Khobragade, S. D., & Tripathi, S. K. (2021a). Groundwater recharge quantification using multiproxy approaches in the agrarian region of Bundelkhand, central India. Groundwater for Sustainable Development, 13, 100564.

    Article  Google Scholar 

  • Joshi, S. K., Gupta, S., Sinha, R., Densmore, A. L., Rai, S. P., Shekhar, S., et al. (2021b). Strongly heterogeneous patterns of groundwater depletion in northwestern India. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2021.126492

    Article  Google Scholar 

  • Joshi, S. K., & Gautam, S. (2021). Understanding spatio-temporal variability of groundwater level changes in India using hydrogeological and GIS techniques. In Bow Ties in Process Safety and Environmental Management (pp. 219–230). CRC Press.

  • Kalbus, E., Reinstorf, F., & Schirmer, M. (2006). Measuring methods for groundwater-surface water interactions: A review. Hydrology and Earth System Science, 10, 873–887. https://doi.org/10.5194/hess-10-873-2006

    Article  CAS  Google Scholar 

  • Keesari, T., Sinha, U. K., Saha, D., Dwivedi, S. N., Shukla, R. R., Mohokar, H., & Roy, A. (2021). Isotope and hydrochemical systematics of groundwater from a multi-tiered aquifer in the central parts of Indo-Gangetic Plains, India-Implications for groundwater sustainability and security. Science of the Total Environment, 789, 147860.

    Article  CAS  Google Scholar 

  • Kumar Pradhan, R., Srivastava, P. K., Maurya, S., Kumar Singh, S., & Patel, D. P. (2020). Integrated framework for soil and water conservation in Kosi river basin. Geocarto International, 35(4), 391–410.

    Article  Google Scholar 

  • Kumar, B., Rai, S. P., Kumar, U. S., Verma, S. K., Garg, P., Kumar, S. V. V., Jaiswal, R., Purendra, B. K., Kumar, S. R., & Pande, N. G. (2010). Isotopic characteristics of Indian precipitation. Water Resources Research, 46, W12548.

    Article  Google Scholar 

  • Kumar, C. P. (1997). Estimation of natural groundwater recharge. ISH Journal of Hydraulic Engineering, 3(1), 61–74.

    Article  Google Scholar 

  • Kumar, S., Joshi, S. K., Pant, N., Singh, S., Chakraborty, B., Saini, R. K., Kumar, V., Singh, A., Ghosh, N. C., Mukherjee, A., & Rai, P. (2021). Hydrogeochemical evolution and groundwater recharge processes in arsenic enriched area in central Gangetic plain (p. 105044). Applied Geochemistry.

    Google Scholar 

  • Lapworth, D., Krishan, G., MacDonald, A., & Rao, M. (2017). Groundwater quality in the alluvial aquifer system of northwest India: New evidence of the extent of anthropogenic and geogenic contamination. Science of the Total Environment, 599, 1433–1444.

    Article  Google Scholar 

  • Lapworth, D. J., Dochartaigh, B. Ó., Nair, T., O’Keeffe, J., Krishan, G., MacDonald, A. M., Khan, M., Kelkar, N., Choudhary, S., Krishnaswamy, J., & Jackson, C. R. (2021). Characterising groundwater-surface water connectivity in the lower Gandak catchment, a barrage regulated biodiversity hotspot in the mid-Gangetic basin. Journal of Hydrology, 594, 125923.

    Article  CAS  Google Scholar 

  • Laveti, N. V. S., Banerjee, A., Kartha, S. A., & Dutta, S. (2021). Anthropogenic influence on monthly groundwater utilization in an irrigation dominated Ganga River Sub-Basin. Journal of Hydrology, 593, 125800.

    Article  Google Scholar 

  • Maréchal, J. C., Dewandel, B., Ahmed, S., Galeazzi, L., & Zaidi, F. K. (2006). Combined estimation of specific yield and natural recharge in a semi-arid groundwater basin with irrigated agriculture. Journal of Hydrology, 329(1–2), 281–293.

    Article  Google Scholar 

  • Mayer, A., Sültenfuß, J., Travi, Y., Rebeix, R., Purtschert, R., Claude, C., La Salle, C. L. G., Miche, H., & Conchetto, E. (2014). A multi-tracer study of groundwater origin and transit-time in the aquifers of the Venice region (Italy). Applied Geochemistry, 50, 177–198.

    Article  CAS  Google Scholar 

  • Navada, S., Nair, A., Rao, S., Paliwall, B., & Doshi, C. (1993). Groundwater recharge studies in arid region of Jalore, Rajasthan using isotope techniques. Journal of Arid Environments, 24(2), 125–133.

    Article  Google Scholar 

  • Otte, I., Detsch, F., Gütlein, A., Scholl, M., Kiese, R., Appelhans, T., & Nauss, T. (2017). Seasonality of stable isotope composition of atmospheric water input at the southern slopes of Mt. Kilimanjaro, Tanzania. Hydrological Processes, 31(22), 3932–3947.

  • Ren, W., Yao, T., & Xie, S. (2018). Stable isotopic composition reveals the spatial and temporal dynamics of discharge in the large river of Yarlungzangbo in the Tibetan Plateau. Science of the Total Environment, 625, 373–381.

    Article  CAS  Google Scholar 

  • Samal, A. K., Mishra, P. K., & Biswas, A. (2020). Assessment of origin and distribution of fluoride contamination in groundwater using an isotopic signature from a part of the Indo-Gangetic Plain (IGP), India. HydroResearch, 3, 75–84.

    Article  Google Scholar 

  • Semwal, P., Khobragarde, S., Joshi, S. K., & Kumar, S. (2020). Variation in δ18O and δ2H values of rainfall, surface water, and groundwater in the Sukhna Lake basin in northwest India. Environmental Earth Sciences, 79(24), 1–14.

    Article  Google Scholar 

  • Simpson, H. J., & Herczeg, A. L. (1991). Stable isotopes as an indicator of evaporation in the River Murray. Australia. Water Resources Research, 27(8), 1925–1935.

    Article  Google Scholar 

  • Sinha, R., Bapalu, G. V., Singh, L. K., & Rath, B. (2008). Flood risk analysis in the Kosi river basin, north Bihar using multi-parametric approach of analytical hierarchy process (AHP). Journal of the Indian Society of Remote Sensing, 36(4), 335–349.

    Article  Google Scholar 

  • Sinha, R., Ahmad, J., Gaurav, K., & Morin, G. (2014). Shallow subsurface stratigraphy and alluvial architecture of the Kosi and Gandak megafans in the Himalayan foreland basin, India. Sedimentary Geology, 301, 133–149.

    Article  Google Scholar 

  • Sinha, R., Gupta, S., & Nepal, S. (2018). Groundwater dynamics in north Bihar plains. Current Science, 114(12), 2482.

    Article  Google Scholar 

  • Sinha, R., Gupta, A., Mishra, K., Tripathi, S., Nepal, S., Wahid, S. M., & Swarnkar, S. (2019). Basin-scale hydrology and sediment dynamics of the Kosi river in the Himalayan Foreland. Journal of Hydrology, 570, 156–166.

    Article  Google Scholar 

  • Sinha, U., & Navada, S. (2008). Application of isotope techniques in groundwater recharge studies in arid western Rajasthan, India: Some case studies. Geological Society, London, Special Publications, 288(1), 121–135.

    Article  Google Scholar 

  • Sklash, M., Farvolden, R., & Fritz, P. (1976). A conceptual model of watershed response to rainfall developed through the use of oxygen-18 as a natural tracer. Canadian Journal of Earth Sciences, 13(2), 271–283.

    Article  Google Scholar 

  • Swarnkar, S., Prakash, S., Joshi, S. K., & Sinha, R. (2021). Spatio-temporal rainfall trends in the Ganga River basin over the last century: Understanding feedback and hydrological impacts. Hydrological Sciences Journal, 66(14), 2074–2088.

    Article  Google Scholar 

  • Tiwari, A., Joshi, S. K., Tripathi, S. K., & Saxena, R. (2021). Spatial pattern of groundwater recharge in Jhansi district in the Bundelkhand region, central India. Environment, Development and Sustainability, pp.1–13.

  • Uhlenbrook, S., & Hoeg, S. (2003). Quantifying uncertainties in tracer-based hydrograph separations: A case study for two-, three-and five-component hydrograph separations in a mountainous catchment. Hydrological Processes, 17(2), 431–453.

    Article  Google Scholar 

  • Wells, N. A., & Dorr, J. A., Jr. (1987). Shifting of the Kosi river, northern India. Geology, 15(3), 204–207.

    Article  Google Scholar 

  • Winter, T. C., Harvey, J. W., Franke, O. L., & Alley, W. M. (1998). Groundwater and surface water, in: A single resource, edited by: Survey, U. G., US Government Printing Office, Denver, Colorado.

  • Wood, L. R., Neumann, K., Nicholson, K. N., Bird, B. W., Dowling, C. B., & Sharma, S. (2020). Melting Himalayan glaciers threaten domestic water resources in the Mount Everest Region. Nepal. Frontiers in Earth Science, 8, 128.

    Article  Google Scholar 

Download references

Funding

Kumar Gaurav would like to acknowledge the research grant from the Science and Engineering Research Board (SERB), Government of India, through grant no. SERB/EES/2018075. Zafar Beg Ph.D. is funded through the institutional fellowship of IISER Bhopal. Suneel Kumar Joshi and Sudhir Kumar are also thankful to the Director, National Institute of Hydrology, Roorkee, for institutional support. Suneel Kumar Joshi is also grateful to Mr. Prasad Babu, Geo Climate Risk Solution Pvt. Ltd. We acknowledge the Central Groundwater Board, India, for providing the groundwater level data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suneel Kumar Joshi or Kumar Gaurav.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beg, Z., Joshi, S.K., Singh, D. et al. Surface water and groundwater interaction in the Kosi River alluvial fan of the Himalayan Foreland. Environ Monit Assess 194, 556 (2022). https://doi.org/10.1007/s10661-022-10192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10192-8

Keywords

Navigation