Skip to main content

Advertisement

Log in

A soil quality physical–chemical approach 30 years after land-use change from forest to banana plantation

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Bananas are a worldwide cultivated crop and one of the main agricultural activities in Brazil. The banana orchards cultivated in the region of São Paulo State are under native areas of the Atlantic Forest biome. The Atlantic Forest has suffered agricultural and urban pressure for many years. Banana crops require soil management and superficial vegetation removal in the first cycles. We conducted a study aiming to understand the impact of long-standing banana cultivation in the Atlantic forest region. Soil samples in banana plantations (EBP) and forest remnants (FR) were collected from trenches with 0- to 100-cm layers. The soil bulk density in EBP until 30-cm depth was 12.76% higher than that in FR. Quantifications of macropores and micropores in FR reached values higher than those in EBP. The results showed that carbon stocks decreased from the top to the deeper layers. Thirty years after the conversion, the FR treatment accumulated 28.23% more carbon than EBP. Considering our results, it was evident that changes in physical and chemical properties reflected the negative impacts of the banana plantations, cropped through conventional management, when converted from forest even in regard to a remnant one. These findings, showed for the first time, lead us to understand the soil management of banana plantations, following conventional agriculture systems, as a potential carbon stock reducer and a factor resulting in the loss of soil quality in the region. Additionally, our data can be used by environmentalists and government policymakers to promote environmental sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References s

  • ABC Plan. (2022). (Online access). Plano ABC - Agricultura de Baixa Emissão de Carbono. Available at https://www.gov.br/agricultura/pt-br/assuntos/sustentabilidade/plano-abc/plano-abc-agricultura-de-baixa-emissao-de-carbono. Accessed 24 April 2022.

  • Aguiar, S., de Santos, I., & S, Arêdes N, Silva S,. (2016). Biome-networks: Information and communication for sociopolitical action in eco-regions. Ambiente & Sociedade, 19, 231–248. https://doi.org/10.1590/1809-4422ASOC20140004V1932016

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorol Zeitschrift, 6, 711–728. https://doi.org/10.1127/0941-2948/2013/0507

  • Arruda, D. M., Fernandes-Filho, E. I., Solar, R. R. C., & Schaefer, C. E. G. R. (2017). Combining climatic and soil properties better predicts covers of Brazilian biomes. The Science of Nature, 104https://doi.org/10.1007/s00114-017-1456-6

  • Baptistella, C. S. L., José Coelho, P., & Nabil Ghobril, C. (2019). A bananicultura no estado de São Paulo: 2014 a 2018. Análises e Indicadores do Agronegócio, 14http://www.iea.sp.gov.br/out/LerTexto.php?codTexto Accessed 25 April 2022.

  • Batlle-bayer, L., Batjes, N. H., & Bindraban, P. S. (2010). Agriculture, ecosystems and environment changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: A review. Agriculture, Ecosystems & Environment, 137, 47–58. https://doi.org/10.1016/j.agee.2010.02.003

  • Bayer, C., Mielniczuk, J., Amadoc, T., et al. (2000). Organic matter storage in a sandy clay loam Acrisol affected by tillage and cropping systems in southern Brazil. Soil and Tillage Research, 54, 101–109.

    Article  Google Scholar 

  • Borges, A. L., & Souza, L. D. S. (2009). Atributos físicos e químicos de solos cultivados com bananeira, sob irrigação, no Projeto Formoso, Bom Jesus da Lapa, Bahia. Cruz das Almas, BA.

  • Borges, A. L., Souza, L. D. S., Melo, F. C. M. (2018). Índice de qualidade de solos cultivados com bananeira nas regiões oeste da Bahia e no norte de Minas Gerais. Cruz das Almas, BA.

  • Bronick, C. J., & Lal, R. (2005). Soil structure and management: A review. Geoderma, 124, 3–22. https://doi.org/10.1016/j.geoderma.2004.03.005

    Article  CAS  Google Scholar 

  • Bünemann, E. K., Bongiorno, G., Bai, Z., et al. (2018). Soil quality — A critical review. Soil Biology & Biochemistry, 120, 105–125. https://doi.org/10.1016/j.soilbio.2018.01.030

    Article  CAS  Google Scholar 

  • Calaboni, A., Tambosi, L. R., Igari, A. T., et al. (2018). The forest transition in São Paulo, Brazil: Historical patterns and potential drivers. Ecology and Society, 23https://doi.org/10.5751/ES-10270-230407

  • Cantidio, L. S., & Souza, A. F. (2019). Aridity, soil and biome stability influence plant ecoregions in the Atlantic Forest, a biodiversity hotspot in South America. Ecography (cop), 42, 1887–1898. https://doi.org/10.1111/ecog.04564

    Article  Google Scholar 

  • do Carmo, J. B., de Sousa Neto, E. R., Duarte-Neto, P. J., et al. (2012). Conversion of the coastal Atlantic forest to pasture: Consequences for the nitrogen cycle and soil greenhouse gas emissions. Agriculture, Ecosystems & Environment, 148, 37–43. https://doi.org/10.1016/j.agee.2011.11.010

  • Carvalho, J. L. N., Cerri, C. E. P., Feigl, B. J., Pıccolo, M. C., Godinho, V. P., Cerri, C. C. (2009). Carbon sequestration in agricultural soils in the Cerrado region of the Brazilian Amazon. Soil Tillage Res. 103, 342–349. https://doi.org/10.1016/j.still.2008.10.022

  • Cerri, C. E. P., Easter, M., Paustian, K., et al. (2007). Predicted soil organic carbon stocks and changes in the Brazilian Amazon between 2000 and 2030. Agriculture, Ecosystems & Environment, 122, 58–72. https://doi.org/10.1016/j.agee.2007.01.008

    Article  CAS  Google Scholar 

  • Chauvin, C., Dorel, M., Villenave, C., et al. (2015). Biochemical characteristics of cover crop litter affect the soil food web, organic matter decomposition, and regulation of plant-parasitic nematodes in a banana field soil. Applied Soil Ecology, 96, 131–140. https://doi.org/10.1016/j.apsoil.2015.07.013

    Article  Google Scholar 

  • Chopin, P., & Sierra, J. (2019). Reduced tillage and organic amendments can offset the negative impact of climate change on soil carbon: A regional modelling study in the Caribbean. Soil and Tillage Research, 192, 113–120. https://doi.org/10.1016/j.still.2019.05.009

  • CIIAGRO. (2021). Centro Integrado de Informações Agrometeorol. http://www.ciiagro.sp.gov.br/ciiagroonline/ Accessed 31 May 2021.

  • Collins, M. E., & Kuehl, R. J. (2001). Organic, matter accumulation and organic soils. In J. Richardson & M. Vepraskas (Eds.), Wetland soils: Genesis, hydrology, landscapes, and classification (pp. 137–161). Lewis Publishers.

    Google Scholar 

  • Coutinho, R. P., Urquiaga, S., Boddey, R. M., et al. (2010). Estoque de carbono e nitrogênio e emissão de N2O em diferentes usos do solo na Mata Atlântica. Pesquisa Agropecuária Brasileira, 45, 195–203. https://doi.org/10.1590/s0100-204x2010000200011

  • Craul, P. J. (1999). Urban soils: Applications and practices. John Wiley & Sons.

    Google Scholar 

  • Danarto, S. A., & Hapsari, L. (2015). Biomass and carbon stock estimation inventory of Indonesian bananas (Musa spp.) and its potential role for land rehabilitation. Biotropia (Bogor), 22, 102–108. https://doi.org/10.11598/btb.2015.22.2.376

  • de Lucena, C. C., Rocha, H. S., de Albuquerque, A. F. A., Amorim E. P., & Borges A. L. (2013). Caracterização dos Principais Polos de Produçao de Banana no Brasil. In XX Reunião Internacional da Associação para a Cooperação em Pesquisa e Desenvolvimento Integral das Musáceas (Bananas e Plátanos) (p. 239).

  • De Moraes, J. F. L., Volkoff, B., Cerri, C. C., & Bemoux, M. (1996). Soil properties under Amazon forest and changes due to pasture installation in Rondônia, Brazil. Geoderma, 70, 63–81.

    Article  CAS  Google Scholar 

  • Dieckow, J., Bayer, C., Conceição, P. C., et al. (2009). Land use, tillage, texture and organic matter stock and composition in tropical and subtropical Brazilian soils. European Journal of Soil Science, 60, 240–249. https://doi.org/10.1111/j.1365-2389.2008.01101.x

    Article  CAS  Google Scholar 

  • EMBRAPA. (2020). Produção brasileira de banana em 2019 - Mandioca e Fruticultura. Available in http://www.cnpmf.embrapa.br/Base_de_Dados/index_pdf/dados/brasil/banana/b1_banana.pdf. Accessed 24 April 2022.

  • EMBRAPA. (1997). Manual de Métodos de Análise de Solo (2nd ed.). EMBRAPA.

    Google Scholar 

  • Eze, S., Palmer, S. M., & Chapman, P. J. (2018). Soil organic carbon stock and fractional distribution in upland grasslands. Geoderma, 314, 175–183. https://doi.org/10.1016/j.geoderma.2017.11.017

    Article  CAS  Google Scholar 

  • Faoro, H., Alves, A. C., Souza, E. M., et al. (2010). Influence of soil characteristics on the diversity of bacteria in the southern Brazilian Atlantic forest. Applied and Environment Microbiology, 76, 4744–4749. https://doi.org/10.1128/AEM.03025-09

    Article  CAS  Google Scholar 

  • Ferreira, L. D. C. (2004). Dimensões humanas da biodiversidade: Mudanças sociais e conflitos em torno de áreas protegidas no Vale do Ribeira, SP, Brasil. Ambiente & Sociedade, 7, 47–66. https://doi.org/10.1590/s1414-753x2004000100004

  • Ferreira, C. F., Amorim, S. de O. e S. E. P., Santos-Serejo, J. A. dos (2015). O agronegócio da banana, 1°. ed. Embrapa Mandioca e Fruticultura, Brasilia, DF.

  • Filippini-Alba, J. M., & de Souza Filho, C. R. (2010). GIS-based environmental risk assessment in the Ribeira Valley, São Paulo, Brazil. Environment and Earth Science, 59, 1139–1147. https://doi.org/10.1007/s12665-009-0104-7

    Article  CAS  Google Scholar 

  • Fraga, M. E., Braz, D. M., Rocha, J. F., et al. (2012). Interação microrganismo, solo e flora como condutores da diversidade na mata atlântica. Acta Bot Brasilica, 26, 857–865. https://doi.org/10.1590/S0102-33062012000400015

    Article  Google Scholar 

  • FAOSTAT. (2016). Food and agriculture organization of the United Nations, Statistics Division. http://www.fao.org/faostat/en/#data/QV/visualize. Accessed 05 Feb 2022.

  • de Freitas, L., de Oliveira, I. A., Casagrande, J. C., & Campos, M. C. C. (2018). Estoque de carbono de latossolos em sistemas de manejo natural e alterado. Ciência Florest, 28, 228–239.

    Article  Google Scholar 

  • Godoy, L. J., França, F., Soares, E. V., et al. (2019). Controlled-release fertilizer in the first banana crop cycle. Revista de Ciências Agrárias, 42, 908–914. https://doi.org/10.19084/rca.17724

  • Graham, M. H., & Haynes, R. J. (2006). Organic matter status and the size, activity and metabolic diversity of the soil microbial community in the row and inter-row of sugarcane under burning and trash retention. Soil Biology & Biochemistry, 38, 21–31. https://doi.org/10.1016/j.soilbio.2005.04.011

    Article  CAS  Google Scholar 

  • Guimarães, D. V., Gonzaga, M. I. S., Melo Neto, J. D. O. (2014). Management of soil organic matter and carbon storage in tropical fruit crops. Revista Brasileira de Engenharia Agrícola e Ambiental, 18, 301–306. https://doi.org/10.1590/S1415-43662014000300009

  • Hassink, J. (1992). Effects of soil texture and structure on carbon and nitrogen mineralization in grassland soils. Biology and Fertility of Soils, 14, 126–134. https://doi.org/10.1007/BF00336262

    Article  CAS  Google Scholar 

  • Hergoualc’h, K., Blanchart, E., Skiba, U., et al. (2012). Changes in carbon stock and greenhouse gas balance in a coffee (Coffea arabica) monoculture versus an agroforestry system with Inga densiflora, in Costa Rica. Agriculture, Ecosystems & Environment, 148, 102–110. https://doi.org/10.1016/j.agee.2011.11.018

  • IPCC. (2003). Good practice guidance for land use, land-use change and forestry. Japan. Available in https://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_files/GPG_LULUCF_FULL.pdf. Accessed 24 Feb 2021.

  • Joly, C. A., Metzger, J. P., & Tabarelli, M. (2014). Experiences from the Brazilian Atlantic Forest: Ecological findings and conservation initiatives. New Phytologist, 204, 459–473. https://doi.org/10.1111/nph.12989

    Article  Google Scholar 

  • Kaschuk, G., Alberton, O., & Hungria, M. (2011). Quantifying effects of different agricultural land uses on soil microbial biomass and activity in Brazilian biomes: Inferences to improve soil quality. Plant and Soil, 338, 467–481. https://doi.org/10.1007/s11104-010-0559-z

    Article  CAS  Google Scholar 

  • Kiehl, E. J. (1979). Manual de edafologia. (1st ed.). Ceres, São Paulo, SP.

  • Kohmann, M. M., Sanchez, J. M. D., Silveira, M. L., et al. (2020). Intensification enhances litter carbon and nitrogen decomposition dynamics in subtropical grazinglands. Agrosystems, Geosciences & Environment, 3, 1–14. https://doi.org/10.1002/agg2.20075

  • Köppen, W., Geiger, R. (1928). Klimate der Erde. Gotha: Verlag Justus Perthes.

  • Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science (80- ), 304, 1623–1627. ST-Soil Carbon Sequestration Impacts. https://doi.org/10.1126/science.1097396

  • Lapola, D. M., Martinelli, L. A., Peres, C. A., et al. (2014). Pervasive transition of the Brazilian land-use system. Nature Clinical Practice Endocrinology & Metabolism, 4, 27–35. https://doi.org/10.1038/nclimate2056

    Article  Google Scholar 

  • Linn, D. M., & Doran, J. W. (1984). Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Science Society of America Journal, 48, 1267–1272. https://doi.org/10.2136/sssaj1984.03615995004800060013x

    Article  CAS  Google Scholar 

  • Maia, S. M. F., Ogle, S. M., Cerri, C. E. P., & Cerri, C. C. (2010). Soil organic carbon stock change due to land use activity along the agricultural frontier of the southwestern Amazon, Brazil, between 1970 and 2002. Global Change Biology, 16, 2775–2788. https://doi.org/10.1111/j.1365-2486.2009.02105.x

    Article  Google Scholar 

  • Malavolta, E., Vitti, G. C., & Oliveira, S. A. (1997). Avaliação do estado nutricional das plantas, princípios e aplicações., 2. ed. Potafos, Piracicaba.

  • Marcilio-Silva, V., & Marques, M. C. M. (2017). New paradigms for Atlantic Forest agriculture and conservation. Biodiversity, 18, 201–205. https://doi.org/10.1080/14888386.2017.1408493

    Article  Google Scholar 

  • Mascarenhas, A. R. P., Sccoti, M. S., Melo, R. R., et al. (2017). Atributos físicos e estoques de carbono do solo sob diferentes usos da terra em Rôndonia, Amazônia Sul-Ocidental. Pesquisa Florestal Brasileira, 37, 19–27. https://doi.org/10.4336/2017.pfb.37.89.1295

  • Miotti, A. A., Cristina, M., Costa, G., et al. (2013). Profundidade e Atributos Físicos do Solo e Seus Impactos Nas Raízes de Bananeiras. Revista Brasileira de Fruticultura, Jaboticabal, 35, 536–545.

    Article  Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., et al. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.

    Article  CAS  Google Scholar 

  • Neto, M. S., Junior, C. C., de Piccolo, M., C, et al. (2011). Greenhouse gas emission caused by different land-uses in Brazilian savannah. Revista Brasileira de Ciência do Solo, 35, 63–76. https://doi.org/10.1590/S0100-06832011000100006

  • Novaes, R. M. L., Pazianotto, R. A. A., Brandão, M., et al. (2017). Estimating 20-year land-use change and derived CO2 emissions associated with crops, pasture and forestry in Brazil and each of its 27 states. Global Change Biology, 23, 3716–3728. https://doi.org/10.1111/gcb.13708

    Article  Google Scholar 

  • Olivares, B. O., Araya-Alman, M., Acevedo-Opazo, C., et al. (2020a). Relationship between soil properties and banana productivity in the two main cultivation areas in Venezuela. Journal of Soil Science and Plant Nutrition, 20, 2512–2524. https://doi.org/10.1007/s42729-020-00317-8

  • Olivares, B. O., Calero, J., Rey, J. C., et al. (2022). Correlation of banana productivity levels and soil morphological properties using regularized optimal scaling regression. CATENA, 208https://doi.org/10.1016/j.catena.2021.105718

  • Olivares, B. O., Pitti, J., & Montenegro, E. (2020b). Socioeconomic characterization of bocas del toro in panama: An application of multivariate techniques. Revista Brasileira de Gestão e Desenvolvimento Regional, 16, 59–71.

  • Oliveira, P. P. A. (2014). Protocolo para quantificação dos estoques de carbono do solo da rede de pesquisa Pecus. In Embrapa Pecuária Sudeste. http://ainfo.cnptia.embrapa.br/digital/bitstream/item/103577/1/Documentos116.pdf Accessed 27 Feb 2021.

  • Oliveira, T. E., Freitas, D. S., Gianezini, M., et al. (2017). Agricultural land use change in the Brazilian Pampa Biome: The reduction of natural grasslands. Land Use Policy, 63, 394–400.

    Article  Google Scholar 

  • Paustian, K., Six, J., Elliott, E. T., & Hunt, H. W. (2000). Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry, 48, 147–163. http://www.jstor.org/stable/1469556 Accessed 23 Feb 2021.

  • Pitti, J., Olivares, B. O., Montenegro, E., et al. (2022). The role of agriculture in the Changuinola District: A case of applied economics in Panama. Tropical and Subtropical Agroecosystems, 25.

  • PRONASOLOS. (2022). (Online access). Programa Nacional de Solos do Brasil. Available at http://pronasolos.agenciazetta.ufla.br/. Accessed 25 April 2022.

  • Qin, X., Yang, C., Yang, L., et al. (2021). Response of gross mineralization and nitrification rates to banana cultivation sites converted from natural forest in subtropical China. Land, 10, 1–12. https://doi.org/10.3390/land10040376

    Article  Google Scholar 

  • Reicosky, D. C., Dugas, W. A., & Torbert, H. A. (1997). Tillage induced soil carbon dioxide loss from different cropping systems. Soil and Tillage Research, 41, 105–118. https://doi.org/10.1016/S0167-1987(96)01080-X

  • Resck, D. V. S., Vasconcellos, C. A., Vilela, L., & Macedo, M. C. M. (2019). Impact of conversion of Brazilian cerrados to cropland and pastureland on soil carbon pool and dynamics. Global Climate Change and Tropical Ecosystems, 169–196. https://doi.org/10.1201/9780203753187-9

  • Reynolds, W. D., Bowman, B. T., Drury, C. F., et al. (2002). Indicators of good soil physical quality: Density and storage parameters. Geoderma, 110, 131–146. https://doi.org/10.1016/S0016-7061(02)00228-8

    Article  CAS  Google Scholar 

  • Reynolds, W. D., Drury, C. F., Tan, C. S., et al. (2009). Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma, 152, 252–263. https://doi.org/10.1016/j.geoderma.2009.06.009

    Article  Google Scholar 

  • Reynolds, W. D., Drury, C. F., Yang, X. M., et al. (2007). Land management effects on the near-surface physical quality of a clay loam soil. Soil and Tillage Research, 96, 316–330. https://doi.org/10.1016/j.still.2007.07.003

  • Rezende, C. L., Scarano, F. R., Assad, E. D., et al. (2018). From hotspot to hopespot: An opportunity for the Brazilian Atlantic Forest. Perspectives in Ecology and Conservation, 16, 208–214. https://doi.org/10.1016/j.pecon.2018.10.002

  • Ribeiro, M. C., Metzger, J. P., Martensen, A. C., et al. (2009). The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142, 1141–1153. https://doi.org/10.1016/j.biocon.2009.02.021

    Article  Google Scholar 

  • Rodrigues, A. S. L., Ewers, R. M., Parry, L., et al. (2009). Boom-and-bust development patterns across the Amazon deforestation frontier. Science (80- ), 324, 1435–1437. https://doi.org/10.1126/science.1174002

  • Rondon, T., Hernandez, R. M., & Guzman, M. (2021). Soil organic carbon, physical fractions of the macro-organic matter, and soil stability relationship in lacustrine soils under banana crop. PLoS ONE, 16https://doi.org/10.1371/journal.pone.0254121

  • Rosa, M. R., Brancalion, P. H. S., Crouzeilles, R., et al. (2021). Hidden destruction of older forests threatens Brazil’s Atlantic Forest and challenges restoration programs. Science Advances, 7, 1–9. https://doi.org/10.1126/sciadv.abc4547

    Article  CAS  Google Scholar 

  • Sandoval, F. H. B., de Souza, Z. M., Lima, E. D. S., et al (2020) Structural quality and load-bearing capacity of an ultisol (Argissolo vermelho amarelo) in mechanized coffee areas with different deployment times. Revista Brasileira de Ciência do Solo, 44. https://doi.org/10.36783/18069657rbcs20190009

  • Schoenholtz, S. H., Miegroet, H. V., & Burger, J. A. (2000). A review of chemical and physical properties as indicators of forest soil quality: Challenges and opportunities. Forest Ecology and Management, 138, 335–356. https://doi.org/10.1016/S0378-1127(00)00423-0

  • Scolforo, H. F., Scolforo, J. R. S., Mello, C. R., et al. (2015). Spatial distribution of aboveground carbon stock of the arboreal vegetation in Brazilian biomes of savanna, Atlantic Forest and semi-arid woodland. PLoS ONE, 10, 1–20. https://doi.org/10.1371/journal.pone.0128781

    Article  CAS  Google Scholar 

  • Siqueira Neto, M., Galdos, M. V., Feigl, B. J., et al. (2016). Direct N2O emission factors for synthetic N-fertilizer and organic residues applied on sugarcane for bioethanol production in Central-Southern Brazil. GCB Bioenergy, 8, 269–280. https://doi.org/10.1111/gcbb.12251

    Article  Google Scholar 

  • Sisti, C. P. J., Dos Santos, H. P., Kohhann, R., et al. (2004). Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil and Tillage Research, 76, 39–58. https://doi.org/10.1016/j.still.2003.08.007

  • Six, J. E., & Paustian, K. (1999). Aggregate and SOM dynamics under conventional and no-tillage systems. Soil Science Society of America Journal.

  • Soares, M. D. R., de Souza, Z. M., Campos, M. C. C., et al. (2021). Land-use change and its impact on physical and mechanical properties of Archaeological Black Earth in the Amazon rainforest. CATENA, 202https://doi.org/10.1016/j.catena.2021.105266

  • Sobral, L. F., et al. (2015). Documento 206- Guia Prático para interpretação de resultados de análises de Solo. (1st ed.). EMBRAPA, Aracajú.

  • Souza, L. D. S., Borges, A. L., Silva, J. T. A. D. (1999). Características físicas e químias dos solos cultivados com bananeira, sob irrigação, na região norte de Minas Gerais., CNPMF. Bol. Embrapa Mandioca e Fruticultura, Cruz das Almas, BA.

  • Souza, L. D. S., Borges, A. L., Silva, J. T. A. D. (2015). Solo – manejo e conservação. In C. F. Ferreira, S. O. de Silva, E. P. Amorim, & J. A. Santos-Serejo (Eds.), O agronegócio da banana (pp. 277–330). Embrapa, Brasilia, DF.

  • Teixeira, J. M., Moura, J. M., Silva, U. C., et al. (2010). Estoque de nitrogênio total e relação C/N influenciados pelo sistema de manejo e uso do solo de Cerrado. XXVIII Congr Nac Milho e Sorgo, 1928–1933.

  • Teixeira, P. C., et al. (2017). Manual de métodos de análise de solo. EMBRAPA, Rio de Janaeiro.

  • Trindade, A. V., Borges, A. L., Teixeira, A. H., & Matos, A. P. (2004). O cultivo da bananeira. Cruz das Almas BA.

  • USDA. (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. (2nd ed.). Washington.

  • Veldkamp, E. (1994). Organic carbon turnover in three tropical soils under pasture after deforestation. Soil Science Society of America Journal, 58, 175–180. https://doi.org/10.2136/sssaj1994.03615995005800010025x

    Article  Google Scholar 

  • Wendling, B., et al. (2012). Densidade, agregação e porosidade do solo em áreas de conversão do cerrado em floresta de pinus, pastagem e plantio direto. Bioscience Journal, 28, 256–265.

    Google Scholar 

  • Xavier, F. A. D. S, Pereira, B. L. D. S., Souza, E. D. A., et al. (2020). Irrigation systems, fertigation and mulch: Effects on the physical, chemical and biological attributes of the soil with banana crop in northeastern Brazil. Communications in Soil Science and Plant Analysis, 51, 2592–2605. https://doi.org/10.1080/00103624.2020.1845359

  • Zake, J., Pietsch, S. A., Friedel, J. K., & Zechmeister-Boltenstern, S. (2015). Can agroforestry improve soil fertility and carbon storage in smallholder banana farming systems? Journal of Plant Nutrition and Soil Science, 178, 237–249. https://doi.org/10.1002/jpln.201400281

    Article  CAS  Google Scholar 

  • Zhang, J., Bei, S., Li, B., et al. (2019). Organic fertilizer, but not heavy liming, enhances banana biomass, increases soil organic carbon and modifies soil microbiota. Applied Soil Ecology, 136, 67–79. https://doi.org/10.1016/j.apsoil.2018.12.017

    Article  Google Scholar 

  • Zhong, S., Zeng, H., & Jin, Z. (2015). Soil microbiological and biochemical properties as affected by different long-term banana-based rotations in the tropics. Pedosphere, 25, 868–877. https://doi.org/10.1016/S1002-0160(15)30067-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Brazilian Agricultural Research Corporation (EMBRAPA Environment) for the technical support and the research project “Soil carbon stock as a management and conservation indicator in the Ribeira de Iguape River Basin” and to the farmer owner, Mr. Moacir Kiyoshi Fukuda (in memory), for the concession of the area with banana plantation and kindness to the team during the fieldwork period.

Funding

This work was supported by the National Council for Scientific and Technological Development (CNPq) (Grant numbers 48165/2018–4 and 380875/2021–7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reginaldo Barboza da Silva.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, R.B., Rosa, J.S., Packer, A.P. et al. A soil quality physical–chemical approach 30 years after land-use change from forest to banana plantation. Environ Monit Assess 194, 482 (2022). https://doi.org/10.1007/s10661-022-10167-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10167-9

Keywords

Navigation