Skip to main content
Log in

Geostatistical surfaces of climatological normals of mean air temperature in Minas Gerais

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Air temperature, a vital component for the terrestrial environment sustainability, can be used as an indicator and an important factor used in short- and long-term meteorological modeling at different scales. Temperature must be monitored on spatial and temporal scale with high precision. Terrain elevation can be used as the main influence factor depending on the measurement scale. In small and medium scales, factors related to local relief were modeled with geostatistics including external variables in temperature modeling. We aimed to evaluate the use of universal kriging in the modeling of air temperature in order to create temperature surfaces at each km\(^2\) in Minas Gerais State, Brazil using altitude, longitude and latitude covariates. The organized mean air temperature data of climatological normals of the National Institute of Meteorology were submitted to summary statistics, statistical regression and geostatistical analysis. Monthly and annual normals of the mean air temperature compensated for the period 1981 to 2010 were modeled using temperature as dependent variable and altitude, longitude and latitude as co-variables. Multiple regression modeling performed on temperature using altitude, longitude and latitude covariates determined significant parameters for monthly and annual mean air temperature global prediction. Relief and coordinates were used as external drift on variography and universal kriging with block for local temperature interpolation and prediction in order to generate 1-km moderate resolution surfaces of monthly and annual mean air temperature. Universal kriging determined smoothing effect of standard deviation of geospatial variation with prediction errors varying between 0.6 and \(1.5~^\circ\)C. Higher prediction error values were observed between June and August. Mean air temperature local prediction presented greater errors mainly in the lower altitude regions and in the colder months. In both monthly and annual temperature predictions, universal kriging with external drift enabled to circumvent the problem of performing spatial prediction from sparse punctual attribute data, conferring a temperature downscaling effect in Minas Gerais.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Adiguzel, F., Bozdogan Sert, E., Dinc, Y., Cetin, M., Gungor, S., Yuka, P., et al. (2022). Determining the relationships between climatic elements and thermal comfort and tourism activities using the tourism climate index for urban planning: a case study of Izmir Province. Theoretical and Applied Climatology, 147(3–4), 1105–1120. https://doi.org/10.1007/s00704-021-03874-9

    Article  Google Scholar 

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., & Moraes Gonçalves, J. L. (2013). Modeling monthly mean air temperature for Brazil. Theoretical and Applied Climatology, 113(3), 407–427. https://doi.org/10.1007/s00704-012-0796-6

    Article  Google Scholar 

  • Alves, M. C., Carvalho, L. G., Vianello, R. L., Sediyama, G. C., Oliveira, M. S., & de Sá Junior, A. (2013). Geostatistical improvements of evapotranspiration spatial information using satellite land surface and weather stations data. Theoretical and Applied Climatology, 113(1), 155–174. https://doi.org/10.1007/s00704-012-0772-1

    Article  Google Scholar 

  • Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, B., Ranipeta, A., Malczyk, J., & Jetz, W. (2018). A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Scientific Data, 5(1), 1–15. https://doi.org/10.1038/sdata.2018.40

    Article  Google Scholar 

  • Bathiany, S., Dakos, V., Scheffer, M., & Lenton, T. M. (2018). Climate models predict increasing temperature variability in poor countries. Science Advances, 4(5), 1–11. https://doi.org/10.1126/sciadv.aar5809

    Article  Google Scholar 

  • Benavides, R., Montes, F., Rubio, A., & Osoro, K. (2007). Geostatistical modelling of air temperature in a mountainous region of Northern Spain. Agricultural and Forest Meteorology, 146(3–4), 173–188. https://doi.org/10.1016/j.agrformet.2007.05.014

    Article  Google Scholar 

  • Bernardes, T., Moreira, M. A., Adami, M., & Rudorff, B. F. T. (2012). Physic-environmental diagnosis of coffee crop in the state of Minas Gerais, Brazil. Coffee Science, 7(2), 139–151.

    Google Scholar 

  • Böhner, J., & Bechtel, B. (2017). GIS in climatology and meteorology. Comprehensive Geographic Information Systems, 3, 196–235. https://doi.org/10.1016/B978-0-12-409548-9.09633-0

    Article  Google Scholar 

  • Bunn, C., Läderach, P., Ovalle Rivera, O., & Kirschke, D. (2015). A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Climatic Change, 129(1–2), 89–101. https://doi.org/10.1007/s10584-014-1306-x

    Article  Google Scholar 

  • Burrough, P. A., & McDonnell, R. (1998). Principles of Geographical Information Systems (p. 333). Oxford: Oxford University Press.

    Google Scholar 

  • Campbell, C. L., Madden, L. V., & others. (1990). Introduction to plant disease epidemiology. John Wiley & Sons.

  • Carvalho, L. G., Alves, M. C., Oliveira, M. S., Vianello, R. L., Sediyama, G. C., & Carvalho, L. M. T. (2010). Multivariate geostatistical application for climate characterization of Minas Gerais state, Brazil. Theoretical and Applied Climatology, 102(3), 417–428. https://doi.org/10.1007/s00704-010-0273-z

    Article  Google Scholar 

  • Cetin, I. Z., & Sevik, H. (2020). Investigation of the relationship between bioclimatic comfort and land use by using GIS and RS techniques in Trabzon. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-019-8029-4

    Article  Google Scholar 

  • Cetin, M. (2019). The effect of urban planning on urban formations determining bioclimatic comfort area’s effect using satellitia imagines on air quality: a case study of Bursa city. Air Quality, Atmosphere & Health, 12(10), 1237–1249. https://doi.org/10.1007/s11869-019-00742-4

    Article  CAS  Google Scholar 

  • Cetin, M. (2020). The changing of important factors in the landscape planning occur due to global climate change in temperature, rain and climate types: a case study of Mersin city. Turkish Journal of Agriculture - Food Science and Technology, 8(12), 2695–2701. https://doi.org/10.24925/turjaf.v8i12.2695-2701.3891

    Article  Google Scholar 

  • Cetin, M., Adiguzel, F., Gungor, S., Kaya, E., & Sancar, M. C. (2019). Evaluation of thermal climatic region areas in terms of building density in urban management and planning for Burdur, Turkey. Air Quality, Atmosphere & Health, 12(9), 1103–1112. https://doi.org/10.1007/s11869-019-00727-3

    Article  CAS  Google Scholar 

  • Chambers, J., & Hastie, T. (1992). Linear models. Chapter 4 of statistical models in s. Wadsworth & Brooks/Cole.

  • Chiles, J.-P., & Delfiner, P. (2009). Geostatistics: Modeling Spatial Uncertainty (1st ed., Vol. 497). New York: John Wiley & Sons, Inc.

  • Daly, C. (2006). Guidelines for assessing the suitability of spatial climate data sets. International Journal of Climatology, 26(6), 707–721. https://doi.org/10.1002/joc.1322

    Article  Google Scholar 

  • DaMatta, F. M., & Ramalho, J. D. C. (2006). Impacts of drought and temperature stress on coffee. Brazilian Journal of Plant Physiology, 18(1), 55–81.

    Article  CAS  Google Scholar 

  • Diniz, F. D. A., Ramos, A. M., & Rebello, E. R. G. (2018). Brazilian climate normals for 1981–2010. Pesquisa Agropecuária Brasileira, 53(2), 131–143. https://doi.org/10.1590/s0100-204x2018000200001

  • Dirksen, M., Knap, W. H., Steeneveld, G.-J., Holtslag, A. A. M., & Tank, A. M. G. K. (2020). Downscaling daily air-temperature measurements in the Netherlands. Theoretical and Applied Climatology, 142(1–2), 751–767. https://doi.org/10.1007/s00704-020-03313-1

    Article  Google Scholar 

  • Dodson, R., & Marks, D. (1997). Daily air temperature interpolated at high spatial resolution over a large mountainous region. Climate Research, 8(1), 1–20. https://doi.org/10.3354/cr008001

  • Friesland, H., & Schrödter, H. (1988). The analysis of weather factors in epidemiology. Experimental techniques in plant disease epidemiology (pp. 115–134). Berlin, Heidelberg: Springer-Verlag, Heidelberg.

    Chapter  Google Scholar 

  • Garreaud, R. (2000). Cold air incursions over subtropical South America: Mean structure and dynamics. Monthly Weather Review, 128(7), 2544–2559.

    Article  Google Scholar 

  • Golkar, F., Sabziparvar, A. A., Khanbilvardi, R., Nazemosadat, M. J., Zand- Parsa, S., & Rezaei, Y. (2018). Estimation of instantaneous air temperature using remote sensing data. International Journal of Remote Sensing, 39(1), 258–275. https://doi.org/10.1080/01431161.2017.1382743

    Article  Google Scholar 

  • Guedes, J. D., & Bocinsky, R. K. (2018). Climate change stimulated agricultural innovation and exchange across Asia. Science Advances, 4(10), 4491. https://doi.org/10.1126/sciadv.aar4491

  • Hengl, T., Heuvelink, G. B. M., & Rossiter, D. G. (2007). About regression-kriging: From equations to case studies. Computers & Geosciences, 33(10), 1301–1315. https://doi.org/10.1016/j.cageo.2007.05.001

    Article  Google Scholar 

  • Hengl, T., Heuvelink, G. B., & Stein, A. (2003). Comparison of kriging with external drift and regression kriging. In. ITC Enschede, Netherlands.

  • Hudson, G. (1993). Kriging temperature in Scotland using the external drift method. Geostatistics Troia ’92, 2, 577–588. https://doi.org/10.1007/978-94-011-1739-5_45

  • Hudson, G., & Wackernagel, H. (1994). Mapping temperature using kriging with external drift: Theory and an example from Scotland. International Journal of Climatology, 14(1), 77–91. https://doi.org/10.1002/joc.3370140107

    Article  Google Scholar 

  • IBGE. (2020). Resident population by units of the Federation. Estimates of resident population in Brazil and federation units with reference date July 1 (p. 119). Instituto Brasileiro de Geografia e Estatística.

  • Isaaks, E. H., & Srivastava, R. M. (1989). Applied geostatistics (Vol. 561). New York: Oxford University Press.

    Google Scholar 

  • Journel, A. G., & Huijbregts, C. J. (1991). Mining geostatistics (5th ed., p. 600). San Diego: Academic Press Limited.

    Google Scholar 

  • Kilibarda, M., Hengl, T., Heuvelink, G. B. M., Gräler, B., Pebesma, E., Perčec Tadić, M., & Bajat, B. (2014). Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. Journal of Geophysical Research: Atmospheres, 119(5), 2294–2313. https://doi.org/10.1002/2013JD020803

    Article  Google Scholar 

  • Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In IJCAI’95: Proceedings of the 14th international joint conference on artificial intelligence (Vol. 2, pp. 1137–1145). Montreal, Canada.

  • Meier, F., Fenner, D., Grassmann, T., Otto, M., & Scherer, D. (2017). Crowdsourcing air temperature from citizen weather stations for urban climate research. Urban Climate, 19, 170–191. https://doi.org/10.1016/j.uclim.2017.01.006

    Article  Google Scholar 

  • Monestiez, P., Allard, D., Sanchez, I. N., & Courault, D. (1999). Kriging with Categorical External Drift: Use of Thematic Maps in Spatial Prediction and Application to Local Climate Interpolation for Agriculture. In J. G.-H. et Al. (Ed.), GeoENV ii — geostatistics for environmental applications (pp. 163–174). Dordrecht: Springer Science+Business Media Dordrecht. https://doi.org/10.1007/978-94-015-9297-0_14

  • NASA. (2013). NASA Shuttle Radar Topography Mission Global 1 arc second [Data set]. https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003

  • Oyler, J. W., Ballantyne, A., Jencso, K., Sweet, M., & Running, S. W. (2015). Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature. International Journal of Climatology, 35(9), 2258–2279. https://doi.org/10.1002/joc.4127

    Article  Google Scholar 

  • Ozturk, D., & Kilic, F. (2016). Geostatistical approach for spatial interpolation of meteorological data. Anais da Academia Brasileira de Ciencias, 88(4), 2121–2136. https://doi.org/10.1590/0001-3765201620150103

    Article  Google Scholar 

  • Rodríguez-Lado, L., Sparovek, G., Vidal-Torrado, P., Dourado-Neto, D., & Macías-Vázquez, F. (2007). Modelling air temperature for the state of São Paulo, Brazil. Scientia Agricola, 64(5), 460–467. https://doi.org/10.1590/S0103-90162007000500002

    Article  Google Scholar 

  • Sá Júnior, A., Carvalho, L. G., Silva, F. F., & Alves, M. C. (2012). Application of the Köppen classification for climatic zoning in the state of Minas Gerais, Brazil. Theoretical and Applied Climatology, 108(1–2), 1–7. https://doi.org/10.1007/s00704-011-0507-8

    Article  Google Scholar 

  • Sediyama, G. C., Melo Junior, J., Santos, A., Ribeiro, A., Costa, M. H., Hamakawa, P. J., et al. (2001). Climatological zoning for arabic coffee (coffea arabica l.) on the state of minas gerais. Revista Brasileira de Agrometeorologia, 9(3), 501–509.

  • Sekulić, A., Kilibarda, M., Protić, D., Tadić, M. P., & Bajat, B. (2020). Spatio-temporal regression kriging model of mean daily temperature for Croatia. Theoretical and Applied Climatology, 140(1–2), 101–114. https://doi.org/10.1007/s00704-019-03077-3

    Article  Google Scholar 

  • Sert, E. B., Kaya, E., Adiguzel, F., Cetin, M., Gungor, S., Zeren Cetin, I., & Dinc, Y. (2021). Effect of the surface temperature of surface materials on thermal comfort: A case study of Iskenderun (Hatay, Turkey). Theoretical and Applied Climatology, 144(1–2), 103–113. https://doi.org/10.1007/s00704-021-03524-0

    Article  Google Scholar 

  • Stahl, K., Moore, R. D., Floyer, J. A., Asplin, M. G., & McKendry, I. G. (2006). Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density. Agricultural and Forest Meteorology, 139(3–4), 224–236. https://doi.org/10.1016/j.agrformet.2006.07.004

    Article  Google Scholar 

  • Sun, R., & Zhang, B. (2016). Topographic effects on spatial pattern of surface air temperature in complex mountain environment. Environmental Earth Sciences. https://doi.org/10.1007/s12665-016-5448-1

    Article  Google Scholar 

  • Szymanowski, M., Kryza, M., & Spallek, W. (2013). Regression-based air temperature spatial prediction models: An example from Poland. Meteorologische Zeitschrift, 22(5), 577–585. https://doi.org/10.1127/0941-2948/2013/0440

    Article  Google Scholar 

  • Varentsov, M., Esau, I., & Wolf, T. (2020). High-resolution temperature mapping by geostatistical kriging with external drift from large-eddy simulations. Monthly Weather Review, 148(3), 1029–1048. https://doi.org/10.1175/MWR-D-19-0196.1

    Article  Google Scholar 

  • Wackernagel, H. (2003). Geostatistical models and kriging. In IFAC Proceedings Volumes (Vol. 36, pp. 543–548). Rotterdam: IFAC System Identification. https://doi.org/10.1016/S1474-6670(17)34818-8

  • Wackernagel, H. (2013). Multivariate geostatistics: An introduction with applications (3rd ed.). Paris: Springer Science & Business Media.

    Google Scholar 

  • Wilkinson, G., & Rogers, C. (1973). Symbolic description of factorial models for analysis of variance. Journal of the Royal Statistical Society: Series C (Applied Statistics), 22(3), 392–399. https://doi.org/10.2307/2346786

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo de Carvalho Alves.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho Alves, M., Sanches, L. & de Carvalho, L.G. Geostatistical surfaces of climatological normals of mean air temperature in Minas Gerais. Environ Monit Assess 194, 513 (2022). https://doi.org/10.1007/s10661-022-10162-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10162-0

Keywords

Navigation