Skip to main content

Advertisement

Log in

Impact of monsoon teleconnections on regional rainfall and vegetation dynamics in Haryana, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Our study has investigated the impact of El Niño–Southern Oscillation (ENSO) on spatio-temporal dynamics of Indian summer monsoon rainfall (ISMR) as well as vegetation for a period of 1980 to 2019 at regional scale in Haryana, India. The gridded rainfall datasets of India Meteorological Department (IMD) were examined on monthly and seasonal scale using various statistical methods like mean climatology, coefficient of variation, slope of linear, Sen’s slope, Mann–Kendall Z statistic, and hierarchical cluster analysis. The influence of ENSO on spatial distribution of ISMR was observed, where we found increasing and decreasing rainfall patterns during La Niña and El Niño years, respectively. We attempted to establish a link between ISMR and various teleconnections using time series of the National Oceanic and Atmospheric Administration (NOAA) Physical Sciences Laboratory, and statistically significant and positive correlation was observed with the Southern Oscillation Index (SOI), whereas significantly negative correlations were observed with SST of Niño 3, Niño 3.4, and Niño 4 regions. The gridded datasets of the European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis V5 (ERA5) were used to evaluate the influence of ENSO on atmospheric dynamics using lower and upper tropospheric wind circulation (850 hPa and200 hpa), vertically integrated moisture transport (VIMT), and surface moisture flux (SMF). We have used satellite-based normalised difference vegetation index (NDVI) datasets of the Global Inventory Monitoring and Modeling System (GIMMS) to investigate the impact of ENSO on vegetation dynamics of Haryana and found that NDVI values were higher and lower in case of La Niña and El Niño years, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The daily gridded rainfall data for conducting this study is openly available at https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html.

References

  • Aditya, F., Gusmayanti, E., & Sudrajat, J. (2021). Rainfall trend analysis using Mann-Kendall and Sen’s slope estimator test in West Kalimantan. In IOP Conference Series: Earth and Environmental Science, 893(1), 012006. IOP Publishing.

  • Aggarwal, P. K., & Moudgil, A. (2015). Structural change and growth of agriculture in Haryana. IJAR, 1(13), 133–139.

    Google Scholar 

  • Angell, J. K. (1981). Comparison of variations in atmospheric quantities with sea surface temperature variations in the equatorial eastern Pacific. Monthly Weather Review, 109(2), 230–243.

    Article  Google Scholar 

  • Anurag, A., Kumar, A., Singh, D., Singh, R., Kumar, M., Singh, S. & Kumar, S. (2018). Changes in weather entities and extreme events in western Haryana, India. Journal of Agrometeorology, 20(Special Issue), 135–142.

  • Ashok, K., & Saji, N. H. (2007). On the impacts of ENSO and Indian Ocean dipole events on sub-regional Indian summer monsoon rainfall. Natural Hazards, 42(2), 273–285.

    Article  Google Scholar 

  • Ashok, K., Guan, Z., & Yamagata, T. (2001). Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophysical Research Letters, 28(23), 4499–4502.

    Article  Google Scholar 

  • Asoka, A., Gleeson, T., Wada, Y., & Mishra, V. (2017). Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nature Geoscience, 10(2), 109–117.

    Article  CAS  Google Scholar 

  • Ayantika, D. C., Krishnan, R., Singh, M., Swapna, P., Sandeep, N., Prajeesh, A. G., & Vellore, R. (2021). Understanding the combined effects of global warming and anthropogenic aerosol forcing on the South Asian monsoon. Climate Dynamics, 56(5), 1643–1662.

    Article  Google Scholar 

  • Barnston, A. G. (1997). Documentation of a highly ENSO-related SST region in the equatorial Pacific. Atmosphere-Ocean, 35, 367–383.

    Article  Google Scholar 

  • Bhalme, H. N., & Jadhav, S. K. (1984). The Southern Oscillation and its relation to the monsoon rainfall. Journal of Climatology, 4(5), 509–520.

    Article  Google Scholar 

  • Bhalme, H. N., Mooley, D. A., & Jadhav, S. K. (1983). Fluctuations in the drought/flood area over India and relationships with the Southern Oscillation. Monthly Weather Review, 111(1), 86–94.

    Article  Google Scholar 

  • Bhatla, R., Varma, P., Verma, S., & Ghosh, S. (2020). El Nino/La Nina impact on crop production over different agro-climatic zones of Indo-Gangetic Plain of India. Theoretical and Applied Climatology, 142(1), 151–163.

    Article  Google Scholar 

  • Biudes, M. S., Vourlitis, G. L., Velasque, M. C. S., Machado, N. G., de Morais Danelichen, V. H., Pavao, V. M., & de Souza Nogueira, J. (2021). Gross primary productivity of Brazilian Savanna (Cerrado) estimated by different remote sensing-based models. Agricultural and Forest Meteorology, 307, 108456.

    Article  Google Scholar 

  • Borowik, T., Pettorelli, N., Sönnichsen, L., & Jędrzejewska, B. (2013). Normalized difference vegetation index (NDVI) as a predictor of forage availability for ungulates in forest and field habitats. European Journal of Wildlife Research, 59(5), 675–682.

    Article  Google Scholar 

  • Cadet, D. L., & Greco, S. (1987). Water vapor transport over the Indian Ocean during the 1979 summer monsoon. Part I: Water vapor fluxes. Monthly weather review115(3), 653–663.

  • Cai, W., Borlace, S., Lengaigne, M., Van Rensch, P., Collins, M., Vecchi, G., & Jin, F. F. (2014). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4(2), 111–116.

    Article  Google Scholar 

  • Carlson, T. N., & Ripley, D. A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62(3), 241–252.

    Article  Google Scholar 

  • CCAP, Commission for Agricultural Costs and Prices. (2010). Report on price policy for Kharif crops of 2010–2011 season. Government of India, New Delhi.

  • Chakraborty, A., Nanjundiah, R. S., & Srinivasan, J. (2002). Role of Asian and African orography in Indian summer monsoon. Geophysical Research Letters, 29(20), 50–51.

    Article  Google Scholar 

  • Chauhan, A. S., Singh, S., Maurya, R. K. S., Kisi, O., Rani, A., & Danodia, A. (2022a). Spatio-temporal analysis of rainfall dynamics of 120 years (1901–2020) using innovative trend methodology: A case study of Haryana, India. Sustainability, 14(9), 4888.

    Article  Google Scholar 

  • Chauhan, A. S., Singh, S., Maurya, R. K. S., Rani, A., & Danodia, A. (2022b). Spatio-temporal trend analysis and future projections of precipitation at regional scale: A case study of Haryana, India. Journal of Water and Climate Change.

  • Chauhan, A. S., Singh, S., Maurya, R. K. S., Rani, A., & Danodia, A. (2022c). Spatio-temporal and trend analysis of rain days having different intensity from 1901–2020 at regional scale in Haryana (p. 100041). Results in Geophysical Sciences.

    Google Scholar 

  • Choubin, B., Solaimani, K., Habibnejad Roshan, M., & Malekian, A. (2017). Watershed classification by remote sensing indices: A fuzzy c-means clustering approach. Journal of Mountain Science, 14(10), 2053–2063.

    Article  Google Scholar 

  • De Vente, J., Poesen, J., Verstraeten, G., Govers, G., Vanmaercke, M., Van Rompaey, A., & Boix-Fayos, C. (2013). Predicting soil erosion and sediment yield at regional scales: Where do we stand? Earth-Science Reviews, 127, 16–29.

    Article  Google Scholar 

  • Department of Economic and Statistical Analysis, Government of Haryana. (2021). State statistical abstract of Haryana: 2019–20. Pp-413. https://esaharyana.gov.in/state-statistical-abstract-of-haryana/

  • Ding, Y., & Sikka, D. R. (2006). Synoptic systems and weather. In The Asian monsoon (pp. 131–201). Springer, Berlin, Heidelberg.

  • Douville, H., Raghavan, K., Renwick, J., Allan, R. P., Arias, P. A., Barlow, M., Cerezo-Mota, R., Cherchi,  A., Gan, T. Y., Gergis, J., Jiang, D., Khan, A., Pokam, MBA, Rosenfeld, D., Tierney J., & Zolina, O. (2021). Water cycle changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. In Press p-36

  • Duckstein, L., Fogel, M. M., & Thames, J. L. (1973). Elevation effects on rainfall: A stochastic model. Journal of Hydrology, 18(1), 21–35.

    Article  Google Scholar 

  • Engman, E. T., & Hershfield, D. M. (1969). Precipitation climatology of the Sleepers River watershed near Danville, Vermont. US Dep. Agric., Agric. Res. Serv., 41148, 22.

  • Everitt, B. S., & Dunn, G. (2001). Applied multivariate data analysis (Vol. 2). Arnold.

    Book  Google Scholar 

  • Fankhauser, J. C. (1988). Estimates of thunderstorm precipitation efficiency from field measurements in CCOPE. Monthly Weather Review, 116(3), 663–684.

    Article  Google Scholar 

  • Fasullo, J., & Webster, P. J. (1999). Warm pool SST variability in relation to the surface energy balance. Journal of Climate, 12(5), 1292–1305.

    Article  Google Scholar 

  • Fasullo, J., & Webster, P. J. (2003). A hydrological definition of Indian monsoon onset and withdrawal. Journal of Climate, 16(19), 3200–3211.

    Article  Google Scholar 

  • Fensholt, R., & Proud, S. R. (2012). Evaluation of earth observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sensing of Environment, 119, 131–147.

    Article  Google Scholar 

  • Findlater, J. (1969). A major low-level air current near the Indian Ocean during the northern summer. Quarterly Journal of the Royal Meteorological Society, 95(404), 362–380.

    Article  Google Scholar 

  • Gadgil, S., & Rupa Kumar, K. (2006). The Asian monsoon—Agriculture and economy. In The Asian Monsoon (pp. 651–683). Springer, Berlin, Heidelberg.

  • Gadgil, S., Vinayachandran, P. N., Francis, P. A., & Gadgil, S. (2004). Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation. Geophysical Research Letters31(12).

  • Gakhar, K., & Kumar, N. (2015). An assessment of Haryana economy after enactment of FRBM Act 2005. Asian Journal of Research in Social Sciences and Humanities, 5(3), 64–75.

    Article  Google Scholar 

  • Ganeshi, N. G., Mujumdar, M., Krishnan, R., & Goswami, M. (2020). Understanding the linkage between soil moisture variability and temperature extremes over the Indian region. Journal of Hydrology, 589, 125183.

    Article  Google Scholar 

  • Garroutte, E. L., Hansen, A. J., & Lawrence, R. L. (2016). Using NDVI and EVI to map spatiotemporal variation in the biomass and quality of forage for migratory elk in the Greater Yellowstone Ecosystem. Remote Sensing, 8(5), 404.

    Article  Google Scholar 

  • Godfred-Spenning, C. R., & Reason, C. J. (2002). Interannual variability of lower-tropospheric moisture transport during the Australian monsoon. International Journal of Climatology: A Journal of the Royal Meteorological Society, 22(5), 509–532.

    Article  Google Scholar 

  • Grove, R. H. (1998). Global impact of the 1789–93 El Niño. Nature, 393(6683), 318–319.

    Article  CAS  Google Scholar 

  • Güçlü, Y. S., Şişman, E., & Yeleğen, M. Ö. (2018). Climate change and frequency–intensity–duration (FID) curves for Florya station, Istanbul. Journal of Flood Risk Management, 11, S403–S418.

    Article  Google Scholar 

  • Guhathakurta, P., & Rajeevan, M. (2008). Trends in the rainfall pattern over India. International Journal of Climatology: A Journal of the Royal Meteorological Society, 28(11), 1453–1469.

    Article  Google Scholar 

  • Guhathakurta, P., Menon, P., Inkane, P. M., Krishnan, U., & Sable, S. T. (2017). Trends and variability of meteorological drought over the districts of India using standardized precipitation index. Journal of Earth System Science, 126(8), 1–18.

    Article  Google Scholar 

  • Guhathakurta, P., Narkhede, N., Menon, P., Prasad, A. K. & Sangwan, N. (2020) Observed rainfall variability and changes over Haryana state. Met Monograph no.: ESSO/IMD/HS/Rainfall Variability/09(2020)/33.

  • Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., & Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362.

    Article  CAS  Google Scholar 

  • Hao, J., & Ho, T. K. (2019). Machine learning made easy: A review of scikit-learn package in python programming language. Journal of Educational and Behavioral Statistics, 44(3), 348–361.

    Article  Google Scholar 

  • Hari, V., Villarini, G., Karmakar, S., Wilcox, L. J., & Collins, M. (2020). Northward propagation of the intertropical convergence zone and strengthening of Indian summer monsoon rainfall. Geophysical Research Letters47(23), e2020GL089823.

  • Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., & Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049.

    Article  Google Scholar 

  • Hrudya, P. H., Varikoden, H., Vishnu, R., & Kuttippurath, J. (2020). Changes in ENSO-monsoon relations from early to recent decades during onset, peak and withdrawal phases of Indian summer monsoon. Climate Dynamics, 55(5), 1457–1471.

    Article  Google Scholar 

  • IPCC Climate Change. (2021) The physical science basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, in the press).

  • Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Computing Surveys (CSUR), 31(3), 264–323.

    Article  Google Scholar 

  • Jenifer, M. A., & Jha, M. K. (2021). Assessment of precipitation trends and its implications in the semi-arid region of Southern India. Environmental Challenges, 5, 100269.

    Article  Google Scholar 

  • Jin, Q., & Wang, C. (2017). A revival of Indian summer monsoon rainfall since 2002. Nature Climate Change, 7(8), 587–594.

  • Jin, Y. H., Kawamura, A., Jinno, K., & Berndtsson, R. (2005). Quantitative relationship between SOI and observed precipitation in southern Korea and Japan by nonparametric approaches. Journal of Hydrology, 301(1–4), 54–65.

    Article  Google Scholar 

  • Joseph, P. V., & Raman, P. L. (1966). Existence of low level westerly jet stream over peninsular India during July. Mausam, 17(3), 407–410.

    Article  Google Scholar 

  • Kasperson, J. X., Kasperson, R. E., Turner, B. L., Hsieh, W., & Schiller, A. (2022). Vulnerability to global environmental change. In The social contours of risk (pp. 245–285). Routledge.

  • Kaufman, L., & Rousseeuw, P. J. (2009). Finding groups in data: An introduction to cluster analysis. John Wiley & Sons.

  • Kendall, M.G. (1975). Rank correlation methods. Charles Griffin and Co. Ltd., London, U.K. p-15

  • Khandekar, M. L., & Neralla, V. R. (1984). On the relationship between the sea surface temperatures in the equatorial Pacific and the Indian monsoon rainfall. Geophysical Research Letters, 11(11), 1137–1140.

    Article  Google Scholar 

  • Kirtman, B. P., & Shukla, J. (2000). Influence of the Indian summer monsoon on ENSO. Quarterly Journal of the Royal Meteorological Society, 126(562), 213–239.

    Article  Google Scholar 

  • Kirwan, M. L., & Megonigal, J. P. (2013). Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 504(7478), 53–60.

    Article  CAS  Google Scholar 

  • Kişi, Ö. (2007). Streamflow forecasting using different artificial neural network algorithms. Journal of Hydrologic Engineering, 12(5), 532–539.

    Article  Google Scholar 

  • Kisi, O., & Ay, M. (2014). Comparison of Mann-Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey. Journal of Hydrology, 513, 362–375.

    Article  CAS  Google Scholar 

  • Kossin, J. P., Camargo, S. J., & Sitkowski, M. (2010). Climate modulation of North Atlantic hurricane tracks. Journal of Climate, 23(11), 3057–3076.

    Article  Google Scholar 

  • Krishna Kumar, K., Rupa Kumar, K., Ashrit, R. G., Deshpande, N. R., & Hansen, J. W. (2004). Climate impacts on Indian agriculture. International Journal of Climatology: A Journal of the Royal Meteorological Society, 24(11), 1375–1393.

    Article  Google Scholar 

  • Krishnamurthy, V., & Goswami, B. N. (2000). Indian monsoon–ENSO relationship on interdecadal timescale. Journal of Climate, 13(3), 579–595.

    Article  Google Scholar 

  • Krishnamurti, T. N., & Bhalme, H. N. (1976). Oscillations of a monsoon system. Part I. Observational aspects. Journal of Atmospheric Sciences33(10), 1937–1954.

  • Krishnan, R., Sabin, T. P., Vellore, R., Mujumdar, M., Sanjay, J., Goswami, B. N., & Terray, P. (2016). Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world. Climate Dynamics, 47(3), 1007–1027.

    Article  Google Scholar 

  • Krishnan, R., Sanjay, J., Gnanaseelan, C., Mujumdar, M., Kulkarni, A., & Chakraborty, S. (2020). Assessment of climate change over the Indian region: A report of the ministry of earth sciences (MOES), government of India (p. 226). Springer Nature.

  • Kulkarni, A., et al. (2020). Precipitation changes in India. In R. Krishnan, J. Sanjay, C. Gnanaseelan, M. Mujumdar, A. Kulkarni, S. Chakraborty, S. (Eds.), Assessment of Climate Change over the Indian Region (pp. 47–53, 72). Springer Singapore, Singapore. https://doi.org/10.1007/978-981-15-4327-2_3

  • Kumar, K. K., Rajagopalan, B., & Cane, M. A. (1999). On the weakening relationship between the Indian monsoon and ENSO. Science, 284(5423), 2156–2159.

    Article  CAS  Google Scholar 

  • Kumar, K. K., Soman, M. K., & Kumar, K. R. (1995). Seasonal forecasting of Indian summer monsoon rainfall: A review. Weather, 50(12), 449–467.

    Article  Google Scholar 

  • Kumar, T. L., Rao, K. K., Barbosa, H., & Jothi, E. P. (2013). Studies on spatial pattern of NDVI over India and its relationship with rainfall, air temperature, soil moisture adequacy and ENSO. G Eofizika, 30(1), 1–18.

    CAS  Google Scholar 

  • Kumar, K. N., Rajeevan, M., Pai, D. S., Srivastava, A. K., & Preethi, B. (2013). On the observed variability of monsoon droughts over India. Weather and Climate Extremes, 1, 42–50.

    Article  Google Scholar 

  • Kumari, N., Mehta, V. P., Bishnoi, D. K., Bhatia, J. K., & Kumar, S. (2020). Trends of major food grain crops in Haryana. Indian Journal of Economics and Development, 16(2), 208–220.

    Google Scholar 

  • Linsley, R. K., Kohler, M. A., & Paulhus, J. L. (1949). Applied hydrology (No. GB661 L5). McGraw Hill, New York.

  • Mabuchi, K., Sato, Y., & Kida, H. (2005). Climatic impact of vegetation change in the Asian tropical region. Part I: Case of the Northern Hemisphere summer. Journal of Climate18(3), 410–428.

  • Malik, D., & Singh, K. K. (2019). Rainfall trend analysis of various districts of Haryana, India. In Sustainable Engineering (pp. 95–109). Springer, Singapore.

  • Malik, N., Bookhagen, B., & Mucha, P. J. (2016). Spatiotemporal patterns and trends of Indian monsoonal rainfall extremes. Geophysical Research Letters, 43(4), 1710–1717.

    Article  Google Scholar 

  • Manjunatha, B. R., Balakrishna, K., Krishnakumar, K. N., Manjunatha, H. V., Avinash, K., Mulemane, A. C., & Krishna, K. M. (2015). Increasing trend of rainfall over Agumbe, Western Ghats, India in the scenario of global warming. Open Oceanography Journal, 8, 39–44.

    Article  Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the econometric society, 13:245–259. https://doi.org/10.2307/1907187

  • Maurya, R. K. S., Sinha, P., Mohanty, M. R., & Mohanty, U. C. (2018). RegCM4 model sensitivity to horizontal resolution and domain size in simulating the Indian summer monsoon. Atmospheric Research, 210, 15–33.

    Article  Google Scholar 

  • McKinney, W. (2011). pandas: A foundational Python library for data analysis and statistics. Python for High Performance and Scientific Computing, 14(9), 1–9.

    Google Scholar 

  • Mishra, V., Smoliak, B. V., Lettenmaier, D. P., & Wallace, J. M. (2012). A prominent pattern of year-to-year variability in Indian summer monsoon rainfall. Proceedings of the National Academy of Sciences, 109(19), 7213–7217.

    Article  CAS  Google Scholar 

  • Mujumdar, M., Bhaskar, P., Ramarao, M. V. S., Uppara, U., Goswami, M., Borgaonkar, H., ... & Niyogi, D. (2020). Droughts and floods. In Assessment of Climate Change over the Indian Region (pp. 117–141). Springer, Singapore. https://doi.org/10.1007/978-981-15-4327-2_6

  • Myneni, R. B., Hall, F. G., Sellers, P. J., & Marshak, A. L. (1995). The interpretation of spectral vegetation indexes. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 481–486.

    Article  Google Scholar 

  • Nain, M., & Hooda, B. K. (2019). Probability and trend analysis of monthly rainfall in Haryana. Bhartiya Krishi Anusandhan Patrika, 34(2), 83–91.

    Article  Google Scholar 

  • Pant, G. B., & Kumar, K. R. (1997). Climates of South Asia. Wiley.

    Google Scholar 

  • Pant, G. B., & Parthasarathy, S. B. (1981). Some aspects of an association between the southern oscillation and Indian summer monsoon. Archives for Meteorology, Geophysics, and Bioclimatology, Series B, 29(3), 245–252.

    Article  Google Scholar 

  • Pai, D. S., Rajeevan, M., Sreejith, O. P., Mukhopadhyay, B., & Satbha, N. S. (2014). Development of a new high spatial resolution (0.25× 0.25) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam65(1), 1–18.

  • Parthasarathy, B., & Pant, G. B. (1985). Seasonal relationships between Indian summer monsoon rainfall and the Southern Oscillation. Journal of Climatology, 5(4), 369–378.

    Article  Google Scholar 

  • Patwardhan, S. K., & Asnani, G. C. (2000). Meso-scale distribution of summer monsoon rainfall near the Western Ghats (India). International Journal of Climatology: A Journal of the Royal Meteorological Society, 20(5), 575–581.

    Article  Google Scholar 

  • Piao, S., Wang, X., Ciais, P., Zhu, B., Wang, T. A. O., & Liu, J. I. E. (2011). Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Global Change Biology, 17(10), 3228–3239.

    Article  Google Scholar 

  • Pinzon, J. E., & Tucker, C. J. (2014). A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sensing, 6(8), 6929–6960.

    Article  Google Scholar 

  • Power, S., Delage, F., Chung, C., Kociuba, G., & Keay, K. (2013). Robust twenty-first-century projections of El Niño and related precipitation variability. Nature, 502(7472), 541–545.

    Article  CAS  Google Scholar 

  • Prajeesh, A. G., Ashok, K., & Rao, D. V. (2013). Falling monsoon depression frequency: A Gray-Sikka conditions perspective. Scientific Reports, 3(1), 1–8.

    Article  Google Scholar 

  • Prasanna, V. (2014). Impact of monsoon rainfall on the total foodgrain yield over India. Journal of Earth System Science, 123(5), 1129–1145.

    Article  Google Scholar 

  • Prinja, S., Jeet, G., Kaur, M., Aggarwal, A. K., Manchanda, N., & Kumar, R. (2014). Impact of referral transport system on institutional deliveries in Haryana, India. The Indian Journal of Medical Research, 139(6), 883.

  • Ramarao, M. V. S., Sanjay, J., Krishnan, R., Mujumdar, M., Bazaz, A., & Revi, A. (2019). On observed aridity changes over the semiarid regions of India in a warming climate. Theoretical and Applied Climatology, 136(1), 693–702.

    Article  Google Scholar 

  • Ramarao, M. V., Krishnan, R., Sanjay, J., & Sabin, T. P. (2015). Understanding land surface response to changing South Asian monsoon in a warming climate. Earth System Dynamics, 6(2), 569–582.

    Article  Google Scholar 

  • Rao, V. U. M., Subba Rao, A. V. M., Bapuji Rao, B., Ramana Rao, B. V., Sravani, C., & Venkateswarlu, B. (2011). El Nino effect on climatic variability and crop production: A case study for Andhra Pradesh. research Bulletin, (2).

  • Rasmusson, E. M., & Carpenter, T. H. (1983). The relationship between eastern equatorial Pacific sea surface temperatures and rainfall over India and Sri Lanka. Monthly Weather Review, 111(3), 517–528.

    Article  Google Scholar 

  • Ravish, S., Setia, B., & Deswal, S. (2021). Groundwater quality in urban and rural areas of north-eastern Haryana (India): A review. ISH Journal of Hydraulic Engineering, 27(2), 224–234.

    Article  Google Scholar 

  • Saha, A., Ghosh, S., Sahana, A. S., & Rao, E. P. (2014). Failure of CMIP5 climate models in simulating post-1950 decreasing trend of Indian monsoon. Geophysical Research Letters, 41(20), 7323–7330.

    Article  Google Scholar 

  • Saini, S., & Gulati, A. (2014). El Niño and Indian droughts: A scoping exercise (No. 276). Working Paper.

  • Sajedi-Hosseini, F., Choubin, B., Solaimani, K., Cerdà, A., & Kavian, A. (2018). Spatial prediction of soil erosion susceptibility using a fuzzy analytical network process: Application of the fuzzy decision making trial and evaluation laboratory approach. Land Degradation & Development, 29(9), 3092–3103.

    Article  Google Scholar 

  • Samanta, D., Rajagopalan, B., Karnauskas, K. B., Zhang, L., & Goodkin, N. F. (2020). La Niña’s diminishing fingerprint on the central Indian summer monsoon. Geophysical Research Letters47(2), e2019GL086237.

  • Santin-Janin, H., Garel, M., Chapuis, J. L., & Pontier, D. (2009). Assessing the performance of NDVI as a proxy for plant biomass using non-linear models: A case study on the Kerguelen archipelago. Polar Biology, 32(6), 861–871.

    Article  Google Scholar 

  • Sarkar, R. P. (1967). Some modifications in a dynamical model of orographic rainfall. Monthly Weather Review, 95, 673–684.

  • Sarkar, S., Singh, R. P., & Kafatos, M. (2004). Further evidences for the weakening relationship of Indian rainfall and ENSO over India. Geophysical research letters31(13).

  • Sarma, A. A. L. N., Kumar, T. L., & Koteswararao, K. (2008). Development of an agroclimatic model for the estimation of rice yield. J. Ind. Geophys. Union, 12(2), 89–96.

    Google Scholar 

  • Seetha, C. J., Varikoden, H., Babu, C. A., & Kuttippurath, J. (2020). Significant changes in the ENSO-monsoon relationship and associated circulation features on multidecadal timescale. Climate Dynamics, 54(3), 1491–1506.

    Article  Google Scholar 

  • Selvaraju, R. (2003). Impact of El Niño–southern oscillation on Indian foodgrain production. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(2), 187–206.

    Article  Google Scholar 

  • Seneviratne, S.I., X. Zhang, M. Adnan, W. Badi, C. Dereczynski, A. Di Luca, S. Ghosh, I. Iskandar, J. Kossin, S. Lewis, F. Otto, I. Pinto, M. Satoh, S.M. Vicente-Serrano, M. Wehner, and B. Zhou, (2021). Weather and climate extreme events in a changing climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press. In Press. p-108

  • Sharma, M., Bangotra, P., Gautam, A. S., & Gautam, S. (2021). Sensitivity of normalized difference vegetation index (NDVI) to land surface temperature, soil moisture and precipitation over district Gautam Buddh Nagar, UP, India. Stochastic Environmental Research and Risk Assessment, 1–11.

  • Sharma, S., & Mujumdar, P. (2017). Increasing frequency and spatial extent of concurrent meteorological droughts and heatwaves in India. Scientific Reports, 7(1), 1–9.

    Article  CAS  Google Scholar 

  • Shi, P., Lu, H., Leung, L. R., He, Y., Wang, B., Yang, K., ... & Lin, Y. (2021). Significant land contributions to interannual predictability of East Asian summer monsoon rainfall. Earth's Future9(2), e2020EF001762.

  • Shukla, J., & Paolino, D. A. (1983). The Southern Oscillation and long-range forecasting of the summer monsoon rainfall over India. Monthly Weather Review, 111(9), 1830–1837.

    Article  Google Scholar 

  • Sihmar, R. (2014). Growth and instability in agricultural production in Haryana: A district level analysis. International Journal of Scientific and Research Publications, 4(7), 1–12.

    Google Scholar 

  • Sikka, D. R., & Gadgil, S. (1980). On the maximum cloud zone and the ITCZ over Indian longitudes during the southwest monsoon. Monthly Weather Review, 108(11), 1840–1853.

    Article  Google Scholar 

  • Singh, D., Singh, R., Shekhar, A. C., Ro, V. U. M., Sigh, S. (2010). Agro climate atlas of Haryana. Technical Bulletin no.15, Department of Agricultural Mateorology, CCS HAU Hisar.

  • Singh, D., Tsiang, M., Rajaratnam, B., & Diffenbaugh, N. S. (2014). Observed changes in extreme wet and dry spells during the South Asian summer monsoon season. Nature Climate Change, 4(6), 456–461.

    Article  Google Scholar 

  • Singh, S., Rao, V. U. M., & Singh, D. (2002). Monsoon rainfall behaviour in recent times on local/regional scale in India (No. IC--2002/113). Abdus Salam International Centre for Theoretical Physics.

  • Sinha, P., Maurya, R. K. S., Mohanty, M. R., & Mohanty, U. C. (2019). Inter-comparison and evaluation of mixed-convection schemes in RegCM4 for Indian summer monsoon simulation. Atmospheric Research, 215, 239–252.

    Article  Google Scholar 

  • Sivasami, K. S. (2000). Droughts and rainfall pattern, 1877–1999. Economic and Political Weekly, 1993–1994.

  • Slingo, J. M., & Annamalai, H. (2000). 1997: The El Niño of the century and the response of the Indian summer monsoon. Monthly Weather Review, 128(6), 1778–1797.

    Article  Google Scholar 

  • Szabó, L., Deák, B., Bíró, T., Dyke, G. J., & Szabó, S. (2020). NDVI as a proxy for estimating sedimentation and vegetation spread in artificial lakes—Monitoring of spatial and temporal changes by using satellite images overarching three decades. Remote Sensing, 12(9), 1468.

    Article  Google Scholar 

  • Tan, C., Samanta, A., Jin, X., Tong, L., Ma, C., Guo, W., & Myneni, R. B. (2013). Using hyperspectral vegetation indices to estimate the fraction of photosynthetically active radiation absorbed by corn canopies. International Journal of Remote Sensing, 34(24), 8789–8802.

    Article  Google Scholar 

  • Trenberth, K. E. (1997). The definition of El Nino. Bulletin of the American Meteorological Society, 78(12), 2771–2778.

    Article  Google Scholar 

  • Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D. A., Pak, E. W., Mahoney, R., & El Saleous, N. (2005). An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26(20), 4485–4498.

    Article  Google Scholar 

  • Venkatesh, B., & Jose, M. K. (2007). Identification of homogeneous rainfall regimes in parts of Western Ghats region of Karnataka. Journal of Earth System Science, 116(4), 321–329.

    Article  Google Scholar 

  • Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., ... & Van Mulbregt, P. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature methods17(3), 261–272.

  • Vishnu, S., Francis, P. A., Shenoi, S. S. C., & Ramakrishna, S. S. V. S. (2016). On the decreasing trend of the number of monsoon depressions in the Bay of Bengal. Environmental Research Letters, 11(1), 014011.

    Article  Google Scholar 

  • Wang, G., Cai, W., Gan, B., Wu, L., Santoso, A., Lin, X., ... & McPhaden, M. J. (2017). Continued increase of extreme El Niño frequency long after 1.5 C warming stabilization. Nature Climate Change7(8), 568–572.

  • Ward, J. H., Jr. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244.

    Article  Google Scholar 

  • Webster, P. J., Magana, V. O., Palmer, T. N., Shukla, J., Tomas, R. A., Yanai, M. U., & Yasunari, T. (1998). Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research: Oceans, 103(C7), 14451–14510.

    Article  Google Scholar 

  • Winsberg, E. (2012). Values and uncertainties in the predictions of global climate models. Kennedy Institute of Ethics Journal, 22(2), 111–137.

    Article  Google Scholar 

  • WMO, W. (1988). Analyzing long time series of hydrological data with respect to climate variability. WMO secretariat.

    Google Scholar 

  • Yim, A., Chung, C., & Yu, A. (2018). Matplotlib for Python developers: Effective techniques for data visualization with Python. Packt Publishing Ltd.

Download references

Acknowledgements

The author(s) would like to thank the India Meteorological Department (IMD), Pune, for providing the daily rainfall time series data for this study.

Author information

Authors and Affiliations

Authors

Contributions

Abhilash Singh Chauhan, R. K. S. Maurya, Surender Singh, and Abhishek Danodia were involved in the conceptualisation of methodology, investigation, data analysis, preparation of figures, and writing the original draft. R. K. S. Maurya performed climatological data analysis for ISMR and teleconnections. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Abhilash Singh Chauhan.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors give the consent for the publication of identifiable details, which include figures within the text to be published in this manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, A.S., Singh, S., Maurya, R.K.S. et al. Impact of monsoon teleconnections on regional rainfall and vegetation dynamics in Haryana, India. Environ Monit Assess 194, 485 (2022). https://doi.org/10.1007/s10661-022-10146-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10146-0

Keywords

Navigation