Skip to main content

Advertisement

Log in

The geochemistry and isotopic compositions of the Nakdong River, Korea: weathering and anthropogenic effects

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Nakdong River is the longest river in South Korea, and flows through various geological terrains with different land use characteristics; therefore, the geochemistry of its water is expected to be influenced by many factors. In this work, the geochemical characteristics of the Nakdong River were examined, and its chemical compositions, δD, δ18O, and δ13CDIC values, and 87Sr/86Sr ratios were determined to investigate the geological and anthropogenic effects on the geochemistry of the Nakdong River water. The obtained concentrations of major ions were strongly affected by both the anthropogenic activity and weathering of the rocks. With increasing the flow distance, the ion concentrations slightly increased; and after the inflow of the Kumho River, which was the largest tributary running through Daegu (the fourth largest city in South Korea), the concentrations of Na and SO4 ions abruptly increased and decreased again, suggesting the existence of strong anthropogenic effects caused by sewage treatment plants and dyeing industrial complex. Other activities such as agricultural ones also increased the NO3 concentration. In July, the high precipitation level from tropical cyclones and downpours decreased the ion concentrations as well as the δD and δ18O values. The δ13CDIC magnitudes showed that the dissolved inorganic carbon mainly originated from mineral weathering upstream, while the oxidation of soil organic materials influenced by agricultural activity became more important downstream. The 87Sr/86Sr ratios revealed that in the upstream regions, the weathering of granite and gneiss complex was dominant, while in the downstream regions, the weathering of sedimentary rocks became more important. The weathering and anthropogenic effects on the river water chemistry were also demonstrated using statistical analysis, which revealed that the water geochemistry was mostly influenced by the anthropogenic sources, including industrial complex, represented by Na, Cl, and SO4. The obtained results show that, as compared to the geochemistry of the Han River (which is also a major river in Korea), the geochemistry of the Nakdong River is more influenced by anthropogenic activities (including agriculture and the industrial complex) due to the different land use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Andrew, M. G., Jacobson, A. D., Lehn, G. O., Horton, T. W., & Craw, D. (2016). Radiogenic and stable Sr isotope ratios (87Sr/86Sr, δ88/86Sr) as tracers of riverine cation sources and biogeochemical cycling in the Milford Sound region of Fiordland, New Zealand. Geochimica Cosmochimica Acta, 173, 284–303.

    Article  CAS  Google Scholar 

  • Balagizi, C. M., Darchambeau, F., Bouillon, S., Yalire, M. M., Lambert, T., & Borges, A. V. (2015). River geochemistry, chemical weathering, and atmospheric CO2 consumption rates in the Virunga Volcanic Province (East Africa). Geochemistry, Geophysics, Geosystems, 16, 2637–2660.

    Article  CAS  Google Scholar 

  • Barth, J. A. C., Cronin, A. A., Dunlop, J., & Kalin, R. M. (2003). Influence of carbonates on the riverine carbon cycle in an anthropogenically dominated catchment basin: Evidence from major elements and stable carbon isotopes in the Lagan River (N. Ireland). Chemical Geology, 200, 203–216.

    Article  CAS  Google Scholar 

  • Barth, J. A. C., & Veizer, J. (2004). Water mixing in a St. Lawrence river embayment to outline potential sources of pollution. Applied Geochemistry, 19, 1637–1641.

    Article  CAS  Google Scholar 

  • Bataille, C. P., & Bowen, G. J. (2012). Mapping Sr-87/Sr-86 variations in bedrock and water for large scale provenance studies. Chemical Geology, 304, 39–52.

    Article  CAS  Google Scholar 

  • Bataille, C. P., Brennan, S. R., Hartmann, J., Moosdorf, N., Wooller, M. J., & Bowen, G. J. (2014). A geostatistical framework to predict strontium isotopes variations in Alaska Rivers. Chemical Geology, 389, 1–15.

    Article  CAS  Google Scholar 

  • Bierman, P. B., Albrecht, A., Bothner, M. H., Brown, E. T., Bullen, T. D., Gray, L. B., & Turpin, L. (1998). Erosion, weathering, and sedimentation. In C. Kendall & J. J. McDonnell (Eds.), Isotope Tracers in Catchment Hydrology (pp. 647–678). Elsevier.

    Chapter  Google Scholar 

  • Bishwakarma, K., Wang, G. -X., Zhang, F., Adhikari, S., Karki, K., & Ghimire, A. (2022). Hydrogeochemical characterization and irrigation suitability of the Ganges Brahmaputra River System: Review and assessment. Journal of Mountain Science, 19, 388–402.

    Article  Google Scholar 

  • Borg, L. E., & Banner, J. L. (1996). Neodymium and strontium isotopic constraints on soil sources in Barbados, West Indies. Geochimica Et Cosmochimica Acta, 60, 4193–4206.

    Article  CAS  Google Scholar 

  • Brennan, S. R., Femandez, D. P., Mackey, G., Cerling, T. E., Bataille, C. P., Bowen, G. J., & Wooller, M. J. (2014). Strontium isotope variation and carbonate versus silicate weathering in rivers from across Alaska: Implications for provenance studies. Chemical Geology, 389, 167–181.

    Article  CAS  Google Scholar 

  • Brenot, A., Carignan, J., France-Lanord, C., & Benoît, M. (2007). Geological and land use control on δ34S and δ18O of river dissolved sulfate: The Moselle river basin, France. Chemical Geology, 244, 25–41.

    Article  CAS  Google Scholar 

  • Cai, Y., You, C. -F., Wu, S. -F., Cai, W. -J., & Guo, L. (2020). Seasonal variation sin strontium and carbon isotope systematics in the Lower Mississippi River: Implications for chemical weathering. Chemical Geology, 553, 119810.

    Article  CAS  Google Scholar 

  • Chen, J., Wang, F., Xia, X., & Zhang, L. (2002). Major element chemistry of the Changjiang (Yangtze River). Chemical Geology, 187, 231–255.

    Article  CAS  Google Scholar 

  • Chop, J. W., Matsuda, M., Kawano, M., Wakimoto, T., & Min, B. Y. (1999). Contamination of PCBs in Nakdong River estuary, Korea. Toxicological Environmental Chemistry, 72, 233–243.

    Article  Google Scholar 

  • Chang, K. H. (1975). Cretaceous stratigraphy of Southeast Korea. Journal of the Geological Society of Korea, 11, 1–23.

    CAS  Google Scholar 

  • Clark, I. D., & Fritz, P. (1997). Environmental isotopes in Hydrogeology. Lewis Publishers.

    Google Scholar 

  • Dellinger, M., Hilton, R. G., & Nowell, & G. M. (2021). Fractionation of rhenium isotopes in the Mackenzie River basin during oxidative weathering. Earth and Planetary Science Letters, 573, 117131.

    Article  CAS  Google Scholar 

  • Dyrssen, D., & Sillén, L. G. (1967). Alkalinity and total carbonate in sea water. A plea for p-T-independent data. Tellus, 19, 113-121

  • Edmond, J. M. (1970). High precision determination of titration alkalinity and total carbon dioxide content of sea water by potentimetric titration. Deep Sea Research and Oceanographic Abstracts, 17, 737–750.

  • Faure, G. (1977). Principles of isotope geology. John Wiley and Sons.

    Google Scholar 

  • Fricke, H. C., & O’Neil, J. R. (1999). The correlation between 18O/16O ratios of meteoric water and surface temperature: Its use in investigating terrestrial climate change over geologic time. Earth and Planetary Science Letters, 170, 181–196.

    Article  CAS  Google Scholar 

  • Gaillardet, J., Dupré, B., Louvat, P., & Allègre, C. J. (1999). Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159, 3–30.

    Article  CAS  Google Scholar 

  • Galy, A., & France-Lanord, C. (1999). Weathering processes in the Ganges-Brahmaputra basin and the riverine alkalinity budget. Chemical Geology, 159, 31–60.

    Article  CAS  Google Scholar 

  • Gibbs, R. J. (1972). Water chemistry of the Amazon River. Geochimica Et Cosmochimica Acta, 36, 1061–1066.

    Article  CAS  Google Scholar 

  • Gordeev, V. V., & Sidorov, L. S. (1993). Concentrations of major elements and their outflow into the Laptev Sea by the Lena River. Marine Chemistry, 43, 33–45.

    Article  CAS  Google Scholar 

  • Hoefs, J. (2004). Stable isotope geochemistry. Springer.

    Book  Google Scholar 

  • Holland, H. D. (1978). The chemistry of the atmosphere and oceans. Wiley.

    Google Scholar 

  • Huh, Y., Panteleyev, G., Babich, D., Zaitsev, A., & Edmond, J. M. (1998a). The fluvial geochemistry of the rivers of Eastern Siberia: II. Tributaries of the Lena, Omoloy, Yana, Indigirka/Kolyma, and Anadyr draining the collisional/accretionary zone of the Verkhoyansk and Cherskiy ranges. Geochimica Et Cosmochimica Acta, 62, 2053–2075.

    Article  CAS  Google Scholar 

  • Huh, Y., Tsoi, M. -Y., Zaitsev, A., & Edmond, J. M. (1998b). The fluvial geochemistry of the rivers of Eastern Siberia: I. Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton. Geochimica Et Cosmochimica Acta, 62, 1657–1676.

    Article  CAS  Google Scholar 

  • Kattan, Z. (2015). Chemical and isotopic characteristics of the Euphrates River water, Syria: Factors controlling its geochemistry. Environmental Earth Sciences, 73, 4763–4778.

    Article  CAS  Google Scholar 

  • Kendall, C., & Coplen, T. B. (2001). Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrological Processes, 15, 1363–1393.

    Article  Google Scholar 

  • Kim, K., Hamm, S.-Y., Kim, R.-H., & Kim, H. (2018). A review on alkalinity analysis methods suitable for Korean groundwater. Economic and Environmental Geology, 51, 509–520.

    Google Scholar 

  • Kim, K. H., Heo, W. M., & Kim, B. (1998). Spatial and temporal variabilities in nitrogen and phosphorus in the Nakdong river system, Korea. Water, Air, & Soil Pollution, 102, 37–60.

    Article  CAS  Google Scholar 

  • Kim, Y., & Kim, K. (2013). Hydrogeochemistry and isotopic study of the Kumho River, Korea: Implications for anthropogenic and seasonal effects. Environmental Earth Sciences, 68, 2051–2064.

    Article  CAS  Google Scholar 

  • Kwon, J. H., Lee, H., Kwon, J. W., Kim, K., Park, E., Kang, M. H., & Kim, Y. H. (2008). Mutagenic activity of river water from a river near textile industrial complex in Korea. Environmental Monitoring and Assessment, 142, 289–296.

    Article  CAS  Google Scholar 

  • Lambs, L. (2000). Correlation of conductivity and stable isotope 18O for the assessment of water origin in river system. Chemical Geology, 164, 161–170.

    Article  CAS  Google Scholar 

  • Lang, Y. C., Liu, C. Q., Li, S. L., Zhao, Z. Q., & Zhou, & Z. H. (2011). Tracing natural and anthropogenic sources of dissolved sulfate in a karst region by using major ion chemistry and stable sulfur isotopes. Applied Geochemistry, 26, 5202–5205.

    Article  CAS  Google Scholar 

  • Lee, K. S., Bong, Y. S., Lee, D., Kim, Y., & Kim, K. (2008). Tracing the sources of nitrate in the Han River watershed in Korea, using δ15N-NO3- and δ18O-NO3- values. Science of the Total Environment, 395, 117–124.

    Article  CAS  Google Scholar 

  • Lee, K. S., & Chang, B. U. (1994). Oxygen and hydrogen isotopic composition of precipitation in Taejeon and Seoul, Korea. Journal of the Geological Society of Korea, 30, 475–481.

    Google Scholar 

  • Lee, K. S., Grundstein, A. J., Wenner, D. B., Choi, M. S., Woo, N. C., & Lee, D. H. (2003). Climate controls on the stable isotopic composition of precipitation in Northeast Asia. Climate Research, 23, 137–148.

    Article  Google Scholar 

  • Lee, K. S., Ryu, J. S., Ahn, K. H., Chang, H. W., & Lee, D. (2007). Factors controlling carbon isotope ratios of dissolved inorganic carbon in two major tributaries of the Han River, Korea. Hydrological Processes, 21, 500–509.

    Article  CAS  Google Scholar 

  • Li, X., Weng, B., Yan, D., Qin, T., Wang, K., Bi, W., Yu, Z., & Dorjsuren, B. (2019). Anthropogenic effects on hydrogen and oxygen isoropes of river water in cities. International Journal of Environmental Research and Public Health, 16, 4429.

    Article  CAS  Google Scholar 

  • Li, X. D., Liu, C. Q., Liu, X. L., & Bao, L. R. (2011). Identification of dissolved sulfate sources and the role of sulfuric acid in carbonate weathering using dual-isotopic data from the Jialing River, Southwest China. Journal of Asian Earth Sciences, 42, 370–380.

    Article  Google Scholar 

  • Li, C., Yan, S., Lian, E., Yang, C., Deng, K., & Liu, Z. (2016). Damming effect on the Changjian (Yangtze River) river water cycle based on stable hydrogen and oxygen isotopic records. Journal of Geochem Exploration, 165, 125–133.

    Article  CAS  Google Scholar 

  • Li, M., Xu, K., Watanabe, M., & Chen, Z. (2007). Long-term variations in dissolved silicate, nitrogen, and phosphorus flus from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuarine, Coastal and Shelf Science, 71, 3–12.

    Article  Google Scholar 

  • Li, S. -L., Liu, C. -Q., Lang, Y. -C., Tao, F., Zhao, Z., & Zhou, Z. (2008). Stable carbon isotope biogeochemistry and anthropogenic impact on Karst ground water, Zunyi, Southest China. Aquatic Geochemistry, 14, 211–221.

    Article  CAS  Google Scholar 

  • Marchina, C., Bianchini, G., Natali, C., Pennisi, M., Colombani, N., Tassinari, R., & Knoeller, K. (2015). The Po river water from the Alps to the Adriatic Sea (Italy): New insights from geochemical and isotopic (δ18O-δD) data. Environmental Science and Pollution Research, 22, 5184–5203.

    Article  CAS  Google Scholar 

  • Négrel, P., Millot, R., Petelet-Giraud, E., & Klaver, G. (2020). Li and δ7Li as proxies for weathering and anthropogenic activities: Application to the Dommel River (meuse basin). Applied Geochemistry, 120, 104674.

    Article  CAS  Google Scholar 

  • Park, K. H., Lee, H. S., Song, Y. S., & Cheong, C. S. (2006). Sphene U-Pb ages of the granite-granodiorites from Hamyang, Geochang and Yeongju areas of the Yeongnam Massif. Journal of the Petrological Society of Korea, 15, 39–48.

    Google Scholar 

  • Quiñones, O., Oh, J. E., Vanderford, B., Kim, J. H., Cho, J., & Snyder, S. A. (2007). Perchlorate assessment of the Nakdong and Yeongsan watersheds, Republic of Korea. Environmental Toxicology and Chemistry, 26, 1349–1354.

    Article  Google Scholar 

  • Revels, B. N., Rickli, J., Moura, C. A. V., & Vance, D. (2021a). Nickel and its isotopes in the Amazon Basin: The impact of the weathering regime and delivery to the ocean. Geochimica Et Cosmochimica Acta, 293, 344–364.

    Article  CAS  Google Scholar 

  • Revels, B. N., Rickli, J., Moura, C. A. V., & Vance, D. (2021b). The riverine flux of molybdenum and its isotopes to the ocean: Weathering processes and dissolved-particulate partitioning in the Amazon basin. Earth and Planetary Science Letters, 559, 116773.

    Article  CAS  Google Scholar 

  • Ryu, J. S., Lee, K. S., & Chang, H. W. (2007). Hydrogeochemical and isotopic investigations of the Han River basin, South Korea. Journal of Hydrology, 345, 50–60.

    Article  Google Scholar 

  • Sarin, M. M., Krishnaswami, S., Dili, K., Somayajulu, B. L. K., & Moore, W. S. (1989). Major ion chemistry of the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal. Geochimica Et Cosmochimica Acta, 53, 997–1009.

    Article  CAS  Google Scholar 

  • Stallard, R. F., & Edmond, J. M. (1981). Geochemistry of the Amazon: 1. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. Journal of Geophysical Research, 86, 9844–9855.

    Article  CAS  Google Scholar 

  • Stallard, R. F., & Edmond, J. M. (1983). Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. Journal of Geophysical Research, 88, 9671–9688.

    Article  CAS  Google Scholar 

  • Stallard, R. F., & Edmond, J. M. (1987). Geochemistry of the Amazon: 3. Weathering chemistry and limits to dissolved inputs. Journal of Geophysical Research, 92, 8293–8302.

    Article  CAS  Google Scholar 

  • Vitòria, L., Otero, N., Soler, A., & Canals, À. (2004). Fertilizer characterization: Isotopic data (N, S, O, C and Sr). Environmental Science & Technology, 38, 3254–3262.

    Article  CAS  Google Scholar 

  • Wachniew, P. (2006). Isotopic composition of dissolved inorganic carbon in a large polluted river: The Vistula, Poland. Chemical Geology, 233, 293–308.

    Article  CAS  Google Scholar 

  • Winston, W. E., & Criss, R. E. (2003). Oxygen isotope and geochemical variations in the Missouri River. Environmental Geology, 43, 546–556.

    Article  CAS  Google Scholar 

  • Wu, Y., Luo, Z., Luo, W., Ma, T., & Wang, Y. (2018). Multiple isotope geochemistry and hydrochemical monitoring of karst water in a rapidly urbanized region. Journal of Contaminant Hydrology, 218, 44–58.

    Article  CAS  Google Scholar 

  • Xu, Z., Shi, C., Tang, Y., & Han, H. (2011). Chemical and strontium isotopic compositions of the Hanjing Rivers in China: Anthropogenic impacts and chemical weathering. Aquatic Geochemistry, 17, 243–264.

    Article  CAS  Google Scholar 

  • Zhang, J., Huang, W. W., Létolle, R., & Jusserand, C. (1995). Major element chemistry of the Huanghe (Yellow River), China – Weathering processes and chemical fluxes. Journal of Hydrology, 168, 173–203.

    Article  CAS  Google Scholar 

  • Zieliński, M., Dopieralska, J., Belka, Z., Walczak, A., Siepak, M., & Jakubowicz, M. (2017). The strontium isotope budget of the Warta River (Poland): Between silicate and carbonate weathering, and anthropogenic pressure. Applied Geochemistry, 81, 1–11.

    Article  CAS  Google Scholar 

  • Zieliński, M., Dopieralska, J., Królikowska-Ciągło, S., Walczak, A., & Belka, Z. (2021). Mapping of spatial variation in Sr isotope signatures (87Sr/86Sr) in Poland – Implication of anthropogenic Sr contamination for archaeological provenance and migration research. Science of the Total Environment, 775, 145792.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (No. 2016R1A2B1009477 and No. 2019R1A2C1002254).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: K-SL, YK; methodology: GK, K-SL; formal analysis and investigation: GK, JJ; writing – original draft preparation: GK, YK; writing – review and editing: YK; funding acquisition: YK; supervision: YK.

Corresponding author

Correspondence to Yeongkyoo Kim.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keum, G., Kim, Y., Lee, KS. et al. The geochemistry and isotopic compositions of the Nakdong River, Korea: weathering and anthropogenic effects. Environ Monit Assess 194, 487 (2022). https://doi.org/10.1007/s10661-022-10143-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10143-3

Keywords

Navigation