Skip to main content

Advertisement

Log in

Surface hydrochemical dynamic in an artificial lake with anthropic impact: La Purísima reservoir, Central Mexico

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In the present study, the hydrochemical dynamic and the water quality of La Purísima reservoir, Central Mexico, have been determined. The reservoir presents total dissolved solids (TDSs) between 146 and 328 mg L−1 and water quality neutral to slightly alkaline (pH 7.0 to 8.7) during the dry season, whereas it becomes clearly alkaline (pH 8.1–9.9) in the rainy-warm season. Through its main tributaries, La Purísima reservoir has been receiving water affected by anthropic activities, such as mining, urbanization, and agriculture. La Purísima reservoir indicates water quality suitable for irrigation and aquatic lives, but unsuitable for drinking purposes. A geochemical evolution from the riverine to the lacustrine zone is evidenced by the complexation of several free ions: the higher saturation indexes; the lower toxic metal concentrations; and the lower trophic status, which ameliorate the water quality in the lacustrine zone. Trace elements co-precipitate and are adsorbed onto bottom sediments. During summer, high evaporation rates and atmospheric precipitation are found to decline the water quality. Cluster analyses reflect the geo-setting and different pollution levels: urban impact from the north coast, and agricultural activities from the east coast. The sensitivity of the lake to geochemical behavior can be used to understand the complex dissolved geochemical dynamics in a lake and the potential effects from long-term anthropic impact variability. The information about water quality of La Purísima reservoir may be useful to preserve the ecosystem and its biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

All data generated and analyzed during this study are included in this published article.

References

  • Abbasi, T., & Abbasi, S. A. (2012). Why Water Quality Indices. Elsevier.

    Book  Google Scholar 

  • Acuña-Alonso, C., Álvarez, X., Lorenzo, O., Cancela, A., Valero, E., & Sánchez, A. (2020). Assessment of water quality in eutrophized water bodies through the application of indexes and toxicity. Science of the Total Environment, 728, 138775. https://doi.org/10.1016/j.scitotenv.2020.138775

    Article  CAS  Google Scholar 

  • Aiuppa, A., Federico, C., Allard, P., Gurrieri, S., & Valenza, M. (2005). Trace metal modelling of groundwater-gas-rock interactions in a volcanic aquifer: Mount Vesuvius. Southern Italy. Chemical Geology, 216(3–4), 289–311. https://doi.org/10.1016/j.chemgeo.2004.11.017

    Article  CAS  Google Scholar 

  • Ansari, A. A., Gill, S. S., & Khan, F. A. (2010). Eutrophication: Threat to Aquatic Ecosystems. In A. Ansari, Gill S. S., Lanza, G., & W. Rast (Eds.). Eutrophication: Causes, Consequences and Control, 143–170. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9625-8_7

  • APHA. (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). American Public Health Association.

    Google Scholar 

  • Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture. Food and Agriculture Organization of the United Nations.

  • Barzegar, R., Asghari Moghaddam, A., & Tziritis, E. (2016). Assessing the hydrogeochemistry and water quality of the Aji-Chay River, northwest of Iran. Environmental Earth Sciences, 75(23), 1486. https://doi.org/10.1007/s12665-016-6302-1

    Article  CAS  Google Scholar 

  • Bhateria, R., & Jain, D. (2016). Water quality assessment of lake water: A review. Sustainable Water Resources Management, 2, 161–173. https://doi.org/10.1007/s40899-015-0014-7

    Article  Google Scholar 

  • Bu, H., Tan, X., Li, S., & Zhang, Q. (2010). Water quality assessment of the Jinshui River (China) using multivariate statistical techniques. Environmental Earth Sciences, 60, 1631–1639. https://doi.org/10.1007/s12665-009-0297-9

    Article  CAS  Google Scholar 

  • Campodonico, V. A., Dapeña, C., Pasquini, A. I., Lecomte, K. L., & Piovano, E. L. (2019). Hydrogeochemistry of a small saline lake: Assessing the groundwater inflow using environmental isotopic tracers (Laguna del Plata, Mar Chiquita system, Argentina). Journal of South American Earth Sciences, 95, 102305. https://doi.org/10.1016/j.jsames.2019.102305

    Article  CAS  Google Scholar 

  • Cano Rodríguez, I., Gómez Vallejos, F., Ramírez Méndez, V., Martínez Barbosa, P., Rodríguez Rodríguez, E., & Aguilera Alvarado, A. (2000). Determinación de Contaminantes en la Presa la Purísima y su efecto en el Sistema de Pozos Puentecillas de Guanajuato. In C. A. Scott, P. Wester, & B. Marañón-Pimentel (Eds.), Asignación, Productividad y Manejo de Recursos Hídricos en Cuencas México and Sri Lanka (pp. 123–133). IWMI.

    Google Scholar 

  • Carrillo-Chávez, A., Morton-Bermea, O., González-Partida, E., Rivas-Solorzano, H., Oesler, G., García-Meza, V., Hernández, E., Morales, P., & Cienfuegos, E. (2003). Environmental geochemistry of the Guanajuato Mining District. Mexico. Ore Geology Reviews, 23(3–4), 277–297.

    Article  Google Scholar 

  • Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography, 22(2), 361–369. https://doi.org/10.4319/lo.1977.22.2.0361

    Article  CAS  Google Scholar 

  • Chaparro, M. A. E., Ramírez-Ramírez, M., Chaparro, M. A. E., Miranda-Avilés, R., Puy-Alquiza, M. J., Böhnel, H. N., & Zanor, G. A. (2020). Magnetic parameters as proxies for anthropogenic pollution in water reservoir sediments from Mexico: An interdisciplinary approach. Science of the Total Environment, 700, 134343. https://doi.org/10.1016/j.scitotenv.2019.134343

    Article  CAS  Google Scholar 

  • Chapman, D. (1996). Water quality assessments. E & FN, Spon.

  • Cuassolo, F., Díaz Villanueva, V., & Modenutti, B. (2021). Low-decomposition rates of riparian litter in a North Patagonian ultraoligotrophic lake. Limnologica, 90, 125906. https://doi.org/10.1016/j.limno.2021.125906

    Article  CAS  Google Scholar 

  • Davraz, A., Varol, S., Sener, E., Sener, S., Aksever, F., Kırkan, B., & Tokgözlü, A. (2019). Assessment of water quality and hydrogeochemical processes of Salda alkaline lake (Burdur, Turkey). Environmental Monitoring and Assessment, 191, 701. https://doi.org/10.1007/s10661-019-7889-y

    Article  CAS  Google Scholar 

  • Deocampo, D., & Jones, B. (2014). Geochemistry of saline lakes. In J. Drever (Ed.), Treatise on Geochemistry Surface and Groundwater, Weathering, and Soils, 437–469 (2nd ed.,). Elsevier.

  • Dold, B. (2008). Sustainability in metal mining: From exploration, over processing to mine waste management. Reviews in Environmental Science and Bio/technology, 7, 275. https://doi.org/10.1007/s11157-008-9142-y

    Article  CAS  Google Scholar 

  • Drever, J. (1997). The Geochemistry of Natural Waters. Prentice Hall.

    Google Scholar 

  • Eaton, F. M. (1950). Significance of carbonates in irrigation waters. Soil Science, 69(2), 123–133.

    Article  CAS  Google Scholar 

  • Ferrari, L. (2000). Avances en el conocimiento de la Faja Volcánica Transmexicana durante la última década. Boletín de la Sociedad Geológica Mexicana LIII, 84–92.

  • Gaillardet, J., Viers, J., & Dupré, B. (2014). Trace elements in river waters. In H. D. Holland K. K. Turekian (Eds.). Treatise on Geochemistry, 195–235 (2nd ed.,). Elsevier.

  • Gamazo, P., Bea, S. A., Saaltink, M. W., Carrera, J., & Ayora, C. (2011). Modeling the interaction between evaporation and chemical composition in a natural saline system. Journal of Hydrology, 401, 154–164. https://doi.org/10.1016/j.jhydrol.2011.02.018

    Article  CAS  Google Scholar 

  • Gaury, P. K., Meena, N. K., & Mahajan, A. K. (2018). Hydrochemistry and water quality of Rewalsar Lake of Lesser Himalaya, Himachal Pradesh. India. Environmental Monitoring and Assessment, 190(2), 84. https://doi.org/10.1007/s10661-017-6451-z

    Article  CAS  Google Scholar 

  • Khan, M., & Mohammad, F. (2014). Eutrophication: Challenges and Solutions. A. A. Ansari, S. S. Gill (Eds.), Eutrophication: Causes, Consequences and Control, 1–15. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7814-6_1

  • Kimmel, B. L., & Groeger, A. W. (1984). Factors controlling primary production in lakes and reservoirs: A perspective. Lake and Reservoir Management, 1(1), 277–281. https://doi.org/10.1080/07438148409354524

    Article  Google Scholar 

  • Kükrer, S., & Mutlu, E. (2019). Assessment of surface water quality using water quality index and multivariate statistical analyses in Saraydüzü Dam Lake. Turkey. Environmental Monitoring and Assessment, 191, 71. https://doi.org/10.1007/s10661-019-7197-6

    Article  CAS  Google Scholar 

  • Kumar, P., Mahajan, A. K., & Kumar, P. (2020). Determining limiting factors influencing fish kills at Rewalsar Lake: A case study with reference to Dal Lake (Mcleodganj), western Himalaya, India. Arabian Journal of Geosciences, 13, 872. https://doi.org/10.1007/s12517-020-05792-y

    Article  CAS  Google Scholar 

  • Kumar, P., Mahajan, A. K., & Meena, N. K. (2019a). Evaluation of trophic status and its limiting factors in the Renuka Lake of Lesser Himalaya, India. Environmental Monitoring and Assessment, 191, 105. https://doi.org/10.1007/s10661-019-7247-0

    Article  CAS  Google Scholar 

  • Kumar, P., Meena, N. K., & Mahajan, A. K. (2019b). Major ion chemistry, catchment weathering and water quality of Renuka Lake, north-west Himalaya, India. Environmental Earth Sciences, 78, 319. https://doi.org/10.1007/s12665-019-8315-z

    Article  CAS  Google Scholar 

  • Last, F. M., & Last, W. M. (2012). Lacustrine carbonates of the northern great plains of Canada. Sedimentary Geology, 277–278, 1–31. https://doi.org/10.1016/j.sedgeo.2012.07.011

    Article  CAS  Google Scholar 

  • Lecomte, K. L., Echegoyen, C. V., Vignoni, P. A., Kopalová, K., Kohler, T. J., Coria, S. H., & Lirio, J. M. (2020). Data set of dissolved major and trace elements from the lacustrine systems of Clearwater Mesa. Antarctica. Data in Brief, 30, 105438. https://doi.org/10.1016/j.dib.2020.105438

    Article  Google Scholar 

  • Lecomte, K. L., Sarmiento, A., Borrego, J., & Nieto, J. M. (2017). Rare Earth Elements mobility processes in an AMD-affected estuary: Huelva Estuary, (SW Spain). Marine Pollution Bulletin, 121(1–2), 282–291. https://doi.org/10.1016/j.marpolbul.2017.06.030

    Article  CAS  Google Scholar 

  • Lecomte, K. L., Maza, S. N., Collo, G., Sarmiento, A. M., & Depetris, P. J. (2017). Geochemical behavior of an acid drainage system: The case of the Amarillo River, Famatina (La Rioja, Argentina). Environmental Science and Pollution Research, 24(2), 1630–1647. https://doi.org/10.1007/s11356-016-7940-2

    Article  CAS  Google Scholar 

  • Lecomte, K. L., Vignoni, P. A., Córdoba, F. E., Chaparro, M. A. E., Chaparro, M. A. E., Gargiulo, J. D., Kopalová, K., Lirio, J. M., Irurzun, M. A., & Böhnel, H. N. (2016). Hydrological systems from the Antarctic Peninsula under climate change: James Ross Archipelago as study case. Environmental Earth Sciences, 75(623), 1–20. https://doi.org/10.1007/s12665-016-5406-y

    Article  Google Scholar 

  • Luarte, T., Tucca, F., Nimptsch, J., Woelf, S., Casas, G., Dachs, J., Chiang, G., Pozo, K., Barra, R., & Galbán-Malagón, C. (2022). Occurrence and air-water diffusive exchange legacy persistent organic pollutants in an oligotrophic north Patagonian lake. Environmental Research, 204(B), 112042. https://doi.org/10.1016/j.envres.2021.112042

  • Meybeck, M. (2011). Global Occurrence of Major Elements in Rivers. In: Drever, J.I. (Ed.). Treatise on Geochemistry, 5, 207–224. Elsevier.

  • Miranda-Avilés, R., Puy-Alquiza, M. J., & Caudillo-González, M. (2009). Evidencias estratigráficas y geoquímicas de la variación temporal de sedimentos naturales y antropogénicos en la planicie aluvial del río Guanajuato. Revista Mexicana De Ciencias Geológicas, 26(3), 564–574.

    Google Scholar 

  • Misaghi, F., Delgosha, F., Razzaghmanesh, M., & Myers, B. (2017). Introducing a water quality index for assessing water for irrigation purposes: A case study of the Ghezel Ozan River. Science of the Total Environment, 589, 107–116. https://doi.org/10.1016/j.scitotenv.2017.02.226

    Article  CAS  Google Scholar 

  • Mosley, L. M., Daly, R., Palmer, D., Yeates, P., Dallimore, C., Biswas, T., & Simpson, S. (2015). Predictive modeling of pH and dissolved metal concentrations and speciation following mixing of acid drainage with river water. Applied Geochemistry, 59, 1–10. https://doi.org/10.1016/j.apgeochem.2015.03.006

    Article  CAS  Google Scholar 

  • Mutlu, E. (2019). Evaluation of spatio-temporal variations in water quality of Zerveli stream (northern Turkey) based on water quality index and multivariate statistical analyses. Environmental Monitoring and Assessment, 191, 335. https://doi.org/10.1007/s10661-019-7473-5

    Article  CAS  Google Scholar 

  • Paca, J. M., Santos, F. M., Pires, J. C. M., Leitão, A. A., & Boaventura, R. A. R. (2019). Quality assessment of water intended for human consumption from Kwanza, Dande and Bengo rivers (Angola). Environmental Pollution, 254(B), 113037. https://doi.org/10.1016/j.envpol.2019.113037

  • Parkhurst, D., & Appelo, C. (1999). User's Guide to PHREEQC (Version 2): a Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Water-Resources Investigations Report, 99–4259. US Geological Survey, Lakewood, Colorado.

  • Pesce, S. F., & Wunderlin, D. A. (2000). Use of water quality indices to verify the impact of Córdoba City (Argentina) on Suquı́a River. Water Research, 34(11), 2915–2926. https://doi.org/10.1016/S0043-1354(00)00036-1

    Article  CAS  Google Scholar 

  • Picouet, C., Dupré, B., Orange, S., & Valladon, M. (2002). Major and trace element geochemistry in the upper Niger river (Mali): Physical and chemical weathering rates and CO2 consumption. Chemical Geology, 185, 93–124.

    Article  CAS  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water analyses. Transactions American Geophysical Union, 25, 914–928.

    Article  Google Scholar 

  • Raju, N. J. (2007). Hydrogeochemical parameters for assessment of groundwater quality in the upper Gunjanaeru River basin, Cuddapah District, Andhara Pradesh, South India. Environmental Geology, 52, 1067–1074. https://doi.org/10.1007/s00254-006-0546-0

    Article  CAS  Google Scholar 

  • Secretaría de Economía. (2001). Norma Mexicana NMX-AA-036-SCFI-2001, Análisis de Agua - Determinación de acidez y alcalinidad en aguas naturales, residuales y residuales tratadas - Método de Prueba. Secretaría de Economía, Diario Oficial de la Federación, México, D.F. 1 de Agosto de 2001.

  • Şener, Ş., Şener, E., & Dravaz, A. (2107). Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Science of the Total Environment, 584–585, 131–144. https://doi.org/10.1016/j.scitotenv.2017.01.102

  • Sigala, I., Caballero, M., Correa-Metrio, A., Lozano-García, S., Vázquez, G., Pérez, L., & Zawisza, E. (2017). Basic limnology of 30 continental waterbodies of the Transmexican. Boletín De La Sociedad Geológica Mexicana, 69, 313–370.

    Article  Google Scholar 

  • Skinner, B. J., & Murck, B. W. (2011). The Blue Planet. John Wiley & Sons.

    Google Scholar 

  • Smith, V. H. (2003). Eutrophication of freshwater and coastal marine ecosystems: a global problem. Environmental Science and Pollution Research, 10, 126–139. https://doi.org/10.1065/espr2002.12.142

  • Stumm, W. (2004). Chemical processes regulating the composition of lake waters. In P. E. O’Sullivan & C. S. Reynolds (Eds.), The Lakes Handbook: Limnology and Limnetic Ecology (pp. 79–106). Wiley Blackwell.

    Google Scholar 

  • Thornton, J., Steel, A., & Rast, W. (1996). Reservoirs. In D. Chapman (Ed.). Water Quality Assessments, 369–412 (2nd ed.,). E & FN Spon.

  • Tian, Y., Jiang, Y., Liua, Q., Dong, M., Xu, D., Liua, Y., & Xua, X. (2019). Using a water quality index to assess the water quality of the upper and middle streams of the Luanhe River, northern China. Science of the Total Environment, 667, 142–151. https://doi.org/10.1016/j.scitotenv.2019.02.356

    Article  CAS  Google Scholar 

  • USEPA. (1997). Method 300.1: Determination of Inorganic Anions in Drinking Water by Ion Chromatography, Revision 1.0. Office of Water US Environmental Protection. Washington: Agency.

  • USEPA. (2007). Method 6010C (SW-846): Inductively Coupled Plasma-Atomic Emission Spectrometry, Revision 3. Office of Water US Environmental Protection. Washington: Agency.

  • USSL Staff. (1954). Diagnosis and improvement of saline and alkali soils. USDA Handbook No. 60. Washington DC, USA.

  • Wu, Z., Wang, X., Chen, Y., Cai, Y., & Deng, J. (2018). Assessing river water quality using water quality index in Lake Taihu Basin, China. Science of the Total Environment, 612, 914–922. https://doi.org/10.1016/j.scitotenv.2017.08.293

    Article  CAS  Google Scholar 

  • Zaman, M., Shahid, S. A., & Heng, L. (2018). Irrigation Water Quality. In M. Zaman, S. A. Shahid, L. Heng, & H. Lee (Eds.), Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques (pp. 113–132). Springer.

    Google Scholar 

  • Zhao, C. S., Shao, N., & F., Yang, S. T., Rend, H., Ge, Y. R., Zhang, Z. S., Feng, P., & Liu, W. L. (2019). Quantitative assessment of the effects of human activities on phytoplankton communities in lakes and reservoirs. Science of the Total Environment, 665, 213–225. https://doi.org/10.1016/j.scitotenv.2019.02.117

    Article  CAS  Google Scholar 

  • Zhu, G., Wu, X., Ge, J., Liu, F., Zhao, W., & Wu, C. (2020). Influence of mining activities on groundwater hydrochemistry and heavy metal migration using a self-organizing map (SOM). Journal of Cleaner Production, 257, 120664. https://doi.org/10.1016/j.jclepro.2020.120664

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Universidad de Guanajuato through the project CIIC-1031-2016-2017. The authors would like to thank the support from Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT project PICT 2017-2026), the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina, PIP 11220170100088CO), and the Universidad Nacional de Córdoba (SeCyT, project 336-20180100385-CB). The authors also thank Comisión Estatal del Agua (Estado de Guanajuato) and Dr. Jaquelina González-Castañeda for their help in water analyses. C.S.M.R. thanks the Consejo Nacional de Ciencia y Tecnología (CONACyT, México) for granting her a scholarship to do her final Master degree study. A.I.P. and K.L.L. are members of CICyT, CONICET (Argentina), and they would like to thank Universidad de Guanajuato for their research stay there. The authors also appreciate the contributions of two anonymous reviewers, which improve the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela A. Zanor.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lecomte, K.L., Pasquini, A.I., Manjarrez-Rangel, C.S. et al. Surface hydrochemical dynamic in an artificial lake with anthropic impact: La Purísima reservoir, Central Mexico. Environ Monit Assess 194, 128 (2022). https://doi.org/10.1007/s10661-022-09773-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09773-4

Keywords

Navigation